Реферат физико механические свойства

Обновлено: 19.05.2024

Пример готового реферата по предмету: Материаловедение

Содержание

1. Основные физико-механические свойства материалов 4

1.2 Пластичность 5

2. Другие физико-механические свойства материалов 10

2.1 Твердость 10

2.2 Хрупкость 10

2.3 Когезия и адгезия 11

2.5 Внешнее трение 13

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 17

Выдержка из текста

Реология – наука о деформации и течении различных тел.

Пищевые материалы — сырье, полуфабрикаты и готовая продукция – очень разнообразны по своим структурно–механическим свойствам.

Физико-механические свойства материалов зависят в основном от свойств исходного сырья, из которого их изготовляют, и от технологии изготовления.

Актуальность темы реферата заключается в том, что особенности механики переработки пищевых продуктов и полуфабрикатов в основном и заключаются в реологических особенностях механического поведения этих материалов, то есть от их физико-механических свойств.

Цель работы — более полное изучение физико-механических свойств материалов.

Для достижения поставленной цели необходимо решить несколько задач: рассмотреть основные физико-механические свойства материалов — упругость, пластичность, вязкость, прочность, а также другие физико-механические свойства материалов, такие как твердость, хрупкость, когезия и адгезия, липкость и внешнее трение.

Структура реферата включает в себя несколько частей: введение, основную часть, заключение и библиографический список, состоящий из шести источников литературы.

Список использованной литературы

1. Арет В.А., Руднев С. Д. Реология и физико-механические свойства материалов пищевой промышленности : учеб. пособие /В.А. Арет, С.Д. Руднев. — СПб. : ИЦ Интермедия, 2014. — 252 с.

2. Базарнова Ю.Г. Биохимические основы переработки и хранения сырья животного происхождения [Электронный ресурс]: учебное пособие/ Базарнова Ю.Г.— Электрон. текстовые данные.— СПб.: Проспект Науки, 2011.— 192 c.

3. Тимошенко, Н.В. Технология переработки и хранения продукции животноводства. Учебное пособие. – Краснодар: КубГАУ, 2010. – 576 с.

4. Арет В.А., Николаев Б.Л., Николаев Л.К. Физико – механические свойства сырья и готовой продукции: учебное пособие. СПб.: ГИОРД, 2009. 448 с.

5. Кузнецов О.А., Волошин Е.В., Сагитов Р.Ф. Реология пищевых масс: Учебное пособие. – Оренбург: ГОУ ОГУ, 2005. — 106 с.

6. Косой В.Д., Малышев А.Д., Виноградов Я.И. Инженерная реология биотехнологических сред. М.: ГИОРД, 2005. 647 с.

Удельное значение в народном хозяйстве нашей страны строительных материалов и изделий по объему производства и стоимости велико; потребление их с каждым годом возрастает во всех областях строительства; они составляют значительную часть стоимости зданий и сооружений. Экономное расходование и технически правильное применение материалов и изделий при проектировании и возведении зданий и сооружений является одним из основных средств снижения стоимости строительства. Наша промышленность строительных материалов и изделий достигла больших успехов в области производства цементов, керамических изделий, ячеистых бетонов и, особенно, сборных железобетонных изделий. По производству сборного железобетона Россия занимает ведущее место в мире. Этому способствовали достижения науки как в изучении свойств природных материалов, так и в создании новых искусственных высокоэффективных материалов.

Среди новых искусственных материалов наиболее перспективными являются строительные материалы и детали, изготовляемые на основе пластических масс.

Физические свойства

Строительные материалы, применяемые при возведении зданий и сооружений, характеризуются разнообразными свойствами, которые определяют качество материалов и области их применения. По ряду признаков основные свойства строительных материалов могут быть разделены на физические, механические химические, физические свойства материала характеризуют его строение или отношение к физическим процессам окружающей среды. физическим свойствам относят массу, истинную и среднюю плотность, пористость водопоглащение, водоотдачу, влажность, гигроскопичность, водопроницаемость, морозостойкость, воздухо-, паро-, газопроницаемость, теплопроводность и теплоемкость, огнестойкость и огнеупорность.

Масса - - совокупность материальных частиц (атомов, молекул, ионов), содержащихся в данном теле. Масса обладает определенным объемом, т. е. занимает часть пространства. Она постоянна для данного вещества и не зависит от скорости его движения и положения в пространстве. Тела одинакового объема, состоящие из различных веществ, имеют неодинаковую массу. Для характеристики различий в массе веществ, имеющих одинаковый объем, введено понятие плотности, последняя подразделяется на истинную и среднюю.

Зачастую истинную плотность материала относят к истинной плотности воды при 4° С, которая равна 1 г/см3, тогда определяемая истинная плотность становится как бы безразмерной величиной.

Таблица 1. Истинная и средняя плотность некоторых строительных материалов

Средняя плотность - - физическая величина, определяемая отношением массы образца материала ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты. Среднюю плотность m(кг/м3, г/см3) вычисляют по формуле:

где m--масса материала в естественном состоянии, кг или г;

V-- объем материала в естественном состоянии, м3 или см3.

Средняя плотность не является величиной постоянной и изменяется в зависимости от пористости материала. Искусственные материалы можно получать с необходимой средней плотностью, например, меняя пористость, получают бетон тяжелый со средней плотностью 1800-- 2500 кг/м3 или легкий со средней плотностью 500-- 1800 кг/м3.

На величину средней плотности влияет влажность материала: чем выше влажность, тем больше средняя плотность. Среднюю плотность материалов необходимо знать для расчета их пористости, теплопроводности, теплоемкости, прочности конструкций (с учетом собственной массы) и подсчета стоимости перевозок материалов.

Пористостью материала называют степень заполнения его объема порами. Пористость П дополняет плотность до 1 или до 100 % и определяется по формулам:

Пористость различных строительных материалов колеблется в значительных пределах и составляет для кирпича 25--35 %, тяжелого бетона 5--10, газобетона 55-- 85 пенопласта 95 %, пористость стекла и металла равна нулю. Большое влияние на свойства материала оказывает не только величина пористости, но и размер, и характер пор: мелкие (до 0, 1 мм) или крупные (от 0, 1 до 2мм), замкнутые или сообщающиеся. Мелкие замкнутые поры, равномерно распределенные по всему объему материала, придают материалу теплоизоляционные свойства.

Плотность и пористость в значительной степени определяют такие свойства материалов, как водопоглощение, водопроницаемость, морозостойкость, прочность, теплопроводность и др.

Водопоглощение - - способность материала впитывать воду и удерживать ее. Величина водопоглощения определяется разностью массы образца в насыщенном водой и абсолютно сухом состояниях. Различают объемное водопоглощение Wv, когда указанная разность отнесена к объему образца, и массовое водопоглощение Wm, когда эта разность отнесена к массе сухого образца.Водопоглощение по объему и по массе выражают в процентах и вычисляют по формулам:

где т1, - -масса образца, насыщенного водой, г; т--масса сухого образца, г; V--объем образца в естественном состоянии, см3.

Насыщение материалов водой отрицательно влияет на их основные свойства: увеличивает среднюю плотность и теплопроводность, понижает прочность.

Степень снижения прочности материала при предельном его водонасыщении, т. е. состоянии полного насыщения материала водой, называется водостойкостью и характеризуется значением коэффициента размягчения

где Rнас - - предел прочности при сжатии материала в насыщенном водой состоянии, МПа; Rсух--то же, сухого материала.

Влажность материала определяется содержанием влаги, отнесенным к массе материала в сухом состоянии. Влажность материала зависит как от свойств самого материала (пористости, гигроскопичности), так и от окружающей его среды (влажность воздуха, наличие контакта с водой).

Влагоотдача - - свойство материала отдавать влагу окружающему воздуху, характеризуемое количеством воды (в процентах по массе или объему стандартного образца), теряемой материалом в сутки при относительной влажности окружающего воздуха 60 % и температуре 20'С.

Величина влагоотдачи имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, мокрой штукатурки стен, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря влагоотдаче высыхают: вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, т. е. пока материал не достигнет воздушно-сухого состояния.

Гигроскопичностью называют свойство пористых материалов поглощать определенное количество воды при повышении влажности окружающего воздуха. Древесина и некоторые теплоизоляционные материалы вследствие гигроскопичности могут поглощать большое количество воды, при этом увеличивается их масса, снижается прочность, изменяются размеры. В таких случаях для деревянных и ряда других конструкций приходится применять защитные покрытия.

Водопроницаемость - - свойство материала пропускать воду под давлением. Величина водопроницаемости характеризуется количеством воды, прошедшей в течение 1 ч через 1 см2 площади испытуемого материала при постоянном давлении. К водонепроницаемым материалам относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).

Морозостойкость - - свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности.

Замерзание воды, заполняющей поры материала, сопровождается увеличением ее объема примерно на 9%. в результате чего возникает давление на стенки пор, приводящее к разрушению материала. Однако во многих пористых материалах вода не может заполнить более 90 % объема доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Паро- и газопроницаемость - - свойство материала пропускать через свою толщу под давлением водяной пар или газы (воздух). Все пористые материалы при наличии незамкнутых пор способны пропускать пар или газ.

Паро- и газопроницаемость материала характеризуется соответственно коэффициентом паро- или газопроницаемости, который определяется количеством пара или газа в л, проходящего через слой материала толщиной 1 м и площадью 1 м2 в течение 1 ч при разности парциальных давлений на противоположных стенках 133, 3 Па.

Знать теплопроводность материала необходимо при теплотехническом расчете толщины стен и перекрытий отапливаемых зданий, а также при определении требуемой толщины тепловой изоляции горячих поверхностей, например трубопроводов, заводских печей и т. д.

Теплоемкость--свойство материала поглощать при нагревании определенное количество теплоты и выделять ее при охлаждении,

Показателем теплоемкости служит удельная теплоемкость, равная количеству теплоты (Дж), необходимому для нагревания 1 кг материала на 1 °С. Удельная теплоемкость, кДж (кг - °С), искусственных каменных материалов 0, 75--0, 92, древесины - - 2, 4--2, 7, стали - - 0, 48, воды--4.187.

Теплоемкость материалов учитывают при расчетах теплоустойчивости стен и перекрытий отапливаемых зданий, подогрева составляющих бетона и раствора для зимних работ, а также при расчете печей.

Огнестойкость - - сбность материала противостоять действию высоких температур и воды в условиях пожара. По степени огнестойкости строительные материалы делят на несгораемые, трудно сгораемые и сгораемые.

Несгораемые материалы под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются. К этим материалам относят природные каменные материалы, кирпич, бетон, сталь. Трудно сгораемые материалы под действием огня с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются. Примером таких материалов могут служить древесно-цементный материал фибролит и асфальтовый бетон. Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня. К этим материалам в первую очередь следует отнести дерево, войлок, толь и рубероид,

Огнеупорностью называют свойство материала выдерживать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огнеупорности материалы делят на огнеупорные, тугоплавкие и легкоплавкие.

Огнеупорные материалы способны выдерживать продолжительное воздействие температуры свыше 1580°С. Их применяют для внутренней облицовки промышленных печей (шамотный кирпич). Тугоплавкие материалы выдерживают температуру от 1350 до 1580°С (гжельский кирпич для кладки печей). Легкоплавкие материалы размягчаются при температуре ниже 1350 °С (обыкновенный глиняный кирпич).

Теплопроводность - - свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал. Теплопроводность материала оценивается количеством теплоты, проходящей через стену из испытуемого материала толщиной 1 м, площадью 1 м2 за 1 ч при разности температур противоположных поверхностей стены 1 °С. Теплопроводность измеряется в Вт/(мК) или Вт/(м°С).

Теплопроводность материала зависит от многих факторов: природы материала, его строения, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Материал кристаллического строения обычно более теплопроводен, чем материал аморфного строения. Если материал имеет слоистое или волокнистое строение, то теплопроводность его зависит от направления потока теплоты по отношению к волокнам, например, теплопроводность древесины вдоль волокон в 2 раза больше, чем поперек волокон.

Механические свойства

Механические свойства характеризуют способность материала сопротивляться разрушающему или деформирующему воздействию внешних сил. К механическим свойствам относят прочность, упругость, пластичность, хрупкость, сопротивление удару, твердость, истираемость, износ.

Прочность - - свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих от внешних нагрузок. Под воздействием различных нагрузок материалы в зданиях и сооружениях испытывают различные внутренние напряжения (сжатие, растяжение, изгиб, срез и др.). Прочность является основным свойством большинства строительных материалов, от ее значения зависит величина нагрузки, которую может воспринимать данный элемент при заданном сечении.

Строительные материалы в зависимости от происхождения и структуры по-разному противостоят различным напряжениям. Так, материалы минерального происхождения (природные камни, кирпич, бетон и др.) хорошо сопротивляются сжатию, значительно хуже срезу и еще хуже растяжению, поэтому их используют главным образом в конструкциях, работающих на сжатие. Другие строительные материалы (металл, древесина) хорошо работают на сжатие, изгиб и растяжение, поэтому их с успехом применяют в различных конструкциях (балки, фермы и т.п.), работающих на изгиб.

Так, например, от упругих свойств горных пород и упругости пластовых жидкостей зависит перераспределение давления в пласте во время эксплуатации месторождения. Запас упругой энергии, освобождающейся при снижении давления, может быть значительным источником энергии, под действием которой происходит движение нефти по пласту к забоям скважин. Действительно, если пластовое давление снижается, то жидкость (вода и нефть)

Содержание

ВВЕДЕНИЕ
1. гРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ 5
2. тРЕЩИНОВАТОСТЬ 8
3. УСТОЙЧИВОСТЬ 9
4. ПОРИСТОСТЬ ГОРНЫХ ПОРОД 9
5. плотность горных пород 10
6. анизотропия 11
7. степень связности 12
8. твердость, прочность и хрупкость горных пород 13

13. ВОДНО-КОЛЛОИДНЫЕ СВОЙСТВА………………

Прикрепленные файлы: 1 файл

Реферат.docx

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

СЕВЕРО-ВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет "МЭиФ" (менеджмента экономики и финансов)

Выполнила: студентка группы МД -11

Проверил: доц. Коротун В.Г.

1. гРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ 5

2. тРЕЩИНОВАТОСТЬ 8

3. УСТОЙЧИВОСТЬ 9

4. ПОРИСТОСТЬ ГОРНЫХ ПОРОД 9

5. плотность горных пород 10

6. анизотропия 11

7. степень связности 12

8. твердость, прочность и хрупкость горных пород 13

14. ДРУГИЕ КЛАССИФИКАЦИИ ГОРНЫХ ПОРОД…………………………………………………………22

Упругость, прочность на сжатие и разрыв, пластичность - наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений.

Так, например, от упругих свойств горных пород и упругости пластовых жидкостей зависит перераспределение давления в пласте во время эксплуатации месторождения. Запас упругой энергии, освобождающейся при снижении давления, может быть значительным источником энергии, под действием которой происходит движение нефти по пласту к забоям скважин. Действительно, если пластовое давление снижается, то жидкость (вода и нефть) расширяется, а поровые каналы сужаются. Упругость пород и жидкостей очень мала, но вследствие огромных размеров пластовых водонапорных систем в процессе эксплуатации значительное количество жидкости (упругий запас) дополнительно вытесняется из пласта в скважины за счет расширения объема жидкости и уменьшения объема пор при снижении пластового давления.

Не менее существенный эффект упругости жидкости и пласта заключается в том, что давление в пласте перераспределяется не мгновенно, а постепенно после всякого изменения режима работы скважины, после ввода новой или остановки старой скважины. Таким образом, при большой емкости пласта и высоком пластовом давлении с самого начала эксплуатации пласт будет находиться в условиях, для которых характерны длительные неустановившиеся процессы перераспределения пластового давления. Скорости этих процессов в значительной мере определяются упругими свойствами пород и жидкостей. Оказывается, что по скорости перераспределения давления при известных упругих свойствах пород и жидкости можно судить о проницаемости и других параметрах.

В процессе эксплуатации месторождения весьма важно знать также и прочность пород на сжатие и разрыв. Эти данные наряду с модулем упругости необходимы при изучении процессов искусственного воздействия на породы призабойной зоны скважин (торпедирование, гидроразрыв пластов), широко применяемых в нефтепромысловом деле для увеличения притока нефти.

При рассмотрении физических свойств горных пород следует учитывать, что в зависимости от условий залегания механические свойства породы могут резко изменяться.

1. ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ

ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ (а. granulometric соmposition; н. Kornverteilung; ф. соmposition granulometrique, granulometrie; и. соmposicion granulometrica, granulometria) — распределение зёрен (кусков) по крупности в массивах горной породы, горной массы, почве или искусственном продукте, характеризуемое выходом в процентах от массы или количества зёрен.

Гранулометрический состав — важный показатель физических свойств и структуры материала. Общепринятой классификации по данным гранулометрического состава не существует, что связано с различием целей и объектов, для которых производится определение гранулометрического состава. В геологии (литологии), горном деле, обогащении полезных ископаемых, грунтоведении, почвоведении, технологии строительных материалов и других областях техники применяют различные классификации и шкалы классов (фракций) крупности. Классы (фракции) обычно обозначают в мм, в обогащении полезных ископаемых классы крупнее и мельче данного размера — знаками плюс и минус соответственно. В геологии при оценке осадочных горных пород различают: валуны крупные (свыше 500 мм), валуны средние (500-250 мм), валуны мелкие (250-100 мм), гальку (100-10 мм), гравий крупный (10-5 мм), гравий мелкий (5-2 мм), песок грубый (2-1 мм), песок средний (0,5-0,25 мм), песок мелкий (0,25-0,1 мм), алеврит (0,1-0,05 мм), пыль (0,05-0,005 мм), глину (до 0,005 мм). В горном деле гранулометрический состав горной массы, отделённой от массива, используют для оценки результатов буровзрывных работ, качества продуктов обогащения и учитывают при выборе типа и параметров технологического оборудования в карьерах, на шахтах, дробильно-сортировочных, обогатительных, окомковательных фабриках.

Гранулометрический состав руд, углей, неметаллорудных материалов устанавливается стандартами и техническими условиями, разрабатываемыми для определённых потребителей минерального сырья. В зависимости от цели исследования и размеров частиц гранулометрический состав определяют прямыми и косвенными методами гранулометрии.

Гранулометрический состав может быть выражен в виде дискретной или непрерывной зависимости содержания частиц от их размеров. Для определения дискретной зависимости интервал размеров всех частиц анализируемого вещества подразделяют на классы (фракции) и гранулометрический состав представляют в виде процентного содержания частиц каждой из фракций (фракционный состав). В зависимости от размера максимального куска классификация по крупности осуществляется грохочением пробы на наборе сит (ситовой анализ) либо гидравлической классификацией материала. Величина фракции показывает содержание в веществе частиц в интервале размеров, ограничивающих фракцию. Графическое изображение гранулометрического состава в виде непрерывной зависимости называется кривой распределения. При построении её по оси абсцисс откладывают размеры частиц, а по оси ординат — суммарное содержание всех частиц от начала отсчёта до данной точки, получая интегральную (суммарную) кривую распределения. Если по оси ординат откладывают относительное содержание фракций, причём разность между средними размерами частиц каждой фракции стремится к нулю, получают дифференциальную кривую распределения (рис. 1). При определении гранулометрического состава строительных материалов результаты анализа иногда выражают в виде треугольника (чем ближе точка к вершине треугольника, тем больше в данном материале фракции, соответствующей этой вершине).

По результатам анализов гранулометрического состава составляют таблицы, в которых отражают: класс (в мм); выход отдельных классов (по массе в килограммах и в %); суммарный (кумулятивный) выход по плюсу, т.е. выход суммарных остатков или по минусу, т.е. суммарный просев (в %). Данные анализа также выражают графически, используя простые, полулогарифмические и логарифмические сетки. На оси абсцисс откладывают размеры отверстий контрольных сит, на оси ординат — суммарные остатки. Крупность продукта характеризуют в необходимых случаях верхним (нижним) номинальным размером, т.е. размером отверстий контрольного сита, соответствующим установленному допустимому значению остатка просева. Крупность горной массы оценивают также средним ( средневзвешенным) размером куска (медианой).

Гранулометрический состав продуктов взрывного и механического дробления горных пород отражает вероятностный процесс образования кусков (зёрен) различной крупности в результате их разрушения. Гранулометрический состав взорванной породы в любом случае можно выразить графиками (рис. 2), из которых видно, что с увеличением допустимого размера кусков количество крупной фракции породы, требующей вторичного дробления, во всех случаях (особенно при мелком негабарите) уменьшается.

Таким образом, при постоянстве гранулометрического состава взорванной массы степень дробления, оцениваемая по выходу негабарита, может быть различной, неодинакова и производственная оценка одного и того же взрыва на предприятиях с различным размером допустимого куска. Поэтому одни и те же породы при одинаковом гранулометрическом составе могут считаться легковзрываемыми или трудновзрываемыми в зависимости от принятых допустимых размеров кусков.

ТРЕЩИНОВАТОСТЬ горных пород - явление разделения горных пород земной коры трещинами различной протяжённости, формы и пространственной ориентировки.

По происхождению трещиноватость горных пород разделяется на нетектоническую, тектоническую и планетарную.

Нетектонические трещиноватости горных пород - следствие растрескивания горных пород в процессе охлаждения (для магматических пород), уплотнения, дегидратации, развития экзогенных процессов (гравитационного оползания, резких колебаний температуры), ведения горных работ ("технологическая" трещиноватость) и т.п.

Тектоническая трещиноватость горных пород развивается в связи с напряжениями, возникающими в горных породах под влиянием глубинных тектонических сил. Выделяются трещины отрыва и трещины скалывания, которые образуют системы, закономерно ориентированные по отношению к крупным тектоническим структурам; в связи с развитием последних происходит растрескивание горных пород.

При планетарной трещиноватости горных пород напряжения в земной коре возникают под действием планетарных явлений (например, изменения частоты вращения и формы Земли, "твёрдых приливов" и т.п.).

Трещиноватость горных пород в зависимости от методов измерения характеризуется:

    • размером отдельности горных пород;
    • интенсивностью (суммарной шириной раскрытия трещин на единицу длины скважины, мм/м);
    • удельным водопоглощением (поглощением воды массивом на единицу длины скважины и единицу гидростатического напора в единицу времени, л/с•м2);
    • реометрической проницаемостью (падением давления воздуха при его растекании в скважине на единицу длины в единицу времени, Па/м•с)
    • и другими параметрами.

    Укрупнённая оценка трещиноватости горных пород даётся с помощью диаграмм трещиноватости, отражающих преимущественную ориентацию систем трещин, среднее их раскрытие, шероховатость и др.

    Наличие в разрезе скважины сильнотрещиноватых и разрушенных пород приводит к снижению механической скорости бурения, выхода керна, износостойкости алмазной коронки, резкому увеличению расхода алмазов, способствует поломке резцов, осложнениям вследствие поглощения промывочной жидкости и обрушения стенок скважины. Для оценки степени нарушенности пород трещинами можно воспользоваться показателем трещиноватости Т, который вычисляется по формуле

    Где α- угол наклона трещины; - средняя длина столбика керна (отношение общей длины столбика к их числу).

    Трещиноватость по керну может быть оценена по методике ЦНИГРИ [1], согласно которой все породы по трещиноватости разделены на четыре класса: слаботрещиноватые (коэффициент трещиноватости трещиноватые ( ); сильнотрещиноватые ( раздробленные ( .

    Коэфициент трещиноватости пород первого класса рассчитывается по формуле

    где - относительный выход столбиков керна (отношение общей длины столбиков керна к проходке за рейс).

    Формула (I.2) применима при средней длине столбиков более 0,2 м и выходе керна более 70 %. Значение коэффициентов последующих классов определяется по формуле

    (q=2- знаменатель геометрической прогрессии; n- порядковый номер класса пород).

    Явление трещиноватости имеет как положительные, так и отрицательные практические следствия.

    Рассечение горных пород трещинами способствует проницаемости земной коры для глубинных растворов (флюидов), несущих рудные компоненты, которые, откладываясь в трещинах, формируют месторождения полезных ископаемых. Глубинные горизонты трещиноватых пород могут быть коллекторами пресной воды, нефти и газа.

    Трещиноватость горных пород обеспечивает хорошее дробление горных пород при отбойке, способствует применению экономичных систем разработки с самообрушением руды. Трещиноватые породы лишены склонности к динамическим проявлениям горного давления.

    Отрицательное влияние трещиноватости горных пород состоит в понижении устойчивости массивов горных пород. Прочностные характеристики массива трещиноватых горных пород повышают цементацией, силикатизацией, битумизацией и смолоинъекционным упрочнением.

    Знание физико-механических свойств горных пород необходимо при строительстве скважин и разработке месторождений. С учетом их следует производить предварительный выбор долот для различных интервалов бурения; учитывать их при проектировании режимов бурения; при выборе типа бурового раствора и его свойств, методов вскрытия продуктивного пласта и конструкции призабойной зоны скважины; для предупреждения возможных осложнений в процессе бурения; иногда - при выборе конструкции скважины. Знать физико-механические свойства горных пород необходимо и при составлении проекта разработки нефтяных и газовых месторождений.

    Содержание

    ВВЕДЕНИЕ 3
    1. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД 5
    1.1. Плотность 5
    1.2. Прочность 5
    1.3 Упругость 6
    1.4. Пластичность 8
    1.5. Твердость 10
    1.6. Абразивность 14
    2. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД В ПРОЦЕССЕ БУРЕНИЯ 16
    2.1 Основные физико-механические свойства горных пород, влияющие на процесс бурения 17
    2.2. Основные закономерности разрушения горных пород при бурении 19
    ЗАКЛЮЧЕНИЕ 23
    СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 24

    Работа состоит из 1 файл

    курс 5.docx

    Министерство образования и науки рф

    Федеральное государственное бюджетное образовательное учреждение
    высшего профессионального образования

    Институт геологиии и нефтегазодобычи

    МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД

    1. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД 5

    1.4. Пластичность 8

    1.5. Твердость 10

    1.6. Абразивность 14

    2. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД В ПРОЦЕССЕ БУРЕНИЯ 16

    2.1 Основные физико-механические свойства горных пород, влияющие на процесс бурения 17

    2.2. Основные закономерности разрушения горных пород при бурении 19

    СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 24

    Знание физико-механических свойств горных пород необходимо при строительстве скважин и разработке месторождений. С учетом их следует производить предварительный выбор долот для различных интервалов бурения; учитывать их при проектировании режимов бурения; при выборе типа бурового раствора и его свойств, методов вскрытия продуктивного пласта и конструкции призабойной зоны скважины; для предупреждения возможных осложнений в процессе бурения; иногда - при выборе конструкции скважины. Знать физико-механические свойства горных пород необходимо и при составлении проекта разработки нефтяных и газовых месторождений.

    Механические свойства горных пород — характеризуют изменения формы, размеров и сплошности горных пород под воздействием механических нагрузок, которые создаются в результате действия естественных (горное давление, тектонические движения) или искусственных факторов (взрывные работы, резание, дробление пород).

    Механическое нагружение вызывает в горных породах напряжения и деформации. По виду деформаций и связи с вызвавшими их напряжениями механические свойства подразделяют на упругие (модуль Юнга, коэффициент Пуассона и др.), пластические (модуль полной деформации, коэффициент пластичности и др.), прочностные (пределы прочности горных пород при сжатии, растяжении и др.) и реологические свойства (период релаксации, предел длительной прочности и др.). К показателям механических свойств относят также характеристики воздействия на горные породы жидкостей и газов (например, коэффициент размокания), горнотехнологические параметры горные породы (показатели крепости, твёрдости, буримости, взрываемости, дробимости.

    Механические свойства определяют прямыми или косвенными измерениями напряжений и деформаций в горных породах в процессе их различного нагружения. В массиве чаще используют косвенные методы оценки механических свойств — по глубине и усилиям проникновения острого инструмента в горных породах, по зависимости между скоростью упругих волн и механическими свойствами.

    На величину показателей механических свойств влияют анизотропия горной породы, силы и характер связей между частицами, ориентация ослабленных зон и слоев горной породы, размер зёрен, пористость, минеральный состав. Это предопределяет широкую вариацию показателей механических свойств от точки к точке в массиве (рис.).

    Более монолитные скальные горные породы имеют высокие значения модуля Юнга, прочностных параметров, низкие значения показателей пластичности. Осадочные горные породы, как правило, обладают более низкой прочностью и упругими свойствами, повышенными значениями показателей пластичности, хорошо выраженными реологическими свойствами.

    Любые изменения состояния горной породы и её структурных характеристик влияют на величину механических свойств. Увеличение влажности снижает упругие и прочностные, но повышает пластические параметры пород; трещиноватость и высокая пористость пород снижают прочностные и упругие параметры пород. Разрушенная горная порода также способна сопротивляться в определённой степени внешним нагрузкам. Например, несущую способность разрушенных горных пород оценивают особыми механическими свойствами — параметрами запредельного деформирования и прочности, определяемыми на специальных жёстких испытательных прессах.

    Плотность d - это отношение массы m вещества к единице объема V. Плотность измеряется в г/см 3 , кг/л или т/м 3 . Так как плотность воздуха мала, то ею пренебрегают и при измерениях плотности взвешивают вещество в воздухе, а не в вакууме. Плотность воды 1 г/см 3 , дерева немного меньше - оно плавает как и жидкая нефть (0,8–0,9 г/см 3 ), растекаясь пятнами на море при авариях танкеров. Плотность человека, выдохнувшего воздух, тоже почти 1 г/см 3 , а вдохнувшего - 0,95 г/см 3 . Плотность густой нефти, и тем более мазута 1,05 г/см 3 – недаром он оседает на дно при крупных разливах нефти в море. Это случается при авариях танкеров, во время военных сражений протекающих на территориях нефтяных промыслов.

    Плотности минералов колеблются в очень широком диапазоне от 2,2 г/см 3 у галита, 2,66 г/см 3 у кварца, 2,55 – 2,7 г/см 3 у полевого шпата, 2,72 г/см 3 у кальцита, до 3,9 г/см 3 у сидерита и 5,0 г/см 3 у магнетита. Среди самых тяжелых минералов магнетит, киноварь и золото. Горные породы состоят из комплексов породообразующих минералов, плотности которых колеблются в узких пределах - от 2,55 г/см 3 у ортоклаза до 2,75 г/см 3 у доломита, и поэтому минеральный состав существенно на плотность не влияет. Иное дело жидкая и газообразная фазы породы или, в терминах нефтяной геологии - поры: плотность кварцевого песка снижается при 10% пористости с 2,66 до 2,40 г/см 3 , а при пористости 20% – до 2,10 г/см 3 . Таким образом, плотность горных пород, и особенно пород осадочных, во многом определяется пористостью.

    При некоторой тренировке геолог может, взвесив в руке образец, довольно точно определить его плотность, а по ней пористость.

    В пластовых условиях, где поры заполнены солеными пластовыми водами, плотность соответственно возрастает при пористости 10% до 2,50 г/см 3 , а при пористости 20% до 2,35 г/см 3 . В науке о бурении плотность породы в пластовых условиях называется объемной массой.

    С увеличением всестороннего сжатия объемная масса возрастает благодаря, во-первых, уменьшению пористости и, во-вторых – некоторому увеличению плотности сжимаемого в порах флюида. Кроме того, соленость пород растет с глубиной. Объемная масса осадочных пород обычно колеблется от 2,0 до 2,7 г/см 3 . С ростом объемной массы связано и увеличение горного (литостатического) давления.

    Прочность - это способность вещества не разрушаться под действием механических сил – будь то удар молотка или воздействие долота на породу. Прочность измеряется напряжением, при котором вещество разрушается. Измеряется прочность в МПа. Прочность горной породы зависит от вида деформации. Горная порода и минералы могут подвергаться одноосному сжатию и растяжению, деформациям изгиба и сдвига (простым видам деформации), а также нескольким деформациям одновременно (сложные виды деформации). Горные породы наиболее устойчивы по отношению к сжатию, а другим деформациям горные породы противостоят слабее; прочность на растяжение составляет менее 10% от прочности на сжатие. И действительно, из камня сложены стены неприступных крепостей, и даже конструкция арки такова, что и здесь камень в основном, работает на сжатие. Прочность горных пород на сжатие σсж, на сдвиг σс, на изгиб σизг и на растяжение σр связаны между собой следующим соотношением:

    Приведенное соотношение показывает, что наиболее рациональный способ разрушения горной породы на забое скважины связан с использованием деформации растяжения.

    Прочность минералов на сжатие достаточно велика, хотя и колеблется в широких пределах – свыше 500 МПа у кварца до 10–20 МПа у кальцита. Прочность горных пород существенно ниже, что объясняется их неоднородностью, наличием локальных дефектов, трещиноватостью (от зияющих трещин до паутин и микротрещин). Прочность пород существенно зависит от её минерального состава, структуры и текстуры породы, глубины залегания и других. факторов.

    Прочность породы уменьшается с ростом влажности, например, прочность песчаников и известняков снижается при насыщении их поровой водой на 25 – 45%, что и происходит в пластовых условиях. Особенно сильно можно снизить прочность пород, используя поверхностно- активные вещества ПАВ (эффект Ребиндера). У слоистых – т.е. анизотропных пород прочность сильно меняется в зависимости от направления действия нагрузки. Отношение прочности перпендикулярно слоям к прочности параллельно им называется коэффициентом анизотропии, который колеблется у различных пород от 0,3 до 0,8. Естественно, что у изотропных, однородных пород, например, известняков или гранитов он равен 1. Прочность пород растет по мере их погружения в недра, отражая уменьшение пористости, изменение структуры и минерального состава и благодаря напряженному состоянию, в котором порода пребывает в недрах. Например, у глин прочность возрастает от 2–10 МПа на поверхности до 50–100 МПа в зоне метаморфизма, где глины преобразуются в сланцы. В процессе разрушения долотом горной породы последняя испытывает сложные виды деформации. Учитывая это, а так же особенности процесса внедрения зубца долота в забой скважины, прочностные характеристики горной породы мало подходят для проектирования процесса её разрушения.

    В общепринятом смысле упругость – это свойство тел после снятия напряжения восстанавливать свою форму без остаточной деформации. Деформация упругих тел описывается законом Гука, т.е. относительная деформация x пропорциональна приложенному напряжению σ:

    Где Е - модуль Юнга, характеризует упругость тела. Классический пример упругого тела – пружина. Чем сильнее вы её растягиваете (сжимаете), тем больше она удлиняется (укорачивается). Как только вы перестаете на неё воздействовать она возвращается в первоначальное состояние (к первоначальной длине).

    Наряду с модулем Юнга упругие свойства горных пород описываются коэффициентом Пуассона m. Он является коэффициентом пропорциональности между относительными продольными и поперечными деформациями.

    где xx и xy продольная и поперечная деформация породы соответственно.

    Коэффициент Пуассона для большинства минералов и горных пород находится в интервале 0,2–0,4. Исключением является кварц, у которого из-за специфики строения кристаллической решетки m достигает 0,07.

    Большинство минералов подчиняются закону Гука. Кристаллы ведут себя как упругие тела и разрушаются минуя пластическую деформацию, когда напряжение достигнет предела прочности.

    В табл.23 приведены модули Юнга для некоторых горных пород, полученные при одноосном сжатии.

    Физико-механические и механические свойства строительных материалов.
    Механические свойства строительных материалов

    В строительстве при возведении зданий и сооружений применяются различные строительные материалы и изделия из них. Основными строительными материалами в промышленном и гражданском строительстве являются цемент, бетон, кирпич, камень, дерево, известь, песок, черные металлы, стекло, кровельные материалы, пластик и другие.

    В настоящее время строительная индустрия развивается в направлении создания теплосберегающих строительных материалов. Наиболее перспективными энергосберегающими материалами считаются ячеистые бетоны и бетоны на легких заполнителях.

    Материалы, которые не требуют дальних перевозок, добываются или вырабатываются вблизи района строительства, называются местными строительными материалами. К таким материалам обычно относятся песок, гравий, щебень, известь и т. д.

    Источником производства строительных материалов служат природные ресурсы страны, которые в качестве строительных материалов могут использоваться в природном состоянии (камень, песок, древесина) или в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).

    При изучении строительных материалов их можно классифицировать на такие виды: природные каменные материалы, вяжущие материалы, строительные растворы, бетоны и бетонные изделия, железобетонные изделия, искусственные каменные материалы, лесные материалы, металлы, синтетические материалы и т. д.

    Все строительные материалы имеют ряд общих свойств, но качественные показатели этих свойств различны.

    Физико-механические и механические свойства строительных материалов

    Данную группу свойств составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым — гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие. Технические требования на строительные материалы приведены в Строительных нормах и правилах (СНиП).

    Читайте также: