Реферат биохимия как пограничная область знаний место клинической биохимии среди других наук

Обновлено: 02.07.2024

Биологическая химия – наука, изучающая химическую природу веществ, входящих в состав живых организмов, превращения этих веществ (метаболизм), а также связь этих превращений с деятельностью отдельных тканей и всего организма в целом.

Биохимия – это наука о молекулярных основах жизни. Существует несколько причин тому, что в наши дни биохимия привлекает большое внимание и быстро развивается.

1. Во-первых, биохимикам удалось выяснить химические основы ряда важнейших биохимических процессов.

2. Во-вторых, обнаружены общие пути превращения молекул и общие принципы, лежащие в основе разнообразных проявлений жизни.

3. В-третьих, биохимия оказывает все более глубокое воздействие на медицину.

4. В-четвертых, быстрое развитие биохимии в последние годы позволило исследователям приступить к изучению самых острых, коренных проблем биологии и медицины.

История развития биохимии

В истории развития биохимических знаний и биохимии как науки можно выделить 4 периода.

I период – с древних времен до эпохи Возрождения (XV век). Это период практического использования биохимических процессов без знаний их теоретических основ и первых, порой очень примитивных, биохимических исследований. В самые отдаленные времена люди уже знали технологию таких производств, основанных на биохимических процессах, как хлебопечение, сыроварение, виноделие, дубление кож. Использование растений в пищевых целях, для приготовления красок, тканей наталкивало на попытки понять свойства отдельных веществ растительного происхождения.

II период – от начала эпохи Возрождения до второй половины 19 века, когда биохимия становится самостоятельной наукой. Великий исследователь того времени, автор многих шедевров искусства, архитектор, инженер, анатом Леонардо да Винчи провел опыты и на основании их результатов сделал важный для тех лет вывод, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

В этот период следует выделить работы таких ученых, как Парацельс, М. В. Ломоносов, Ю. Либих, А. М. Бутлеров, Лавуазье.

III период – со второй половины 19 века до 50-х годов 20 века. Ознаменован резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием достижений биохимии в промышленности, медицине, сельском хозяйстве. К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838–1923), М. В. Ненцкого (1847–1901). На рубеже 19 и 20 веков работал крупнейший немецкий химик-органик и биохимик Э. Фишер (1862–1919). Им были сформулированы основные положения полипептидной теории белков, начало которой дали исследования А. Я. Данилевского. К этому времени относятся работы великого русского ученого К. А. Тимирязева (1843–1920), основателя советской биохимической школы А. Н. Баха, немецкого биохимика О. Варбурга. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот. В 1933 г. Д. Кейлин (Англия) выделил цитохром С и воспроизвел процесс переноса электронов по дыхательной цепи в препаратах из сердечной мышцы. В 1938 г. А. Е. Браунштейн и М. Г. Крицман впервые описали реакции трансаминирования, являющиеся ключевыми в азотистом обмене.

IV период – с начала 50-х годов 20 века по настоящее время. Характеризуется широким использованием в биохимических исследованиях физических, физико-химических, математических методов, активным и успешным изучением основных биологических процессов (биосинтез белков и нуклеиновых кислот) на молекулярном и надмолекулярном уровнях.

Вот краткая хронология основных открытий в биохимии этого периода:

1953 г. – Дж. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.

1953 г. – Ф. Сенгер впервые расшифровал аминокислотную последовательность белка инсулина.

1966 г. – П. Митчелл сформулировал хемиосмотическую теорию сопряжения дыхания и окислительного-фосфорилирования.

1969 г. – Р. Мерифильд химическим путем синтезировал фермент рибонуклеазу.

1971 г. – в совместной работе двух лабораторий, руководимых Ю. А. Овчинниковым и А. Е. Браунштейном, установлена первичная структура аспартатаминотрансферазы – белка из 412 аминокислот.

1977 г. – Ф. Сенгер впервые полностью расшифровал первичную структуру молекулы ДНК (фаг ? Х 174).

Развитие медицинской биохимии в Беларуси

С момента создания в 1923 г. в Белорусском государственном университете кафедры биохимии началась профессиональная подготовка национальных биохимических кадров. В 1934 г. организована кафедра биохимии в Витебском медицинском институте, в 1959 г. – в Гродненском медицинском институте, в 1992 г. – в Гомельском медицинском институте. На заведование кафедрами приглашались и избирались известные ученые, крупные специалисты в области биохимии: А. П. Бестужев, Г. В. Дервиз, Л. Е. Таранович, Н. Е. Глушакова, В. К. Кухта, В. С. Шапот, Л. Г. Орлова, А. А. Чиркин, Ю. М. Островский, Н. К. Лукашик. На формирование научных школ в области медицинской биохимии огромное влияние оказала деятельность таких выдающихся ученых, как М. Ф. Мережинский (1906–1970), В. А. Бондарин (1909–1985), Л. С. Черкасова (1909–1998), В. С. Шапот (1909–1989), Ю. М. Островский (1925–1991), А. Т. Пикулев (1931–1993).

В 1970 г. в г. Гродно создан Отдел регуляции обмена веществ АН БССР, преобразованный в 1985 г. в Институт биохимии Национальной академии наук Беларуси. Первым заведующим отделом и директором института был академик АН БССР Ю. М. Островский. Под его руководством было начато всестороннее изучение витаминов, в частности, тиамина. Работы

Ю. М. Островского дополнены и продолжены в исследованиях его учеников: Н. К. Лукашика, А. И. Балаклеевского, А. Н. Разумовича, Р. В. Требухиной, Ф. С. Ларина, А. Г. Мойсеенка.

Наиболее важными практическими результатами деятельности научных биохимических школ явилась организация государственной лабораторной службы республики (профессор В. Г. Колб), открытие в Витебском медицинском институте Республиканского липидного лечебно-диагностического центра метаболической терапии (профессор А. А. Чиркин), создание в Гродненском медицинском институте лаборатории медико-биологических проблем наркологии (профессор В. В. Лелевич).

Содержание предмета биохимии

1. Состав и строение химических веществ живого организма – статическая биохимия.

2. Вся совокупность превращения веществ в организме (метаболизм) – динамическая биохимия.

3. Биохимические процессы, лежащие в основе различных проявлений жизнедеятельности – функциональная биохимия.

4. Структура и механизм действия ферментов – энзимология.

6. Молекулярные основы наследственности – передача генетической информации.

7. Регуляторные механизмы метаболизма.

8. Молекулярные механизмы специфических функциональных процессов.

9. Особенности метаболизма в органах и тканях.

Разделы и направления биохимии

1. Биохимия человека и животных.

2. Биохимия растений.

3. Биохимия микроорганизмов.

4. Медицинская биохимия.

5. Техническая биохимия.

6. Эволюционная биохимия.

7. Квантовая биохимия.

Объекты биохимических исследований

2. Отдельные органы и ткани.

3. Срезы органов и тканей.

4. Гомогенаты органов и тканей.

5. Биологические жидкости.

7. Дрожжи, бактерии.

8. Субклеточные компоненты и органоиды.

10. Химические вещества (метаболиты).

Методы биохимии

1. Гомогенизация тканей.

• центрифугирование в градиенте плотности.

6. Изотопный метод.

9. Определение ферментативной активности.

Связь биохимии с другими дисциплинами

1. Биоорганическая химия

2. Физколлоидная химия

3. Биофизическая химия

4. Молекулярная биология

6. Нормальная физиология

7. Патологическая физиология

8. Клинические дисциплины

10. Клиническая биохимия

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Введение

Введение Теория Дарвина задаётся целью объяснить механически происхождение целесообразностей в организмах. Мы же считаем способность к целесообразным реакциям за основное свойство организма. Выяснять происхождение целесообразностей приходится не эволюционному

Глава 8. Введение в метаболизм

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

Введение

Введение Что едят насекомые? Ну, допустим, растения, друг друга, быть может, еще кое-что. Не слишком ли простая и узкая тема, чтобы ей посвятить целую книжку?Мир насекомых бесконечно разнообразен, видов насекомых существует больше, чем всех остальных животных и растений,

Глава I. Введение

Глава I. Введение Посвящаю родителям и Тане С незапамятных времен человек задумывался над собственным происхождением и возникновением жизни вообще. Библия донесла до нас ответы на эти вопросы, предложенные 2500 лет тому назад. Во многом сходными были воззрения шумеров,

Глава 1 Введение в проблематику биосферы

Глава 1 Введение в проблематику биосферы 1.1. Определение биосферы Что же представляет собой биосфера?Напомним некоторые ее характерные признаки.В современной науке имеется много определений биосферы. Приведем лишь некоторые. «Биосфера – особая, охваченная жизнью

Введение

Введение Биология – наука о жизни. Её название произошло от двух греческих слов: bios (жизнь) и logos (наука, слово). Слово о жизни… Какая наука имеет более глобальное название. Изучая биологию, человек познаёт самого себя как индивидуума и как члена определённой популяции,

Введение

Введение Дарвин, останавливаясь на инстинктивной деятельности животных, указывал на естественный отбор как на направляющую причину ее возникновения и развития. Подойдя к сложному и наиболее запутанному вопросу поведения животных, Дарвин применял к нему те же

Введение

Введение

Введение Биология развития поведения как научная дисциплина начала развиваться на рубеже XIX и XX вв. Наиболее существенные исследования в этом направлении выполнены Когхиллом (Coghill, 1929), работавшим на амблистомах. Когхилл приходит к ряду принципиальных положений, важных

Введение

Введение Пранаяма – это сознательное восприятие и овладение жизненной энергией, присущей психофизической системе каждого живого существа. Пранаяма – это нечто большее, нежели система контроля дыхания. Пранаяма имеет несколько аспектов – в грубом и в тонком

Глава 1 ИНСТИНКТ ОВЛАДЕНИЯ МАСТЕРСТВОМ Введение в теорию о том, что язык является инстинктом человека. В основе этой теории — идеи Чарльза Дарвина, Уильяма Джеймса и Ноама Хомского

Глава 1 ИНСТИНКТ ОВЛАДЕНИЯ МАСТЕРСТВОМ Введение в теорию о том, что язык является инстинктом человека. В основе этой теории — идеи Чарльза Дарвина, Уильяма Джеймса и Ноама Хомского Когда вы читаете эти слова, вы становитесь причастными к одному из удивительнейших

Введение

Введение Вот и он, первый абзац книги о ДНК – о том, как перед нами раскрываются истории, хранившиеся в ДНК на протяжении тысяч и даже миллионов лет, о том, как ДНК помогает нам разгадать загадки о человеке, ответы на которые, казалось, давно утрачены. Ах да! Я пишу эту книгу

1. Биохимия как наука, её развитие и связь с другими биологическими науками. Значение биохимии в подготовке ветеринарных врачей.

Биологическая химия (биохимия) -- наука о химическом составе и свойствах веществ живых организмов, о превращениях веществ в процессе жизнедеятельности. Совокупность этих превращений, отражающих постоянную взаимосвязь организма с внешней средой, принято называтьобменом веществ. Значение биохимии как науки для человеческого общества определяется тем, что она является одной из теоретических основ медицины, сельского хозяйства, биотехнологии, генетической инженерии и ряда отраслей промышленности, лесного дела. В основе многих патологических состояний лежат нарушения отдельных биохимических процессов. Биохимию принято делить на статическую и динамическую. Задачастатической биохимии -- изучение химического состава и свойств веществ живых организмов. Динамическая биохимия изучает превращения веществ в процессе жизнедеятельности или течение химических процессов в живой материи. Это деление, в значительной мере условное, при проведении же реальных биохимических исследований невозможно глубоко изучить и понять превращения какого-либо вещества в организме, не зная строения,свойств этого вещества, и, наоборот, любая характеристика свойств биохимических соединений будет неполной без описания их превращений в организме. Из всех других наук биохимия наиболее тесно связана с физиологией. Эта связь обусловлена самой природой, сущностью биологических процессов. В основе любого нарушения какой-либо физиологической функции лежит система изменений биохимических ре-акций. Нельзяглубоко, до конца правильно понять природу любого физиологического процесса, не зная его биохимизма, так же как нельзя изучать биохимические реакции в отрыве от их физиологического значения. Неудивительно поэтому, что до второй половины XIX столетия биохимия была не самостоятельной наукой, а разделом физиологии. На течение биохимических процессов решающее значение оказывает состояние физиологическихфункций организма и прежде всего состояние нервной системы. Биохимия взаимосвязана и с органической химией. При проведении исследований биохимики выделяют отдельные вещества из живых организмов, очищают от примесей, устанавливают однородность, определяют состав и структуру, изучают свойства, после чего, при необходимости, синтезируют эти вещества. Таковы же этапы исследования и химика-органика. Скаждым годом расширяются связи биохимии с физической химией. Большое значение для протекания жизненных процессов имеют скорости биохимических реакций, их зависимость от температуры, активной реакции среды и связи с осмотическими явлениями. Все эти вопросы являются одновременно компетенцией и биохимии и физической химии. Значительно более важен вклад математики в биохимию в связи с широким внедрением методаматематических моделей, рассмотрением ряда биохимических процессов с точки зрения прямых и обратных связей, механизмов регуляции и управления этими процессами, их саморегуляции (т.е. сопряжения биохимии с кибернетикой), что привело к широкому использованию компьютеров в современных биохимических исследованиях.

2. Витамины, растворимые в жирах, их естественные источники. Факторы, влияющие наусвояемость этих витаминов у с.-х. животных.
Витамин А (ретинол) – антиксерофтальмический.
Изучение начато в 1909 году, а открыт он в 1933 году.
Химическая природа. Витамин А является циклическим ненасыщенным одноатомным спиртом.

СН3 СН3
С СН3 СН3
Н2С С – СН = СН – С = СН – СН = СН – С = СН –СН2ОН

Н2С С – СН3 Ретинол
СН2

Если вместо группы ОН будет альдегидная группа – СН = О, то будет ретиналь. Боковая цепь может находиться в цис – и транс – положениях.
Биологическая роль витамина А:
1.Витамин А принимает.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Биохимия

. Биохимические процессы в организме Гуморальные механизмы регуляции в организме осуществляются с помощью.

15 Стр. 77 Просмотры

Биохимия

. Вода и ее физико химические свойства Содержание воды является важным показателем физиологического.

6 Стр. 13 Просмотры

биохимия

. Учебник. - М. : Медицина, 1990. - с. 115 2. Основы биохимии: Учебник для студ. биол. спец.

Биохимия

. экзамену по биохимии и молекулярной биологии № 1 1. Определите роль и место.

Биохимия

Сейчас уже невозможно представить ни одну науку, которая бы не обходилась без достижений биохимии. Значение биологической химии нельзя не учитывать. Она имеет как научное, так и практическое значение.

Фармацевтическая промышленность использует результаты биохимических исследований для производства различных препаратов: витаминов, ферментов, кровоостанавливающих лекарств, антибиотиков и т. д.

В сельском хозяйстве биохимию используют для борьбы с насекомыми-вредителями, для создания удобрений, для селекции сортов растений и пород животных.

В генетике только благодаря использованию биохимических процессов и реакций возможно выделение генов, расшифровка генетического кода, воздействие на патологические гены с целью борьбы с генетическими заболеваниями.

В пищевой промышленности используют достижения биохимии для производства детского питания, для обработки продуктов, подлежащих консервированию, для производства кисломолочных продуктов.

Также биохимию использует такая наука как радиология. Есть даже отдельная наука – радиационная биохимия. Она изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующего излучения.

Воздействие радиации на организм может вызвать биохимические процессы. Эти процессы могут привести к развитию лучевой болезни, рака, лейкозов, врождённых пороков развития у детей, бесплодия и ряд других заболеваний.

Соответственно можно полагать, что биохимия имеет большее влияние в медицине. В современной практике врачи проводят биохимические исследования крови, мочи, желудочного сока, спинномозговой жидкости и др. Теперь можно ставить диагноз сразу же после биохимических исследований, например, по таким заболеваниям как гепатита, почечной недостаточности, анемии, мочекаменной болезни, сахарного диабета и многих других.

Приоритетной задачей биохимии и молекулярной биологии является полная расшифровка и корректировка дефектов генетического аппарата.

Еще одной из приоритетных задач является овладение механизмом регуляции считки генетической информации, закодированной в ДНК. Есть еще одна проблема, это терапия ряда вирусных заболеваний (например, лейкоза). Эта проблема будет оставаться проблемой, пока не будет полностью ясен механизм взаимодействия вирусов (таких как онкогенных) с инфицируемой клеткой. В данное время множество лабораторий по всему миру занято этой проблемой.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Биохимия как базовая составляющая современной биологии.

Биохимия как наука о веществах, входящих в состав живых организмов, и их превращениях.

Связь биохимии с другими дисциплинами.

Краткая история биохимии.

Основные достижения биологической химии.

1. Биохимия как наука о веществах, входящих в состав живых организмов, и их превращениях.

Биологическая химия – это наука, изучающая химическое строение и функцию веществ, входящих в состав живых организмов, и их превращения в процессе жизнедеятельности.

Совокупность этих превращений находится в постоянной взаимосвязи с окружающей средой и обеспечивает функционирование живых организмов в условиях сбалансированности процессов синтеза и распада веществ в клетках и тканях.

Главной задачей биохимии является определение основных закономерностей биохимических процессов, выяснение взаимосвязи между структурой и функциями биомолекул, участвующих в реакциях клеточного метаболизма.

Сфера биохимии столь же широка, как сама жизнь. Всюду, где существует жизнь, протекают различные химические процессы. Биохимия изучает химию живой природы в широком диапазоне: в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности в организме человека. При этом необходимо иметь ввиду, что, несмотря на определенные различия в химическом составе и обмене веществ тех или иных видов живых организмов, существует биохимическое единство всех форм жизни.

Биохимию можно разделить на:

а) структурную – изучает химическое строение биомолекул;

б) метаболическую – изучает обмен веществ и энергии;

в) функциональную – изучает взаимосвязь между химическими превращениями веществ в организме и их биологическими функциями.

Кроме того, выделяют ряд разделов биохимии и по объектам исследования – медицинская биохимия, фармацевтическая биохимия, биохимическая экология, биохимическая фармакология и др.

2. Связь биохимии с другими дисциплинами.

Фундаментальная биохимия является основой для многих наук биологического профиля. Например, биохимия нуклеиновых кислот лежит в основе генетики; физиология, наука о функционировании организма, очень сильно перекрывается с биохимией; в иммунологии находит применение большое число биохимических методов. Фармакология и фармация базируются на биохимии и физиологии – метаболизм большинства лекарств осуществляется в результате соответствующих ферментативных реакций. Различные яды влияют на биохимические реакции или процессы – эти вопросы составляют предмет токсикологии. В основе развития разных видов заболеваний лежит нарушение ряда биохимических процессов. Это обусловливает широкое использование биохимических подходов для изучения патогенеза различных заболеваний (например, воспалительные процессы, аллергические реакции, рак и др.). Успехи клеточной и генной инженерии в последние годы в значительной мере сблизили биохимию с зоологией и ботаникой.

3. Краткая история биохимии.

Как самостоятельная наука биохимия сформировалась на рубеже 19-20 в.в. До середины 19 в. биохимия существовала как раздел физиологии и называлась физиологической химией. Однако накопление фактического материала в области строения биологических молекул и структур, а также идентификация простейших метаболических процессов сыграли значительную роль в становлении биохимии как самостоятельной науки.

Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям.

В 17-18 в.в. работали такие выдающиеся ученые как М.В. Ломоносов (1711-1765) и Антуан Лавуазье (1743-1794), открывшие закон сохранения материи (массы). А. Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Он количественно исследовал и объяснил сущность дыхания, отметив роль кислорода в этом процессе (1772-1777). Одновременно им же, вместе с Пьером Лапласом (1749-1827), было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании 1 г. углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Рене Реомюра (1683-1757) и Ладзаро Спалланцани (1729-1799) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных на различные виды пищи (в основном мясо) и положили начало изучению ферментов пищеварительных соков. Однако, возникновение энзимологии (учения о ферментах) обычно связывают с именами Эдуарда Бухнера (1860-1917), который первым показал, что в водных экстрактах дрожжевых клеток находится набор ферментов, катализирующих превращение сахара в спирт, а также Пейена и Персо, впервые изучивших действие фермента амилазы на крахмал in vitro . Важную роль сыграли работы Джозефа Пристли (1733-1804; в 1771 г. Д. Пристли показал, что животные и растения изменяют состав окружающего воздуха противоположным образом) и Яна Ингенхауза (обнаружил, что растения выделяют кислород только на свету; в 1796 г. Ингенхауз дал общее уравнение фотосинтеза: СО2 + Н2О = Растительные ткани + О2), открывших явление фотосинтеза.

Успехи биохимии с самого начала были неразрывно связаны с развитием органической химии. Толчком к развитию химии природных соединений явились исследования шведского химика Карла Шееле (1742-1786). Он выделил из живых организмов и описал свойства целого ряда органических кислот – молочной, винной, лимонной, щавелевой, яблочной.

Большое значение имели исследования Йенса Берцелиуса (1779-1848) и Юстуса Либиха (1803-1873), закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений.

Вслед за этим начались попытки синтезировать природные органические вещества:

в 1828 г. – синтезирована мочевина;

в 1844 г. – синтезирована уксусная кислота;

в 1850 г. – синтезированы жиры, а в 1861 г. – углеводы.

Это имело большое значение, так как была показана возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена.

Во второй половине 18 в. – начале 19 в. были проведены и другие важные исследования:

из мочевых камней была выделена мочевая кислота;

из желчи выделен холестерин;

из меда выделены глюкоза и фруктоза;

из листьев зеленых растений выделен пигмент хлорофилл;

в составе мышц был открыт креатин.

Во Франции в лаборатории Клода Бернара (1813-1878) в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление.

В Германии в лаборатории Эмиля Фишера (1852-1919) были изучены структура и свойства белков, а также продуктов их гидролиза, кроме того, был проведен анализ аминокислот, жиров и липидов.

В 1836-1838 г.г. начали активно изучать процессы брожения после описания дрожжевых клеток (Ю. Либих, Л. Пастер, Э. Бухнер).

Подлинный расцвет биохимии наступил в 20 в. В самом начале его была экспериментально обоснована и сформулирована полипептидная теория строения белков (Э. Фишер, 1901-1902 г.г.). Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков.

Блестящие работы Эрвина Чаргаффа (1905 г), Джеймса Уотсона (1928 г) и Френсиса Крика (1916 г) завершаются выяснением структуры ДНК. Устанавливается её роль в передаче наследственной информации. Расшифровывается РНК – аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки.

Фундаментальные исследования в области энзимологии, химии белков, липидов, углеводов, идентификация молекулярных механизмов основных обменных процессов, а также структуры и функций генома вывели биохимию на уровень основной количественной биологической науки.

4. Основные достижения биологической химии.

Биологическая химия изучает различные структуры, свойственные живым организмам и химические реакции, протекающие на клеточном и организменном уровнях. Основой жизни является совокупность химических реакций, обеспечивающих обмен веществ. Таким образом, биохимию можно считать основным языком всех биологических наук.

В настоящее время, как биологические структуры, так и обменные процессы, благодаря применению эффективных методов, изучены достаточно хорошо.

Можно суммировать основные достижения в области биохимии:

Определен химический состав клеток, тканей и целого организма. Выделены основные соединения, присутствующие в этих системах и установлена их структура.

Выяснены функции многих простых биомолекул. Установлены также функции наиболее сложных биомолекул. Центральное место среди всех этих открытий принадлежит установлению того факта, что ДНК – это генетический материал и содержащаяся в нем информация передается от ДНК информационной РНК, которая в свою очередь определяет последовательность аминокислот в белках. Поток информации исходно заключенной в ДНК можно представить в виде схемы:

ДНК РНК Белок

Выделены главные органеллы животных клеток, установлены их основные функции.

Показано, что почти все реакции, протекающие в клетках, катализируются ферментами; многие ферменты получены в чистом виде и изучены, выявлены общие принципы механизмов их действия.

Прослежены метаболические пути синтеза и распада основных простых и сложных биомолекул. Показано, что пути синтеза данного соединения в общем случае отличается от путей его распада.

Выяснены многие аспекты регуляции метаболизма.

В общих чертах установлено, каким образом клетки запасают и используют энергию.

Выяснены основные особенности строения и функции различных мембран, показано, что основными их компонентами являются белки и липиды.

Накоплено значительное количество данных о механизме действия основных гормонов.

Читайте также: