Реферат теплообменные аппараты в составе котельных установок

Обновлено: 17.05.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Теплообменые аппараты, применяемые в котельных СОДЕРЖАНИЕВведение

. Виды теплообменных аппаратов применяемых в котельных

.1 Кожухотрубчатые теплообменники

.2 Элементные (секционные) теплообменники

.3 Пластинчатые теплообменники

Список используемой литературы

Процессы теплообмена имеют большое значение в режиме работы котельных. Теплообменным аппаратом называют всякое устройство, в котором одна жидкость - горячая среда, передает теплоту другой жидкости - холодной среде. В качестве теплоносителей в тепловых аппаратах котельных используются разнообразные капельные и упругие жидкости в самом широком диапазоне давлений и температур . Процессы теплообмена в котельных осуществляются в теплообменных аппаратах различных типов и конструкций.

По принципу работы аппараты делят на регенеративные, смесительные и рекуперативные. В регенеративных аппаратах горячий теплоноситель отдает свою теплоту аккумулирующему устройству, которое в свою очередь периодически отдает теплоту второй жидкости - холодному теплоносителю , т. е. одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью . В смесительных аппаратах передача теплоты от горячей к холодной жидкости происходит при непосредственном смешении обеих жидкостей , например смешивающие конденсаторы.

Особенно широкое развитие во всех областях техники получили рекуперативные аппараты, в которых теплота от горячей к холодной жидкости передается через разделительную стенку. Только такие аппараты будут рассмотрены в дальнейшем.

Теплообменные аппараты могут иметь самые разнообразные назначения - паровые котлы, конденсаторы, пароперегреватели, приборы центрального отопления и т. д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими.

В теплообменных аппаратах движение жидкости осуществляется по трем основным схемам. Если направление движения горячего и холодного теплоносителей совпадают, то такое движение называется прямотоком.

Если направление движения горячего теплоносителя противоположно движению холодного теплоносителя , то такое движение называется противотоком. Если же горячий теплоноситель движется перпендикулярно движению холодного теплоносителя , то такое движение называется перекрестным током.

1. ВИДЫ ТЕПЛООБМЕННЫХ АППАРАТОВ ПРИМЕНЯЕМЫХ В КОТЕЛЬНЫХ1.1 Кожухотрубчатые теплообменники

Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крышки, патрубки. Концы труб крепятся в трубных решетках развальцовкой, сваркой и пайкой.

Рис. 1 Внешний вид кожухотрубчатого теплообменника Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки как и трубном, так и межтрубном пространствах.

Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от неличины температурных

Кожухотрубчатые теплообменные аппараты обозначаются индексами и классифицируются:

• по назначению (первая буква индекса): Т – теплообменники; Х – холодильники; К – конденсаторы; И – испарители;

• по конструкции (вторая буква индекса) – Н — с неподвижными трубными решетками; К — с температурным компенсатором на кожухе; П — с плавающей головкой; У — с U-образными трубами; ПК — с плавающей головкой и компенсатором на ней;

• по расположению (третья буква индекса): Г – горизонтальные; В – вертикальные.

Кожухотрубчатые теплообменники (рис. 1-2) представляют собой аппараты, выполненные из пучков труб, собранных при помощи труб­ных решеток, и ограниченные кожухами и крышками со штуцерами.

Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали.

Трубное и межтрубное пространства в аппарате разобщены, а каждое из этих пространств может быть разделено при помощи перегородок на несколько ходов. Перегородки устанавливаются с целью увеличения скорости, а следовательно, и интенсивности теплообмена теплоносите­лей. Теплообменники этого типа предназначаются для теплообмена между различными жидкостями, между паром и жидкостями или между жидкостями и газами. Они применяются тогда, когда требуется большая поверхность теплообмена.

Трубки теплообменников изготовляются прямыми (за исключением теплообменников с U-образными трубками); поэтому они легко доступны для очистки и замены в случае течи.

В большинстве случаев пар (греющий теплоноситель) вводится в межтрубное пространство, а нагреваемая жидкость протекает по труб­кам. Конденсат из межтрубного пространства выходит к конденсатоотводчику через штуцер, расположенный в нижней части кожуха. Для компенсации температурных удлинений, возникающих между кожухом и трубками, предусматривается возможность свободного удлинения труб за счет различного рода компенсаторов.

Особенность кожухотрубчатых теплообменников состоит в том, что проходное сечение межтрубного пространства велико по сравнению с проходным сечением трубок и может быть больше последнего в 2,5— 3 раза.

Кожухотрубчатые аппараты могут быть вертикальными и горизон­тальными. Вертикальные аппараты имеют большее распространение, так как они занимают меньше места и более удобно располагаются в рабочем помещении. Для удобства монтажа и эксплуатации макси­мальную длину трубок для них следует брать не больше 5 м.

Во избежание резкого снижения теплоотдачи от конденсирующегося пара к стенке в корпусе теплообменника должны быть предусмотрены краны для выпуска воздуха как из нижней части аппарата над поверх­ностью конденсата, так и из верхней его части.

В кожухотрубных ТА трубы могут быть располо­жены по сторонам шестиугольников или, что одно и то же, равносторон­них треугольников (треугольной) или по концентрическим окружностям.

Вопрос о том, какой из тепло­носителей направлять в трубы или в межтрубное пространство, должен решаться с точки зрения не только интенсификации теплообмена, но и на­дежности работы ТА. Если теплоноситель вызывает коррозию или меха­ническое повреждение труб, то лучше его пропустить внутрь труб, так как экономичнее выполнить трубы из материала высокой стоимости, чем кожух. В трубы целесообразно направлять теплоноситель под большим давлением, чем в межтрубном пространстве, чтобы не делать толстостен­ный кожух, а также более загрязненный, поскольку трубы очистить лег­че, чем межтрубное пространство. Например, дымовые газы обычно про­ходят в трубах, что уменьшает засорение аппарата золой и сажей, а пар и воздух — в межтрубном пространстве.

Двухходовой горизонтальный теплообменник типа Н (рис. 1) состоит из цилиндрического сварного кожуха 8, распределительной камеры 11 и двух крышек 4. Трубный пучок образован трубами 7, закрепленными в двух трубных решетках 3. Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера 1, 12) и межтрубного (штуцера 2, 10)

пространств. Перегородка 13 в распределительной камере образует ходы теплоносителя по трубам. Для герметизации узла соединения продольной перегородки с трубной решеткой использована прокладка 14, уложенная в паз решетки 3.


1 - Двухходовой горизонтальный теплообменник с неподвижными решетками;

2 - Теплообменник с U-образными трубами.

Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки 6, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве. На входе теплообменной среды в межтрубное пространство предусмотрен отбойник 9 — круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изнашивания.

1 - Теплообменник типа К — с линзовым компенсатором;

2 – Теплообменник с плавающей головкой.

Теплообменник типа К — с линзовым компенсатором(Рис. 2) на корпусе. В этом аппарате температурные деформации компенсируются осевым сжатием или расширением компенсатора. Теплообменники с линзовыми компенсаторами применяют при небольших температурных деформациях (не более 13-15 мм) и невысоких давлениях в межтрубном пространстве (не более 0.5 МПа).

Применение кожухотрубчатых теплообменников с температурным компенсатором на кожухе (линзовый компенсатор) ограничено предельно допустимым давлением в кожухе, равным 1,6 МПа. При большем давлении в кожухе (1.6—8,0 МПа) следует применять теплообменники с плавающей головкой или с U-образными трубами.

На рис.3 изображен кожухотрубчатый теплообменник с плавающей головкой, предназначенной для охлаждения (нагревания) жидких или газообразных сред без изменения агрегатного состояния. Не закрепленная на

кожухе вторая трубная решетка вместе с внутренней крышкой, отделяющей трубное пространство от межтрубного, образует так называемую плавающую головку. Такая конструкция исключает температурные напряжения в кожухе и в трубах. Эти теплообменники, нормализованные в соответствии с ГОСТ 14246—79, могут быть двух- или четырехходовыми, горизонтальными длиной 3, 6 и 9 м или вертикальными высотой 3 м. Допустимое давление охлаждающей среды в трубах до 1,0 МПа, в межтрубном пространстве — от 1,0 до 2,5 МПа. Диаметр кожуха от 600 до 1400 мм, высота труб 6,0 м.

В аппаратах типа У обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100 °С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей.

Теплообменники с U-образными трубами применяют для нагрева и охлаждения жидких или газообразных сред без изменения их агрегатного состояния. Они рассчитаны на давление до 6,4 МПа.

Преимущество конструкции аппарата типа У — возможность периодического извлечения трубного пучка для очистки наружной поверхности труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.

Поскольку механическая очистка внутренней поверхности труб в аппаратах типа У практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки.

Для уменьшения засорения золой дымовые газы пропускают внутри трубок, а воздух — через межтрубное пространство.

При значительно больших давлениях в теплообменной аппаратуре применяют сальниковые компенсаторы. Однако сальниковые компенсаторы могут пропускать рабочую среду, что требует их периодическое регулирование, в связи с чем сальниковые компенсаторы применяют для аппаратов с малыми диаметрами.

Пластинчатые теплообменники

Пластинчатый теплообменник — это теплообменник поверхностного типа, в котором передача тепла от одной среды (греющего теплоносителя) к другой (нагреваемому теплоносителю) происходит через металлическую стенку, которую принято называть поверхностью теплообмена.

Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Рабочие среды в теплообменнике движутся в щелевых каналах сложной формы между соседними пластинами в противопотоке. Каналы для греющего и нагреваемого теплоносителей чередуются между собой (Рис.3). Гофрированная поверхность пластин усиливает турбулизацию потоков рабочих сред и повышает коэффициент теплоотдачи.

Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные).

Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро, очистка теплообменных поверхностей требует незначительных затрат труда.

Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518—83. Их изготовляют с поверхностью теплообмена от 2 до 600 м 2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от —30 до +180° С для реализации теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.

Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.


Рис.3 Разборный пластинчатый теплообменник

Устройство и принцип работы пластинчатого теплообменника достаточно просты. При стягивании пакета пластин образуется ряд каналов, по которым протекают жидкости учавтвующие в процессе теплообмена. Все пластины в пакете одинаковы, только развернуты одна относительно другой на 180 градусов. Такая установка пластин обеспечивает чередование горячих и холодных каналов. В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке), и горячая жидкость передает тепло через стенку пластины. В местах их возможного перетекания находится или стальная пластина или двойное резиновое уплотнение, что практически исключает смешение жидкостей. Такой принцип построения пластинчатого теплообменника позволяет его быстро модифицировать, как в сторону увеличения количества пластин и тем самым увеличить мощность пластинчатого теплообменника, так и легко отремонтировать его в случае выхода из строя резинового уплотнения или теплообменной пластины.

Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4—7 мм и основанием длиной 14—30 мм (для вязких жидкостей до 75 мм). Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий. К недостаткам пластинчатых теплообменников следует отнести невозможность использования их при давлении более 1,6 МПа.

Пластины неразборных теплообменников сварены в блоки, соединенные на прокладках в общий пакет

Змеевиковые теплообменники

Основным теплообменным эле­ментом является змеевик-труба, согнутая по определенному про­филю.

Конструкция змеевикового теплообменника показана на рис. 4. Аппарат имеет корпус 1, в котором размещен змеевик 3 или система змеевиков. Витки змеевика ориентированы по винтовой линии. При боль­шой площади поверхности теплообмена змеевики по длине набирают из нескольких секций. Во избежание прогибов труб при большом числе витков и большом диаметре навивки каждый виток закрепляют болтами на стойках.


Рис. 4 Змеевиковый теплообменник:

3- змеевик из трубы

Пар вводится в верхнюю часть корпуса через вход п1 со скоростью до 50 м/с, выходит снизу через выход п2 . Охлаждающая жидкость пос­тупает в змеевик снизу через вход B1 и движется в нем со скоростью до [1]м/с, выходит через выход В2 . Разность давлений теплоносителей в змееви-

ковых аппаратах может достигать 10 МПа.

Скорость движения жидкости мала вследствие большого сечения корпуса аппарата, что обусловливает низкие значения коэффициентов теплоотдачи от наружной стенки змеевика к жидкости (или наоборот). Для увеличе­ния этого коэффициента теплоотдачи повышают скорость движения жидкости путем установки в корпусе аппарата, внутри змеевика, стакана. В этом случае жидкость движется по кольцевому пространству между стенками аппарата и стакана с повышенной скоростью.

По­гружные змеевиковые теплообменники имеют сравнительно не­большую поверхность теплообмена (до 10-15 м 2 ).

Спиральные теплообменники

Спиральные теплообменники изготовляют с поверхностью теплообмена 10—100 м 2 ; они работают как под вакуумом, так и при давлении до 1 МПа при температуре рабочей среды 20—200 °С. Их можно использовать для реализации теплообмена между рабочими средами жидкость—жидкость, газ—газ, газ—жидкость.

Все большее распространение этих теплообменников в последнее время объясняется главным образом простотой изготовления и компактностью конструкции. В таком аппарате один из теплоносителей поступает в периферийный канал аппарата 3 и, двигаясь по спирали, выходит из верхнего центрального канала 1. Другой теплоноситель поступает в нижний центральный канал 4 и выходит из периферийного канала 2.

Площадь поперечного сечения каналов в таком теплообменнике по всей длине постоянна, поэтому он может работать с загрязненными жидкостями (загрязнение смывается потоком теплоносителя).

Рис.5 Спиральный теплообменник

В спиральных теплообменниках поверхность теплообмена образована двумя стальными лентами 1, 2 толщиной 3,5—6 мм и шириной 400—1250 мм (рис. 5), свернутыми в спираль так, что получаются каналы прямоугольного профиля, по которым противоточно движутся теплоносители. Достоинствами спиральных теплообменников являются повышенная ком­пактность (большая поверхность теплообмена в единице объема) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей, недостатками их являются сложность изготовления и меньшая плотность.

Оросительные теплообменники


Рис.5 Оросительный теплообменник

Оросительные теплообменники применяют в основном для охла­ждения жидкостей и газов или конденсации паров.

Оросительный теплообменник представляет собой змеевик (рис. 6) из разме­щенных друг над другом прямых труб 1, соединенных между собой калачами 2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерною распределения охлаждающей воды по всей длине верхней трубы змеевика. Отрабо­танная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждае­мый теплоноситель.

Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется. Но при этом происходит необратимая потеря воды. Во избежание сильного увлажнения воздуха в помещении ороситель­ные теплообменники обычно устанавливают на открытом воздухе. По этой же причине, если оросительный теплообменник необходи­мо установить в помещении, его приходится помещать в громозд­кие кожухи.

К недостаткам этих теплообменников следует отнести также гро­моздкость, неравномерность смачивания наружной поверхности труб, нижние ряды которых могут вообще не смачиваться и прак­тически не участвовать в теплообмене. Поэтому, несмотря на простоту изготовления, легкость чистки наружных стенок труб и другие достоинства, оросительные теплообменники находят огра­ниченное применение.

Поскольку сечения внутренней трубы и кольцевого зазора неве­лики, то в этих теплообменниках достигаются значительные скоро­сти движения теплоносителей (до 3 м/с), что приводит к увеличению коэффициентов теплопередачи и тепловых нагрузок, замедлению отложения накипи и загрязнений на стенках труб. Однако двухтруб­ные теплообменники более громоздки, чем кожухотрубчатые, на их изготовление требуется больше металла на единицу поверхности теплообмена. Двухтрубные теплообменники применяют для про­цессов со сравнительно небольшими тепловыми нагрузками и соот­ветственно малыми поверхностями теплообмена (не более десятков квадратных метров).

Испарители и паропреобразователи

Испарители применяются для испарения жидкости или для увеличения концентрации раствора путем испа­рения части растворителя.

Испарители и парооб­разователи широко применя­ются для уменьшения и восполне­ния потерь конденсата. Их можно разделить на аппараты с естественной циркуляцией воды между труб­ками и с принудительной циркуляцией воды в кипятильных трубках.

Давление с испарителя выбирается таким образом, чтобы обеспечивать нужную температуру кипения. По­скольку испарители часто работают под вакуумом, то температура в них ниже нормальной температуры кипения.

В качестве примера испарителя воды с естественной циркуляцией на рис.7 представлен вертикальный аппарат. Коэффициент теплопередачи 3000-4000 Вт/м 2 ∙К. Естественная циркуляция в этом аппарате происходит вследствие того, что образую­щаяся в кипятильных трубках пароводяная эмульсия имеет меньшую плотность, чем вода в кольцевом зазоре между корпусом и трубной системой, где ей сообщается значительно меньшее удельное количество тепла на единицу объема.


Рис.7 Вертикальный испаритель:

1- парообразующее пространство;

2- патрубок для подачи греющего пара;

3-патрубок для подачи выпариваемой жидкости;

4- нижняя крышка;

5- отвод конденсата пара;

6- трубка для сдувок;

7- греющая камера;

9- дренаж сепаратора;

11- патрубок для отвода сухого пара.

При этом в трубках устанавливается подъем­ное движение пароводяной эмульсии, а в кольцевом зазоре — опускное движение воды. Паровые пузырьки по выходе среды из трубок перехо­дят в паровой объем. Уровень воды в аппарате поддерживается с по­мощью поплавкового регулятора питания выше верхней трубной решет­ки. Первичный (греющий) пар поступает в межтрубное пространство греющей камеры. Для отделения влаги из вторичного пара в верхней части парового пространства встроено сепа­рирующее устройство.

Паропреобразователь - теплообменный аппарат для испарения воды; разновидность испарителя, отличающаяся тем, что конечным продуктом рабочего процесса является не дистиллят (питательная вода), а пар водяной.

Библиографический список

1. Лебедев П.Д. Тепломассообменные сушильные и холодильные установки. М.: Энергия, 1972 – 320с.

2. Виноградов С.Н. Выбор и расчёт теплообменников. Пермь: ПГУ, 2001 – 100с.

3. Касаткин А.Г. Основные процессы и аппараты технической технологии. М.: Химия, 1970 – 374с.

4. Дытнерский Ю.И. Процессы и аппараты технической технологии. Ч.1 М.: Химия, 1995 – 400с.

5. Мартыненко О.Г. Справочник по теплообменникам. Т.2. М.: Энергоатомиздат, 1987 - 352с.

Теплообменник - устройство для осуществления процесса тепло­обмена между двумя физически разделенными жидкостями.

Конденсатор - теплообменник, в котором конденсация пара осуществляется путем отвода теплоты.

Испаритель - теплообменник, в котором испарение жидкости осуществляется путем подводатеплоты от охлаждаемой среды.

Теплообменник серийного производства - теплообменник, собранный из деталей массового производства, который в заданных условиях характеризуется специфической полезной мощностью.

Тепловая мощность теплообменника - тепловая мощность
(в применении к теплообменникам) — это мощность, определяемая с использованием одного или нескольких нижеперечисленных параметров:

— число единиц переноса теплоты,

которые могут быть определены либо путем измерений, либо расчетом с использованием измеренных параметров.

Группы теплообменников - классификация теплообменников основывается на конструктивных, физических или конструктивных и физических критериях . Теплообменники подразделяются по типу поверхности теплопередачи в соот­ветствии с общепринятой классификацией, установленной в EN 247.

Чаще всего теплообмен осуществляется через элементы конструкции аппарата, хотя встречаются агрегаты, принцип действия которых основан на смешении двух сред. Области применения теплообменных аппаратов: системы отопления; металлургия; энергетика; тепловые пункты; химическая и пищевая промышленности; системы кондиционирования и вентилирования воздуха; коммунальное хозяйство; атомная и холодильная отрасли.

ВИДЫ ТЕПЛООБМЕННЫХ АППАРАТОВ

Теплообменные аппараты подразделяются на несколько групп в зависимости от: типа взаимодействия сред (поверхностные и смесительные); типа передачи тепла (рекуперативные и регенеративные); типа конструкции; направления движения теплоносителя и теплопотребителя (одноходовые и многоходовые).

Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении

Рис. 1. Виды устройств теплообменников в зависимости от принципа работы


По типу взаимодействия сред:

Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.

Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации

которых лежит непосредственный контакт двух веществ. Наиболее известным вариантом смесительных теплообменников являются градирни:

Рис. 2. Градирни – один из видов смесительных ТО.

Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха. К смесительным теплообменникам относятся:

паровые барботеры; сопловые подогреватели; градирни; барометрические конденсаторы.

По типу передачи тепла рекуперативные.

В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является пластинчатый разборный теплообменник.

Регенеративные отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких


установок – охлаждение и нагрев воздушных масс. Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.

Рис. 3. Регенеративный теплообменник

На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1, горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3, проходит холодный поток. Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1, заберет

достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются. Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.

По типу конструкции

Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических

характеристик: мощность теплообменника; давление в системе; тип сред (агрессивные или нет); рабочие температуры; прочие требования.

Подробную классификацию типов конструктивов теплообменных аппаратов можно посмотреть выше на Рис. 1.

По направлению движения сред:

В данном виде агрегатов теплоноситель и теплопотребитель пересекают внутренний объем теплообменника однократно по кратчайшему пути. Подобная схема движения в ТО используется в простых случаях, когда не требуется повышать теплоотдачу от теплоносителя хладогенту. Кроме того, одноходовые теплообменники требуют более редкого обслуживания и промывки, так как на внутренних поверхностях скапливается меньше отложений и загрязнений.

Применяются, когда рабочие среды плохо отдают или принимают тепло, поэтому КПД теплообменного аппарата увеличивают за счет более длительного контакта теплоносителя с пластинами агрегата.

Кожухотрубные состоят из кожуха, к торцу которого приварены трубные решетки с пучками труб. Решетки закрываются крышками при помощи болтового соединения. Теплоноситель в кожух поступает через штуцер, при этом одна среда течет по трубам, а


другая — по пространству между ними.

Погружные — представляют собой бак, заполненный жидкостью, в который погружается змеевик — по нему курсирует вторая среда.



Спиральные — состоят из двух металлических листов, которые приварены к перегородке и свернуты в спираль. Такие агрегаты могут работать с вязкими жидкостями.

Пластинчатые — состоят из сжатых штампованных пластин с уплотнениями. Их рельефная поверхность образует каналы, по которым циркулируют носители тепла.

По сути это набор пластин, которые перфорируют для увеличения полезной площади и собирают между двумя плитами. Одна из этих плит обычно не фиксируется, ее можно снимать и увеличивать или уменьшать количество пластин. Бывают с спаянные варианты, их уже не получится разобрать. Между пластинами движутся горячая и холодная жидкости, попеременно. Конструкция герметична благодаря уплотнителям.

Пластины – это основа конструкции. Их изготавливают из стали, меди, графита, титана и других сплавов, толщиной от 0,4 до 1 мм, в зависимости от давления. Выбор материала обусловлен условиями использования, а также выбором среды, которой будет заполнено устройство. Чаще всего это вода, но бывают случаи, например, на специализированных производствах, где используют агрессивные жидкости.

Пластины плотно прижаты друг к другу и образуют каналы благодаря специальной штамповке. На одной стороне каждой пластины есть пазы, куда вставляются резиновые прокладки для герметичности.

В пластинах по 4 отверстия. Два из них служат для провода и отвода горячей и нагреваемой жидкости. Два другие предотвращают смешение жидкостей за счет дополнительной изоляции. Если произойдет прорыв одного из контуров, то дренажные пазы также препятствуют смешиванию. Благодаря тому, что греющая и нагреваемая среды направлены в противоток друг другу, и извилистому течению (по каналам) эффективность обмена теплом увеличивается, а гидравлическое сопротивление относительно небольшое.

Существует 2 варианта компоновки пластин.

Одноходовая. Теплоноситель разделяется на потоки, которые текут параллельно друг другу по пластинам, потом сливается и выходит в порт для вывода.

Многоходовая. Здесь устройство чуть сложнее. Благодаря перегородкам в разделительных пластинах теплоноситель течет по каналам, как бы разворачиваясь в пластине.

Плюсы и минусы пластинчатых теплообменников:

Пластинчатые теплообменники обладают хорошими характеристиками теплопередачи при компактных размерах. Еще один плюс таких устройств в том, что их можно изготовить индивидуально под конкретные задачи.

Некоторые изменения в конструкции повышают прочность и КПД пластинчатых теплообменников. Есть такие разновидности, как пластинчато-ребристый и оребренно-пластинчатый. В первом варианте между разделительными пластинами проложены ребристые насадки. Подходят для теплообмена с неагрессивными жидкостями и газом.

Оребренно-пластинчатые актуальны при газовом отоплении.

Вариативность размеров теплообменника и материалов, из которых его изготавливают.

Возможность изменять количество пластин и таким образом изменять мощность устройства (если речь не идет о запаянном теплообменнике).

Высокий процент теплопередачи. Низкие теплопотери. Простота использования: устройство легко разобрать, промыть, собрать. Легко ремонтировать: пластины, в случае необходимости, можно просто заменить.

Но есть у пластинчатых теплообменников и минусы:

Давление в пластинах не должно превышать 25 кг/кв.см. Температура не выше 200 °C.

Если теплоноситель содержит большое количество примесей, на пластинах будет быстро образовываться накипь.

Не существует типовых моделей теплообменных аппаратов — каждый из них собирается под конкретные условия эксплуатации. Материал, количество пластин, размеры, технические характеристики — все это определяется на основе расчетов. Расчетами занимается компания-поставщик оборудования. Все, что нужно заказчику — предоставить необходимые данные. Для расчетов нужно знать следующие параметры:

Эти данные можно запросить у теплоснабжающей организации.

Тепловую нагрузку можно легко рассчитать, если известны остальные показатели. При выборе стоит учитывать и другие параметры, такие как вязкость и загрязненность рабочей среды; температура в контуре теплосети; температура внутреннего контура; тепловая нагрузка; рабочее давление; допускаемые потери напора. Неправильные подсчеты могут серьезно повлиять на срок службы, эффективность и стоимость оборудования.

Материалы не соответствуют теплоносителю — в слишком агрессивной или загрязненной среде они будут быстро разрушаться и засоряться.

Некорректный запас площади на загрязнение (он должен оставаться в диапазоне 10-50%), при слишком низком значении прибор будет быстро покрываться накипью, при слишком высоком — будет работать неэффективно.

Температура и давление системы отопления должны соответствовать параметрам теплообменника. Резкие перепады этих показателей негативно влияют на его работу, а если они меняются плавно, то устройство прослужит максимально долго.

Благодаря рельефным каналам пластинчатые теплообменники самоочищаются за счет турбулентных завихрений потоков. Но даже такие устройства периодически нужно чистить. Если мощность прибора заметно снизилась, появились значительные перепады давления, посторонние шумы — это свидетельствует о загрязнении пластин.

Чистка теплообменника может производиться двумя методами:

Безразборным — с использованием специальных жидких очищающих составов.

Разборным — с разборкой прибора и механической чисткой щетками.

В любом случае, чистку должны проводить профессионалы.

Производительность водоподогревательных установок определяется по максимальным часовым расходам тепла на отопление и вентиляцию и расчетным расходам тепла на горячее водоснабжение, определяемым в соответствии со строительными нормами и правилами по проектированию горячего водоснабжения.

Производительность подогревателей для горячего водоснабжения в индивидуальных котельных определяется по максимальному расходу.

Количество подогревателей для систем отопления и вентиляции должно быть не менее двух. Резервные подогревателя не предусматриваются; при этом в котельных первой категории при выходе из строя одного подогревателя оставшиеся должны обеспечивать отпуск тепла в режиме самого холодного месяца.

Для отпуска воды различных параметров (на отопление и вентиляцию, бытовое и технологическое горячее водоснабжение), а также для работы подогревателей в разных режимах (пиковом или базисном) допускается предусматривать отдельные группы водоподогревательных установок.

Конденсат от пароводяных подогревателей котельных должен направляться непосредственно в деаэраторы.

В котельных следует предусматривать закрытые баки с паровой подушкой для сбора дренажей паропроводов, конденсата пароводяных подогревателей и калориферов системы отопления и вентиляции котельной.

При расположении баков сбора конденсата в котельной или вблизи нее все дренажа следует направлять в эти баки. При этом в котельной специальные баки сбора дренажей не предусматриваются.

В зависимости от качества конденсата вoзвpащаемого от внешних потребителей, следует предусматривать возможность непосредственной подачи его в деаэраторы совместной обработки с исходной водой или обработки в специальной установке.

Конденсат от теплоутилизаторов скрытой теплоты парообразования дымовых газов может быть использован в системе подпитки котлов после специальной обработки или сбрасываться в канализацию после нейтрализующей установки.

Расчетная производительность водоподготовительной установки определяется:

для питания паровых котлов - суммой максимальных потерь пара и конденсата технологическими потребителями, потерь воды с непрерывной продувкой и потерь пара и конденсата в котельной;

для подпитки тепловых сетей - в соответствии со строительными нормами и правилами по проектированию тепловых сетей;

для автономных котельных - из расчета первоначального или аварийного заполнения всех объемов циркуляции в течение не более чем за 8 часов.

Производительность водоподогревателей для системы горячего водоснабжения без баков-аккумуляторов должна определяться по максимальному часовому расходу тепла на горячее водоснабжение. Количество подогревателей должно быть не менее двух. При этом каждый из них должен быть рассчитан на отпуск тепла на горячее водоснабжение в режиме не менее среднего расхода тепла.

При наличии баков-аккумуляторов, производительность подогревателей необходимо определять по расходу воды для зарядки баков. К установке необходимо принимать два подогревателя с 50 % производительностью.

При максимальном тепловом потоке на горячее водоснабжение до 200 кВт для жилых зданий,
а также промышленных и сельскохозяйственных предприятий, допускающих перерыв в подаче теплоты на горячее водоснабжение, возможна установка одного подогревателя.

Допускается установка одного ёмкостного водоподогревателя.

Производительность подогревателей для технологических установок должна определяться по максимальному расходу тепла на технологические нужды с учетом коэффициента одновременности потребления тепла различными технологическими потребителями. Количество подогревателей должно быть не менее двух. При этом при выходе из строя одного из них, оставшиеся должны обеспечить отпуск тепла технологическим потребителям, не допускающим перерывов в подаче тепла.

В автономных котельных следует применять горизонтальные кожухотрубные, пластинчатые или смешивающие подогреватели. Вертикальные подогреватели следует применять, если их установка, обслуживание или ремонт не требует увеличения высоты помещения котельной.

Для систем горячего водоснабжения допускается применение ёмкостных водоподогревателей с использованием их в качестве баков-аккумуляторов горячей воды.

Для водоводяных подогревателей следует применять противоточную схему потоков теплоносителей.

Для горизонтальных секционных кожухотрубных водоподогревателей греющая вода от котлов должна поступать:

— для водоподогревателей системы отопления — в трубки;

— для водоподогревателей системы горячего водоснабжения — в межтрубное пространство.

Для пластинчатых теплообменников нагреваемая вода должна проходить вдоль первой и последней пластин.

Для пароводяных подогревателей пар должен поступать в межтрубное пространство.

Для систем горячего водоснабжения горизонтальные секционные кожухотрубные водоподогреватели должны применяться с трубками из латуни или нержавеющей стали, а ёмкостные — со змеевиками из латуни или нержавеющей стали. Для пластинчатых теплообменников должны применяться пластины из нержавеющей стали.
Литература:

1. СНиП II-35-76 Строительные нормы и правила проектирования. Котельные установки. Утверждены постановлением Государственного комитета Совета Министров по делам строительства от 31 декабря 1976 г. № 229.

2. П1-03 к СНиП II-35-76 Проектирование автономных и крышных котельных. Утверждено приказом министерства архитектуры и строительства Республики Беларусь от 30 декабря 2003 г. № 259.

Теплообменниками называются аппараты, в которых происходит теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.). Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых передача тепла является основным процессом, и реакторы, в которых тепловой процесс играет вспомогательную роль.

Содержание

Введение. 3
1.Теплообменные аппараты с трубчатой поверхностью нагрева. 7
2. Теплообменные аппараты с плоской поверхностью нагрева. 9
3. Конструкция спиральных теплообменников. 11
4.Конструкция кожухотрубчатых теплообменников. 13
5.Элементные (секционные) теплообменники. 18
6.Витые теплообменники. 19
7.Графитовые теплообменники. 20
8.Погружные теплообменники. 21
10.Ребристые теплообменники. 22
9.Оросительные теплообменники. 23
Заключение. 24
Список использованной литературы. 26

Вложенные файлы: 1 файл

Документ Microsoft Office Word.docx

1.Теплообменные аппараты с трубчатой поверхностью нагрева. 7

2. Теплообменные аппараты с плоской поверхностью нагрева. . 9

3. Конструкция спиральных теплообменников. . . 11

4.Конструкция кожухотрубчатых теплообменников. . 13

5.Элементные (секционные) теплообменники. . . 18

6.Витые теплообменники. . . . 19

7.Графитовые теплообменники. . . . 20

8.Погружные теплообменники. . . . 21

10.Ребристые теплообменники. . . . 22

9.Оросительные теплообменники. . . . 23

Список использованной литературы. . . 26

Теплообменниками называются аппараты, в которых происходит теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.)

Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых передача тепла является основным процессом, и реакторы, в которых тепловой процесс играет вспомогательную роль.

Классификация теплообменников возможна по различным признакам.

По способу передачи тепла различаются теплообменники смешения, в которых рабочие среды непосредственно соприкасаются или перемешиваются, и поверхностные теплообменники – рекуператоры, в которых тепло передается через поверхность нагрева – твердую (металлическую) стенку, разделяющую эти среды.

По основному назначению различаются подогреватели, испарители, холодильники, конденсаторы.

В зависимости от вида рабочих сред различаются теплообменники:

а) жидкостно-жидкостные – при теплообмене между двумя жидкими средами;

б) парожидкостные – при теплообмене между паром и жидкостью (паровые подогреватели, конденсаторы);

в) газожидкостные – при теплообмене между газом и жидкостью (холодильники для воздуха) и др.

По тепловому режиму различаются теплообменники периодического действия, в которых наблюдается нестационарный тепловой процесс, и непрерывного действия с установившимся во времени процессом.

В теплообменниках периодического действия тепловой обработке подвергается определенная порция (загрузка) продукта. Вследствие изменения свойств продукта и его количества параметры процесса непрерывно варьируют в рабочем объеме аппарата во времени.

В качестве теплоносителя наиболее широко применяются насыщенный или слегка перегретый водяной пар. В смесительных аппаратах пар обычно барботируют в жидкость (впускают под уровень жидкости); при этом конденсат пара смешивается с продуктом, что не всегда допустимо. В поверхностных аппаратах пар конденсируется на поверхности нагрева и конденсат удаляется отдельно от продукта с помощью водоотводчиков. Водяной пар как теплоноситель обладает множеством преимуществ: легкостью транспортирования по трубам и регулирования температуры, высокой интенсивностью теплоотдачи и др. Применение пара особенно выгодно при использовании принципа многократного испарения, когда выпариваемая из продукт вода направляется в виде греющего пара в другие выпарные аппараты и подогреватели.

Обогрев горячей водой и жидкостями также имеет широкое применение и выгоден при вторичном использовании тепла конденсатов и жидкостей (продуктов), которые по ходу технологического процесса нагреваются до высокой температуры. В сравнении с паром жидкостный подогрев менее интенсивен и отличается переменной, снижающейся температурой теплоносителя. Однако регулирование процесса и транспорт жидкостей так же удобны, как и при паровом обогреве.

С, что соответствует давлению (5-7) 10°Общим недостатком парового и водяного обогрева является быстрый рост давления с повышением температуры. В условиях технологической аппаратуры пищевых производств при паровом и водяном обогреве наивысшие температуры ограничены 150-160 5 Па.

В отдельных случаях (в консервной промышленности) применяется масляный обогрев, который позволяет при атмосферном давлении достигнуть температур до 200°С.

Широко применяется обогрев горячими газами и воздухом (до 300-1000°С) в печах, сушильных установках. Газовый обогрев отличается рядом недостатков: трудностью регулирования и транспортирования теплоносителя, малой интенсивностью теплообмена, загрязнением поверхности аппаратуры (при использовании топочных газов) и др. Однако в ряде случаев он является единственно возможным (например, в воздушных сушилках).

В холодильной технике используется ряд хладагентов: воздух, вода, рассолы, аммиак, углекислота, фреон и др.

При любом использовании теплоносителей и хладагентов тепловые и массообменные процессы подчинены основному – технологическому процессу производства, ради которого создаются теплообменные аппараты и установки. Поэтому решение задач оптимизации теплообмена подчинено условиям рационального технологического процесса.

Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматриваются некоторые конструкции теплообменных аппаратов, применяющихся в пищевой промышленности.

Конкретная задача нагревания или охлаждения данного продукта может быть решена с помощью различных теплообменников. Конструкцию теплообменника следует выбирать, исходя из следующих основных требований, предъявляемых к теплообменным аппаратам.

Важнейшим требованием является соответствие аппарата технологическому процессу обработки данного продукта; это достигается при таких условиях: поддержание необходимой температуры процесса, обеспечение возможности регулирования температурного режима; соответствие рабочих скоростей продукта минимально необходимой продолжительности пребывания продукта в аппарате; выбор материала аппарата в соответствии с химическими свойствами продукта; соответствие аппарата давлениям рабочих сред.

Вторым требованием является высокая эффективность и экономичность работы аппарата, связанные с повышением интенсивности теплообмена и одновременно с соблюдением оптимальных гидравлических сопротивлений аппарата.

Эти основные требования должны быть положены в основу конструирования и выбора теплообменных аппаратов. При этом самое большое значение имеет обеспечение заданного технологического процесса в аппарате.

1.Теплообменные аппараты с трубчатой поверхностью нагрева.

Поверхность теплообмена змеевиковых теплообменников образована трубчатым змеевиком, внутри которого пропускается горячий или холодный теплоноситель. Число витков змеевика ограничено значительными гидравлическими сопротивлениями, поэтому поверхность теплообмена змеевиковых аппаратов невелика, и используют их в аппаратах малой производительности.

2.Теплообменные аппараты с плоской поверхностью нагрева.

Поверхность теплообмена пластинчатого тепл ообменника состоит из гофрированных пластин с четырьмя отверстиями по углам. Проложив между пластинами 2 и 3 специальные фасонные прокладки и прижимая пластины друг к другу, можно образовать канал синусоидального профиля, по которому жидкость может перетекать из верхнего левого отверстия в нижнее левое. Эти два отверстия объединены общей большой прокладкой, в то время как два других отверстия окружены малыми (кольцевыми) прокладками, и из них жидкость не может ни выходить, ни входить в канал. Если к двум сжатым пластинам 2 и 3 прижать пластину 4, объединив прокладкой нижнее правое отверстие с верхним правым, то будет образовано два канала. В первом, между пластинами 2 и 3, один теплоноситель перетекает сверху вниз, а во втором канале, между пластинами 3 и 4, другой теплоноситель проходит снизу вверх. Продолжая прибавлять пластины и прокладки справа и слева от образованного пакета, можно увеличивать число параллельных каналов и поверхность теплообмена. Ширина синусоидального канала лежит в пределах от одного до нескольких миллиметров, и жидкость быстро прогревается по всей толщине слоя. Этому способствует искусственная турбулизация потока на поворотах в канале, вызывающая увеличение коэффициента теплоотдачи. Пластинчатые теплообменники, занимая малый объём, обладают большой (до 1 500 м2/м3) поверхностью теплообмена и большими значениями коэффициента теплопередачи, вплоть до3 800 Вт/м2 при малом гидравлическом сопротивлении. Ещё одним преимуществом аппаратов этого типа является возможность быстрой сборки и разборки при ревизии и механической чистке поверхности. Кроме того, поверхность теплообмена может легко изменяться, т. к. зависит от числа используемых пластин. Главное же преимущество пластинчатых теплообменников заключается в возможности объединения в одном аппарате нескольких пакетов пластин, в каждом из которых движется своя пара теплоносителей. Это обстоятельство позволяет экономить тепловую энергию на предприятии. Например, при пастеризации соков (молока) в последний (третий) пакет поступают предварительно подогретый сок и горячий теплоноситель при температуре около 100°С. Пастеризация происходит при температуре около 70°С, и нагретый до этой температуры пастеризованный сок переходит в первый пакет, где используется в качестве горячего теплоносителя для предварительного подогрева сока, поступающего в аппарат. Во втором пакете в качестве горячего теплоносителя используется теплоноситель из третьего пакета, температура которого выше 80°С. В этом примере сок нагревается как бы на трёх ступенях, а горячий теплоноситель подаётся только в третий пакет. В действительности в производстве в одном аппарате совмещают подогрев и охлаждение многих жидкостей. Пластинчатые теплообменники применяют также при обогреве паром низкого давления. В этом случае ширина канала для прохода пара составляет 5…10 мм.

Пластинчатые теплообменные аппараты нельзя использовать при высоком давлении теплоносителей из-за опасности разгерметизации уплотнений между пластинами.

3. Конструкция спиральных теплообменников.

В общем случае этот тип теплообменников применяется для взаимодействия сред "жидкость-жидкость". Например, греющая жидкость поступает в аппарат через патрубок С, протекает по спирали и покидает аппарат через осевой патрубок D, а нагреваемая жидкость поступает в аппарат через осевой патрубок А и покидает его после протекания через спираль в противотоке греющей среде через патрубок В (рис. 1). Для организации параллельного движения потоков, нагреваемая среда должна поступать через патрубок В и покидать аппарат через патрубок А.


Рис. 1. Спиральные теплообменники с противотоком или параллельным движением сред.

Это самая распространенная конструкция. Герметизацию спиралей называют при этом переменной, поскольку плоские крышки герметизируют каналы каждая со своей стороны. Доступ к обоим каналам в каждом случае возможен после демонтажа соответствующей крышки.

На рис. 2 изображены спиральные теплообменники с перекрёстным движением сред. Эта конструкция применяется в конденсаторах, в основном при пониженном давлении, при этом значительный объем потока пара пускают через большие поперечные сечения спиралей (вдоль осей спиралей). За счет этого достигается быстрое охлаждение пара при избежании большой потери давления. Охлаждающая жидкость движется по закрытому

спиральному каналу. Пар подается через спираль вдоль оси спирали и охлаждается.

Рис. 2. Спиральные теплообменники с перекрестным движением сред.

В некоторых случаях требуется приведение теплообменника в горизонтальное положение (рис. 3), в особенности, при использовании жидкостей, содержащих твердые частицы, волокна и т.п. во избежание их скапливания в нижней части теплообменника под действием силы тяжести.
При горизонтальном расположении, внутри кожуха спиральные теплообменники в который поступает пар, устанавливается горизонтальная перегородка приблизительно на 2/3 ширины спирали. В результате поступающий через верхнюю половину спирали пар вынужден выходить через ее нижнюю половину. Охлаждающая жидкость поступает через боковой патрубок и покидает спиральный теплообменник через осевой патрубок.( Рис. 3. Горизонтальный спиральный теплообменник).

Читайте также: