Расстояние от точки до плоскости реферат

Обновлено: 02.07.2024

Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 27.01.2016
Размер файла 698,6 K

Подобные документы

Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

презентация [106,9 K], добавлен 21.09.2013

Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

лекция [160,8 K], добавлен 17.12.2010

Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Биссектриса углов между прямыми. Деление отрезка в заданном отношении. Виды неполных уравнений. Понятие направляющего вектора. Расстояние от точки до прямой.

презентация [490,5 K], добавлен 10.11.2014

Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.

контрольная работа [376,1 K], добавлен 16.06.2012

Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

Правило. Чтобы найти отклонение т. M* от плоскости, нужно в нормальное уравнение плоскости подставить координаты т. M*. Расстояние от точки до плоскости равно. Произвольная точка плоскости. Вектор единичной нормали имеет координаты. Найдем проекцию вектора на нормаль. Доказательство. Проекцию т. * на нормаль обозначим Q. Отклонение точки М* от плоскости равно. Пусть М* — точка пространства… Читать ещё >

Нормальное уравнение плоскости. Расстояние от точки до плоскости ( реферат , курсовая , диплом , контрольная )

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Пусть существует плоскость. Проведем нормаль через начало координат О. Пусть заданы — углы, образованные нормалью с осями координат.. Пусть — длина отрезка нормали до пересечения с плоскостью. Считая известными направляющие косинусы нормали, выведем уравнение плоскости .

Пусть) — произвольная точка плоскости. Вектор единичной нормали имеет координаты. Найдем проекцию вектора на нормаль.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Поскольку точка М принадлежит плоскости, то.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Это и есть уравнение заданной плоскости, называющееся нормальным.

Расстояние от точки до плоскости

Пусть дана плоскость, М* - точка пространства, d — её расстояние от плоскости.

Определение. Отклонением точки М* от плоскости называется число (+d), если M* лежит по ту сторону от плоскости, куда указывает положительное направление нормали, и число (-d), если точка расположена по другую сторону плоскости:

Теорема. Пусть плоскость с единичной нормалью задана нормальным уравнением:

Пусть М* - точка пространства Отклонение т. M* от плоскости задаётся выражением.

Доказательство. Проекцию т. * на нормаль обозначим Q. Отклонение точки М* от плоскости равно.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Нормальное уравнение плоскости. Расстояние от точки до плоскости.

Правило. Чтобы найти отклонение т. M* от плоскости, нужно в нормальное уравнение плоскости подставить координаты т. M*. Расстояние от точки до плоскости равно .

Данная статья рассказывает об определении расстояния от точки до плоскости. произведем разбор методом координат, который позволит находить расстояние от заданной точки трехмерного пространства. Для закрепления рассмотрим примеры нескольких задач.

Расстояние от точки до плоскости – определение

Расстояние от точки до плоскости находится посредством известного расстояния от точки до точки, где одна из них заданная, а другая – проекция на заданную плоскость.

Когда в пространстве задается точка М 1 с плоскостью χ , то через точку можно провести перпендикулярную плоскости прямую. Н 1 является общей точкой их пересечения. Отсюда получаем, что отрезок М 1 Н 1 – это перпендикуляр, который провели из точки М 1 к плоскости χ , где точка Н 1 – основание перпендикуляра.

Расстоянием от точки до плоскости называют расстояние от заданной точки к основанию перпендикуляра, который провели из заданной точки к заданной плоскости.

Определение может быть записано разными формулировками.

Расстоянием от точки до плоскости называют длину перпендикуляра, который провели из заданной точки к заданной плоскости.

Расстояние от точки М 1 к плоскости χ определяется так: расстояние от точки М 1 до плоскости χ будет являться наименьшим от заданной точки до любой точки плоскости. Если точка Н 2 располагается в плоскости χ и не равна точке Н 2 , тогда получаем прямоугольный треугольник вида М 2 H 1 H 2 , который является прямоугольным, где имеется катет М 2 H 1 , М 2 H 2 – гипотенуза. Значит, отсюда следует, что M 1 H 1 M 1 H 2 . Тогда отрезок М 2 H 1 считается наклонной, которая проводится из точки М 1 до плоскости χ . Мы имеем, что перпендикуляр, проведенный из заданной точки к плоскости, меньше наклонной, которую проводят из точки к заданной плоскости. Рассмотрим этот случай на рисунке, приведенном ниже.

Расстояние от точки до плоскости – теория, примеры, решения

Существует ряд геометрических задач, решения которых должны содержать расстояние от точки до плоскости. Способы выявления этого могут быть разными. Для разрешения применяют теорему Пифагора или подобия треугольников. Когда по условию необходимо рассчитать расстояние от точки до плоскости, заданные в прямоугольной системе координат трехмерного пространства, решают методом координат. Данный пункт рассматривает этот метод.

По условию задачи имеем, что задана точка трехмерного пространства с координатами M 1 ( x 1 , y 1 , z 1 ) с плоскостью χ , необходимо определить расстояние от М 1 к плоскости χ . Для решения применяется несколько способов решения.

Первый способ

Данный способ основывается на нахождении расстояния от точки до плоскости при помощи координат точки Н 1 , которые являются основанием перпендикуляра из точки М 1 к плоскости χ . Далее необходимо вычислить расстояние между М 1 и Н 1 .

Для решения задачи вторым способом применяют нормальное уравнение заданной плоскости.

Второй способ

По условию имеем, что Н 1 является основанием перпендикуляра, который опустили из точки М 1 на плоскость χ . Тогда определяем координаты ( x 2 , y 2 , z 2 ) точки Н 1 . Искомое расстояние от М 1 к плоскости χ находится по формуле M 1 H 1 = ( x 2 - x 1 ) 2 + ( y 2 - y 1 ) 2 + ( z 2 - z 1 ) 2 , где M 1 ( x 1 , y 1 , z 1 ) и H 1 ( x 2 , y 2 , z 2 ) . Для решения необходимо узнать координаты точки Н 1 .

Имеем, что Н 1 является точкой пересечения плоскости χ с прямой a , которая проходит через точку М 1 , расположенную перпендикулярно плоскости χ . Отсюда следует, что необходимо составление уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости. Именно тогда сможем определить координаты точки Н 1 . Необходимо произвести вычисление координат точки пересечения прямой и плоскости.

Алгоритм нахождения расстояния от точки с координатами M 1 ( x 1 , y 1 , z 1 ) к плоскости χ :

  • составить уравнение прямой а, проходящей через точку М 1 и одновременно
  • перпендикулярной к плоскости χ ;
  • найти и вычислить координаты ( x 2 , y 2 , z 2 ) точки Н 1 , являющимися точками
  • пересечения прямой a с плоскостью χ ;
  • вычислить расстояние от М 1 до χ , используя формулу M 1 H 1 = ( x 2 - x 1 ) 2 + ( y 2 - y 1 ) 2 + z 2 - z 1 2 .

В заданной прямоугольной системе координат О х у z имеется плоскость χ , тогда получаем нормальное уравнение плоскости вида cos α · x + cos β · y + cos γ · z - p = 0 . Отсюда получаем, что расстояние M 1 H 1 с точкой M 1 ( x 1 , y 1 , z 1 ) , проведенной на плоскость χ , вычисляемое по формуле M 1 H 1 = cos α · x + cos β · y + cos γ · z - p . Эта формула справедлива, так как это установлено благодаря теореме.

Если задана точка M 1 ( x 1 , y 1 , z 1 ) в трехмерном пространстве, имеющая нормальное уравнение плоскости χ вида cos α · x + cos β · y + cos γ · z - p = 0 , тогда вычисление расстояния от точки до плоскости M 1 H 1 производится из формулы M 1 H 1 = cos α · x + cos β · y + cos γ · z - p , так как x = x 1 , y = y 1 , z = z 1 .

Доказательство теоремы сводится к нахождению расстояния от точки до прямой. Отсюда получаем, что расстояние от M 1 до плоскости χ - это и есть модуль разности числовой проекции радиус-вектора M 1 с расстоянием от начала координат к плоскости χ . Тогда получаем выражение M 1 H 1 = n p n → O M → - p . Нормальный вектор плоскости χ имеет вид n → = cos α , cos β , cos γ , а его длина равняется единице, n p n → O M → - числовая проекция вектора O M → = ( x 1 , y 1 , z 1 ) по направлению, определяемым вектором n → .

Применим формулу вычисления скалярных векторов. Тогда получаем выражение для нахождения вектора вида n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → , так как n → = cos α , cos β , cos γ · z и O M → = ( x 1 , y 1 , z 1 ) . Координатная форма записи примет вид n → , O M → = cos α · x 1 + cos β · y 1 + cos γ · z 1 , тогда M 1 H 1 = n p n → O M → - p = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Теорема доказана.

Отсюда получаем, что расстояние от точки M 1 ( x 1 , y 1 , z 1 ) к плоскости χ вычисляется при помощи подстановки в левую часть нормального уравнения плоскости cos α · x + cos β · y + cos γ · z - p = 0 вместо х , у , z координаты x 1 , y 1 и z 1 ,относящиеся к точке М 1 , взяв абсолютную величину полученного значения.

Рассмотрим примеры нахождения расстояния от точки с координатами до заданной плоскости.

Вычислить расстояние от точки с координатами M 1 ( 5 , - 3 , 10 ) к плоскости 2 x - y + 5 z - 3 = 0 .

Решим задачу двумя способами.

Первый способ начнется с вычисления направляющего вектора прямой a . По условию имеем, что заданное уравнение 2 x - y + 5 z - 3 = 0 является уравнением плоскости общего вида, а n → = ( 2 , - 1 , 5 ) является нормальным вектором заданной плоскости. Его применяют в качестве направляющего вектора прямой a , которая перпендикулярна относительно заданной плоскости. Следует записать каноническое уравнение прямой в пространстве, проходящее через M 1 ( 5 , - 3 , 10 ) с направляющим вектором с координатами 2 , - 1 , 5 .

Уравнение получит вид x - 5 2 = y - ( - 3 ) - 1 = z - 10 5 ⇔ x - 5 2 = y + 3 - 1 = z - 10 5 .

Следует определить точки пересечения. Для этого нежно объединить уравнения в систему для перехода от канонического к уравнениям двух пересекающихся прямых. Данную точку примем за Н 1 . Получим, что

x - 5 2 = y + 3 - 1 = z - 10 5 ⇔ - 1 · ( x - 5 ) = 2 · ( y + 3 ) 5 · ( x - 5 ) = 2 · ( z - 10 ) 5 · ( y + 3 ) = - 1 · ( z - 10 ) ⇔ ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

После чего необходимо разрешить систему

x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = 1 5 x - 2 z = 5 2 x - y + 5 z = 3

Обратимся к правилу решения системы по Гауссу:

1 2 0 - 1 5 0 - 2 5 2 - 1 5 3 ~ 1 2 0 - 1 0 - 10 - 2 10 0 - 5 5 5 ~ 1 2 0 - 1 0 - 10 - 2 10 0 0 6 0 ⇒ ⇒ z = 0 6 = 0 , y = - 1 10 · 10 + 2 · z = - 1 , x = - 1 - 2 · y = 1

Получаем, что H 1 ( 1 , - 1 , 0 ) .

Производим вычисления расстояния от заданной точки до плоскости. Берем точки M 1 ( 5 , - 3 , 10 ) и H 1 ( 1 , - 1 , 0 ) и получаем

M 1 H 1 = ( 1 - 5 ) 2 + ( - 1 - ( - 3 ) ) 2 + ( 0 - 10 ) 2 = 2 30

Второй способ решения заключается в том, чтобы для начала привести заданное уравнение 2 x - y + 5 z - 3 = 0 к нормальному виду. Определяем нормирующий множитель и получаем 1 2 2 + ( - 1 ) 2 + 5 2 = 1 30 . Отсюда выводим уравнение плоскости 2 30 · x - 1 30 · y + 5 30 · z - 3 30 = 0 . Вычисление левой части уравнения производится посредствам подстановки x = 5 , y = - 3 , z = 10 , причем нужно взять расстояние от M 1 ( 5 , - 3 , 10 ) до 2 x - y + 5 z - 3 = 0 по модулю. Получаем выражение:

M 1 H 1 = 2 30 · 5 - 1 30 · - 3 + 5 30 · 10 - 3 30 = 60 30 = 2 30

Ответ: 2 30 .

Когда плоскость χ задается одним из способов раздела способы задания плоскости, тогда нужно для начала получить уравнение плоскости χ и вычислять искомое расстояние при помощи любого метода.

В трехмерном пространстве задаются точки с координатами M 1 ( 5 , - 3 , 10 ) , A ( 0 , 2 , 1 ) , B ( 2 , 6 , 1 ) , C ( 4 , 0 , - 1 ) . Вычислить расстяние от М 1 к плоскости А В С .

Для начала необходимо записать уравнение плоскости, проходящее через заданные три точки с координатами M 1 ( 5 , - 3 , 10 ) , A ( 0 , 2 , 1 ) , B ( 2 , 6 , 1 ) , C ( 4 , 0 , - 1 ) .

x - 0 y - 2 z - 1 2 - 0 6 - 2 1 - 1 4 - 0 0 - 2 - 1 - 1 = 0 ⇔ x y - 2 z - 1 2 4 0 4 - 2 - 2 = 0 ⇔ ⇔ - 8 x + 4 y - 20 z + 12 = 0 ⇔ 2 x - y + 5 z - 3 = 0

Отсюда следует, что задача имеет аналогичное предыдущему решение. Значит, расстояние от точки М 1 к плоскости А В С имеет значение 2 30 .

Ответ: 2 30 .

Нахождение расстояния от заданной точки на плоскости или к плоскости, которым они параллельны, удобнее, применив формулу M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Отсюда получим, что нормальные уравнения плоскостей получают в несколько действий.

Найти расстояние от заданной точки с координатами M 1 ( - 3 , 2 , - 7 ) к координатной плоскости О х у z и плоскости, заданной уравнением 2 y - 5 = 0 .

Координатная плоскость О у z соответствует уравнению вида х = 0 . Для плоскости О у z оно является нормальным. Поэтому необходимо подставить в левую часть выражения значения х = - 3 и взять модуль значения расстояния от точки с координатами M 1 ( - 3 , 2 , - 7 ) к плоскости. Получаем значение, равное - 3 = 3 .

После преобразования нормальное уравнение плоскости 2 y - 5 = 0 получит вид y - 5 2 = 0 . Тогда можно найти искомое расстояние от точки с координатами M 1 ( - 3 , 2 , - 7 ) к плоскости 2 y - 5 = 0 . Подставив и вычислив, получаем 2 - 5 2 = 5 2 - 2 .

Ответ: Искомое расстояние от M 1 ( - 3 , 2 , - 7 ) до О у z имеет значение 3 , а до 2 y - 5 = 0 имеет значение 5 2 - 2 .

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Ранее было рассмотрено, что через точку А, не лежащую на плоскости α, можно провести только одну прямую, перпендикулярную к этой плоскости.

Дана плоскость α и точка А, не лежащая на ней.

Проведем из точки А прямую, перпендикулярную к плоскости α. Обозначим буквой Н точку пересечения проведенной прямой с плоскостью α.

Перпендикуляром, проведенным из точки А к плоскости α, называется отрезок АН. Точка Н называется основанием этого перпендикуляра.

Возьмем произвольную точку М, принадлежащую плоскости α и отличную от Н. Соединим точки А и М.

Отрезок АМ называется наклонной, проведенной из точки А к плоскости α. Точка М называется основанием наклонной.

Соединим точки М и Н.

Отрезок МН называется проекцией наклонной АМ на плоскость α.

Имеется точка А и два отрезка, проведенных из этой точки к плоскости α: отрезок АН и отрезок АМ. Как вы думаете, какой из этих отрезков меньше?

Рассмотрим отрезки АН и АМ.

Для этого рассмотрим треугольник АНМ. Это прямоугольный треугольник, так как угол АНМ равен 90 градусам (так как АН перпендикулярна плоскости α). Тогда сторону АН можно назвать катетом, а сторону АМ гипотенузой. Но гипотенуза всегда больше катета. Поэтому АН

Значит, перпендикуляр, проведенный из точки, не лежащей на плоскости, к этой же плоскости, всегда меньше любой наклонной, проведенной из той же точки к этой же плоскости.

Таким образом из всех расстояний от точки А до разных точек плоскости α наименьшим является расстояние до точки Н.

Расстоянием от точки А до плоскости α называется длина перпендикуляра АН, проведенного к плоскости α.

Рассмотрим решение типовой задачи по теме.

Из точки А, не принадлежащей плоскости α, проведены перпендикуляр АО и две равные наклонные АМ и АН. Известно, что АО = 3 единицам, АМ = АН = 5 единицам. Найти расстояние между основаниями наклонных.

Из прямоугольного треугольника АОМ найдем ОМ по теореме Пифагора. ОМ² = 25 – 9 = 16 или ОМ=4 единицы. Тогда МН=2*ОМ = 8 ед.

Рассмотрим три замечания к теме, которые необходимы для решения задач.

Пусть даны две параллельные плоскости α и β. Тогда все точки плоскости α будут равноудалены от плоскости β.

Действительно. На плоскости α взяты произвольные точки А и М. Из этих точек на плоскость β опустим перпендикуляры АН и МО соответственно. Следовательно, перпендикуляр АН параллелен перпендикуляру МО.

Эти перпендикуляры будут равными, по второму свойству параллельности плоскостей, которое звучит так: отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой.

На рис расстоянием между параллельными плоскостями α и β является отрезок, например, МО.

Если прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости.

Выберем любую точку А на прямой а , опустим перпендикуляр АО на плоскость α.

Длина перпендикуляра АО называется расстоянием между прямой а и параллельной ей плоскостью α.

Найдите расстояние между прямой МН и плоскостью параллельного ей прямоугольника АВСД, если известно, что МН=6см; угол МНО=45 градусам (см. рис 015).

Дано: МН || АВСД; МН=6см; МНО=45°; МО АВСД

МНО прямоугольный. Используя определения тригонометрической функции тангенс (Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету), имеем МО=tg45°*6=1*6=6см

Пусть прямые а и b скрещивающиеся. Тогда плоскость α, проходящая через прямую а, параллельна прямой b (по теореме: Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой и притом только одна.).

Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.

На рис расстоянием между скрещивающимися прямыми а и b является отрезок МО.

hello_html_373f13da.jpg

Показывается презентация4. pps , как это делать.

Пер пендикуляром, проведенным из точки А к плоскости α, называется отрезок АН. Точка Н называется основанием этого перпендикуляра.

На жирным шрифтом выделяются названные отрезки.

На рис 009 жирным шрифтом выделяется длина перпендикуляра АН

Расстоянием от точки А до плоскости α называется длина перпендикуляра АН, проведенного к плоскости α.

Дано: АО α; АО = 3 ед.; АМ=АН=5 ед.

АОМ: ОМ²=АМ 2 –АО 2

Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой.

Длина перпендикуляра АО называется расстоянием между прямой а и параллельной ей плоскостью α.

hello_html_15529cd.jpg

Дано: МН || АВСД; МН=6см; МНО=45°; МО АВСД

Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.

Читайте также: