Программный продукт mathematica реферат

Обновлено: 06.07.2024

Аннотация: В настоящей лекции мы впервые познакомимся с пакетом Mathematica, её возможностями при выполнении вычислений, узнаем некоторые встроенные функции. Мы научимся осуществлять элементарные математические операции, "задавать вопросы" Mathematica (вводить данные) и "получать ответы" (получать результат вычислений), а также пользоваться встроенной документацией, расширяющей возможности пользователя при работе пакетом.

Цель лекции: познакомиться с основными возможностями пакета и базовыми принципами работы в системе компьютерной алгебры Mathematica.

1.0. Введение: Основные возможности системы компьютерной алгебры Mathematica

Пакет Mathematica совершенствуется и развивается уже не одно десятилетие, начиная с конца восьмидесятых годов прошлого века. За эти годы Mathematica из программируемого калькулятора, однако, уже тогда способного на многое в математике, выросла в полноценную систему компьютерной алгебры. Все возможности Mathematica можно разделить на 4 больших категории: численные расчёты, символьные вычисления, визуализация и программирование . Краткую обобщённую классификацию возможностей Mathematica приводят А.Н. Прокопеня и А.В. Чичурин в книге [5, с. 6–7]. В редуцированном виде приведём её в нашем курсе.

  1. Численные расчеты
    • Mathematica позволяет производить вычисления с любой точностью. Это отличает её от обычного калькулятора, для которого точность вычислений фиксирована. Также Mathematica может производить расчеты с использованием специальных функций.
    • Mathematica умеет вычислять интегралы, численно решать алгебраические и дифференциальные уравнения и системы уравнений.
    • Mathematica позволяет производить статистический анализ численных данных, производить Фурье-анализ, интерполяцию и аппроксимацию данных с помощью метода наименьших квадратов.
    • Mathematica прекрасно работает не только с числами, но и с матрицами, обеспечивая выполнение всех операций линейной алгебры.
  • Mathematica позволяет оперировать алгебраическими формулами: разлагать на множители, раскрывать скобки или напротив, производить упрощение многочленов и т.д.
  • Mathematica позволяет находить решения дифференциальных уравнений, находить интегралы и производные в символьном виде.
  • Mathematica может разлагать функцию в ряд, вычислять пределы.
  • Mathematica умеет строить двух- и трехмерные графики аналитических функций, заданных явно или параметрически, а также контурные и плотностные графики. Помимо функциональных зависимостей Mathematica умеет визуализировать дискретные наборы данных.
  • Mathematica обладает значительным набором инструментов, опций, позволяющих контролировать оформление изображений, графиков. Так, например, можно изменять цвет графиков, управлять тенями, освещением и яркостью и т.д.
  • Mathematica позволяет строить изображения, используя элементарные графические объекты, стандартные фигуры. В двумерной графике это — многоугольники, окружности, дуги и т.д., в трёхмерной графике — параллелепипеды, сферы, цилиндры, конусы и т.д. Также Mathematica позволяет добавлять текстовые комментарии в любое место двумерного или трехмерного графического объекта.
  • Mathematica позволяет создавать дополнительные функции под нужды пользователя. Использование именно этой возможности подразумевает функциональный стиль программирования.
  • Mathematica обладает таким инструментом, как правила преобразований, которые позволяют одним символьным выражениям ставить в соответствие другие символьные выражения и численные значения. На этой возможности базируется так называемый стиль программирования, основанный на правилах преобразования.
  • В Mathematica содержится большое количество встроенных функций, позволяющих разветвлять вычисления в зависимости от выполнения определённых условий, многократно выполнять тот или иной алгоритм действий, реализуя тем самым процедурный стиль программирования.
  • Mathematica сама по себе представляет собой язык программирования высокого уровня, на котором можно писать как малые, так и большие программы.

1.1. Начало работы в Mathematica. Интерфейс программы

1.1.1.Главное меню программы

Mathematica, как и всякая программа, предназначенная для выполнения под Windows, запускается после двойного щелчка кнопкой мыши на соответствующей пиктограмме. На рис. 1.1 приведён снимок экрана с запущенной программой Mathematica. Основные элементы интерфейса программы следующие: в самом верху экрана располагается строка главного меню, белая прямоугольная область в средней части экрана — окно редактирования или окно ввода; тяготеющие к правой части экрана окна — палитры.

Начнём описание интерфейса программы с главного меню.

Пункты главного меню Mathematica достаточно подробно описаны в книгах А. П. Мостовского [4, с. 6–8] и А. В. Чигарева [6, с. 115–124].

Пункт меню File предназначен для работы непосредственно с файлами программы. С его помощью можно, например, создавать новые файлы ( New ), выбирать из каталога ранее уже созданные ( Open. ), сохранять файлы ( Save As ), перезаписывать ( Save ) или закрывать их без сохранения ( Close ), управлять параметрами представления данных на экране ( Printing Settings ), печатать документы ( Print. ) и завершать работу всей программы ( Exit ).

Пункт меню Edit содержит основные операции редактирования данных на экране. Среди них отмена операции ( Undo ), копирование фрагментов документа в буфер обмена с их удалением из текста программы ( Cut ) и без удаления ( Copy ), вставка фрагментов из буфера обмена в заданную область документа ( Paste ), удаление фрагментов документа ( Clear ). Помимо этого, в данном пункте меню содержатся команды для поиска выражений в тексте программы: это Find. для задания шаблона для поиска, а также Find Next и Find Previous для перехода к следующему и предыдущему фрагментам текста, соответственно, совпадающим с шаблоном. Подпункт Preferences. ответственен за управление настройками самого пакета.

При помощи команд, содержащихся в пункте меню Insert , можно вводить данные в окно редактирования. Например, можно задавать верхние и нижние индексы при помощи содержащихся в подпункте Typesettings команд Superscript и Subscript , обособлять тексты скобками различного вида при помощи команд Matching [], Matching (), Matching <> и т.д. Можно вставлять в текст программы объекты, созданные в других программах, например, графику, формулы и т.д.

Пункт меню Format позволяет пользователю устанавливать, исходя из его эстетических и рассудочных предпочтений, внешний вид окна ввода, стиль ячеек, их содержание, размер, управлять шрифтами и т.д.

Управлять ячейками данных позволяет пункт меню Cell (подробней о ячейках см. пункт 1.1.2 настоящей лекции). С его помощью можно устанавливать формат ячеек ( Cell Properties ), преобразовывать их тип ( Convert To ), группировать ( Grouping ), объединять ( Merge Cells ) и разделять ( Divide Cells ) ячейки и т.д.

Пункт меню Graphics , что весьма очевидно, отвечает за работу с графическими данными, встречающимися в тексте программы.

В пункте меню Evaluations собраны команды для непосредственного управления ходом вычислений, работой с ядром программы. С их помощью можно осуществлять вычисления в пределах одной ячейки программы ( Evaluate Cells, Evaluate Initialization Cells ), в пределах всей программы ( Evaluate Notebook ), отключать ядро ( Quit Kernel ) программы и вновь запускать его ( Start Kernel ) и т.д.

Ввод данных в окно ввода в Mathematica можно осуществлять не только вручную с клавиатуры, но и с использованием так называемых палитр ( Palettes ). Они представляют собой окна, содержащие набор кнопок, за которыми закреплены определённые действия, и выпадающих списков. Управлять палитрами можно, используя команды в пункте меню Palettes . Можно выводить на экран и убирать с экрана те или иные палитры, а также создавать собственные палитры с требуемым набором функций.

Команды для управления внешним видом окон, их расположением, собраны в пункте меню Window . Содержание этого пункта типично для большинства программ, предназначенных для работы в ОС Windows.

Последний пункт меню, Help , содержит команды для работы со справочными данными по пакету Mathematica.

В любом из пунктов меню часть команд в настоящий момент может быть невыполнима — например, нельзя вычислить значение выражения, если само оно в окно редактирования ещё не введено, либо не выделена содержащая его ячейка. Такие команды выделяются светло серым шрифтом.

Скриншот открытых окон запущенного приложения Mathematica. В зафиксированный момент на экране присутствуют главное меню, окно ввода, и окна палитр функций


увеличить изображение
Рис. 1.1. Скриншот открытых окон запущенного приложения Mathematica. В зафиксированный момент на экране присутствуют главное меню, окно ввода, и окна палитр функций

1.1.2. Окно ввода

Все элементы интерфейса Mathematica выводятся независимо друг от друга: отдельно — строка меню, отдельно — окна (в том числе окно редактирования), отдельно палитры инструментов. В одно и то же время на экране могут быть представлены одни элементы, и скрыты другие. Кроме того, можно, перетаскивая мышкой, помещать элементы программы в любое удобное место экрана, изменять их размеры (В. П. Дьяконов [2, с. 35–37]). В окне редактирования имеются полосы прокрутки для скроллинга не помещающихся на экране текстов.

Все введённые в окно ввода данные в Mathematica содержатся в отдельных, определённым образом выделенных областях экрана, называемых ячейками. Итак, программа запущена, и в центральной части экрана появилась девственно чистая область — окно ввода. Именно в эту область и предстоит вводить данные. Как только будет введён первый символ, в правой части окна ввода появится квадратная скобка: она обозначает вертикальные границы ячейки, содержащей введенный с клавиатуры символ. Исходные данные содержатся во входных ячейках ( Input ), а результат преобразований — в выходных ( Output ). А. П. Мостовской в [4, с. 6] определяет ячейку в Mathematica следующим образом: "Под ячейкой понимается связная часть рабочего поля, содержащая задачу, ответ, текст или другое".

После того, как на экране появилось окно редактирования (при первом старте Mathematica или после выбора подпункта New в пункте меню File ), вы сразу же можете вводить данные. Например, если вы наберёте N[E,10] и нажмёте Shift+Enter (удерживая Shift , нажмёте Enter ) для начала вычислений, Mathematica выведет на экран приближённое значение экспоненты с точностью до 10-и значащих цифр — см. рис. 1.2.

Экспонента с точностью до 10-и значащих цифр

Таким образом, чтобы Mathematica произвела вычисление введённого выражения, необходимо, оставив курсор внутри ячейки с входными данными, нажать сочетание клавиш Shift+Enter . Заметим, что после того, как вы заставили программу произвести вычисления в окне редактирования, Mathematica добавляет к данным на экране подсказки в виде In[1]:= для входных данных, и Out[1]:= для данных на выходе, т.е. результатов вычислений — также см. в качестве примера рис. 1.2. При этом исходное значение оказывается присвоенным объекту In[1] , а результат вычислений — объекту Out[1] (Е. М. Воробьёв [1, с. 8–9]). В нашем примере на рис. 1.2 в текущей сессии работы с программой ввод с клавиатуры In[1] будет эквивалентен вводу выражения N[E,10] , а ввод Out[1] — вводу 2.718281828 .

Скажем ещё несколько слов о скобке в правой части экрана, очерчивающей границы ячейки с входными данными и результатами их преобразований. Если все заданные вычисления завершены успешно или ещё не проводились, ячейка обозначается тонкой правой квадратной скобкой, цвет которой зависит от цветовой схемы, используемой в операционной системе пользователя (см. пример на рис. 1.2). Изменение внешнего вида скобки может многое сказать о текущем состоянии вычислений. Если скобка изменила цвет на яркий, привлекающий внимание, и толщину, а в верхней её части появился значок + , это значит, что в синтаксисе содержащихся в ячейке выражений имеется ошибка: узнать на характере ошибки можно, нажав на + (см. верхний пример на рис. 1.3).

Эта скобка также оказывается полезной при организации работы с большим количеством разнородных данных. Двойной клик на скобке позволяет свернуть ячейку, содержащаяся в которой информация, например, в данный момент не используется, и в представлении её на экране нет необходимости. И напротив, двойной щелчок позволяет развернуть свёрнутую ранее ячейку.

Новые данные можно вводить непосредственно под ячейкой с предыдущими вычислениями, ограниченной снизу горизонтальной линией, проходящей по всей ширине окна ввода. Новая ячейка откроется сразу же, как только вы начнёте вводить данные.

Разные типы скобки, очерчивающей ячейку

1.1.3. Палитры математических функций

В данной лекции мы уже упомянули такой термин, как палитры. В Mathematica палитра — панель с кнопками быстрого управления.

С одной стороны, кажется удобным, когда элементы управления находятся на экране, перед глазами, и вместо того, чтобы вспоминать команду для выполнения того или иного действия, достаточно нажать соответствующую кнопку на экране. Однако, с другой стороны, когда таким способом упрощён ввод большого количества команд, экран оказывается сильно загромождён этими вспомогательными панелями.

Разработчики Mathematica сумели реализовать положительный эффект от вспомогательных панелей, минимизировав причиняемые им неудобства. Они создали инструментальные палитры, содержащие определённым образом сгруппированные команды для ввода математических выражений, отсутствующих на клавиатуре символов, команд управления вычислениями, инструментов работы с текстом и графикой. Палитрам не обязательно всё время находиться на экране, и по желанию пользователя они могут быть перемещены в любое место экрана или вовсе скрыты. Управлять палитрами можно при помощи команд, собранных в пункте главного меню Palettes .

На скриншоте на рис. 1.1 представлено несколько палитр, имеющихся в Mathematica.

Сегодня компьютеры берут на себя огромную долю вычислительной и аналитической нагрузки современного математика. Поэтому перед сегодняшними исследователями стоят и, главное, представляются разрешимыми совсем другие задачи, нежели пол столетия назад.

Благодаря огромной мощи компьютеров становится возможным моделирование и изучение сложных и динамичных систем, которые возникают при изучении космоса, поиске новых источников энергии, создании новых технических изобретений и многих других проблем, затрагивающих сферу научно-технического прогресса. Решение любой задачи подобного рода можно свести к выполнению следующей совокупности действий:

математическое моделирование системы;

построение вычислительного алгоритма;

сбор и анализ полученных результатов.

Использование компьютерных математических пакетов позволяет:

расширить диапазон реальных приложений;

сочетать профессиональную направленность, научность, системность, наглядность, интерактивность;

для наглядного анализа строить графики сложных функций и поверхностей, с помощью которых, например, оцениваются решения ОДУ, что существенно облегчает их анализ;

мгновенно обмениваться информацией с человеком, физический контакт с которым невозможен, или трудно осуществим;

исследовать более сложные модели, так как громоздкие вычисления можно осуществить с помощью соответствующих компьютерных систем.

Данный реферат посвящен использованию информационных технологий для вычисления различных видов интегралов на примере пакета Mathematica версии 5.2. Как пример для иллюстрации выбрано вычисление интегралов через вычеты, расчет несобственных интегралов, интегралов в комплексной плоскости, и сравнение полученных результатов с аналитическим решением, которое строит Mathematica.

Глава 1. Обзор литературы

Когда пользователь решает начать использование пакета, ему необходимы набор минимальных, общих знаний о том, как пользоваться пакетам, как вводить данные, как получать результаты, какое окружение необходимо для стабильной работы пакета и какие есть у самого пакета системные требования. Здесь стоит выделить работу В. З. Аладьева и М. Л. Шишакова [1] по введению в среду пакета, его инсталляции, разбор основных компонентов, особенности использования и основам применения. Ещё необходимо также выделить тему 1 и тему 2 из работы Л. Л. Голубевой, А. Э. Малевича, Н.Л. Щеголовой [2], которые освещают основные логические компоненты среды и гарантирует плодотворное знакомство с пакетом, а также с такими базовым объектами как:

программирование и функциональное программирование;

Вычисление интегралов – это одна из наиболее часто встречающихся математических операций. Умение правильно их выполнять – это то, что нужно практически любому математику в той или иной форме для эффективной научной деятельности.

Работа содержит многочисленные примеры, показывающие, что при объединении теории функции комплексного переменного и математического анализа с возможностями пакета Mathematica удаётся легко вычислить различные интегралы.

Глава 2. Основные возможности пакета Mathematica

Немного истории для тех, кто недостаточно хорошо знаком с рассматри-ваемым в данной работе средой символьных вычислений Mathematica.

Она разработана компанией Wolfram Research Inc, основанной известным математиком и физиком Стефаном Вольфрамом, одним из создателей теории сложных систем. Первая версия программы, появившаяся в 1988 г, стала новым словом в автоматизации математических расчетов.

Mathematica отличается охватом широкого круга задач, так как ее разработчики задались целью объединить все известные математические методы, использующиеся для решения научных задач, в унифицированном и согласованном виде, включая аналитические и численные расчеты.

Программа состоит из двух частей — ядра, которое, собственно, и производит вычисления, выполняя заданные команды, и интерфейсного процессора, который определяет внешнее оформление и характер взаимодействия с пользователем и системой. Основной рабочий документ программы — тетрадь, в которой пользователь записывает все выкладки. Вид рабочей тетради на экране монитора зависит от интерфейсного процессора, реализация которого для разных платформ несколько отличается.

Пользовательский интерфейс программы Mathematica 5.2 сначала кажется несколько примитивным: инструментальная панель — это просто строка меню, а отдельное окно документа выглядит как бы подвешенным. Кроме того, на инструментальной панели отсутствуют кнопки для выполнения часто повторяемых операций, которые были в предыдущей версии.

Однако впечатление примитивности интерфейса сразу же исчезает, когда выясняется, что можно подключать настраиваемые кнопочные палитры, которых в программе имеется больше десятка. С их помощью можно выполнять различные функции, а часть кнопок соответствует специальным символам. Всего в программе более 700 математических, языковых и других символов. При нажатии на кнопки с символом последний переносится в рабочий документ на указанное курсором мести. Другие кнопки палитры соответствуют наименованиям ряда функций программы, которые при выборе вводятся в командную строку. При нажатии кнопки алгебраических преобразований предварительно выделенное алгебраическое выражение трансформируется в соответствии с названием выбранной команды, например упрощается командой simplify.

Программа дает возможность отображать математические символы с достаточно высоким полиграфическим качеством в тексте на экране, в командах, а также при выводе на печать. Увеличено количество опций. Возможно создание гипертекстовых связей.

Рабочую тетрадь можно сохранять в HTML-формате, а также в формате полиграфического языка LaTex и некоторых других.

Усовершенствована и расширена система подсказок, имеется интерактивный доступ к полному тексту электронной версии документации, которая состоит из инструкции пользователя, справочника по стандартным дополнениям, учебника для начинающих и демонстрационных файлов.

Меню окна справки очень хорошо продумано, что позволяет получить информацию различными путями. Можно получить справку по интересующей теме или функции, а также просмотреть текст всех документов, содержащих введенное ключевое слово.

Аналитические расчеты.

Умение проводить аналитические расчеты — одно из главных достоинств этой программы, автоматизирующей математические расчеты. Mathematica умеет преобразовывать и упрощать алгебраические выражения, дифференцировать и вычислять определенные и неопределенные интегралы, вычислять конечные и бесконечные суммы и произведения, решать алгебраические и дифференциальные уравнения и системы, а также разлагать функции в ряды и находить пределы. Кроме того, Mathematica имеет стандартные дополнения для аналитических расчетов.

Следует заметить, что возможности каждой новой версии программы качественно возрастают. В версии 5.2 программы команда упрощения алгебраических выражений Simplify дополнена значительно более мощной командой FullSimplify, которая позволяет обрабатывать математические выражения, включающие специальные функции.

Расширен спектр математических выражений, для которых аналитически находятся неопределенные и определенные интегралы. Появилась также возможность задавать область изменения параметров в подынтегральных выражениях, что позволяет интегрировать многие выражения, которые в общем случае не имеют первообразной.

Значительно возросло число различных (конечных и бесконечных) сумм и произведений, вычисляемых аналитически, а также аналитически решаемых обыкновенных дифференциальных уравнений и уравнений в частных производных.

Из числа других улучшений можно выделить повышение скорости решения задач линейной алгебры.

Численные методы.

Для тех задач, которые невозможно решить аналитически, Mathematica 5.2 предлагает большое количество эффективных алгоритмов для проведения численных расчетов. Она позволяет находить конечные и бесконечные суммы и произведения, вычислять интегралы, решать алгебраические и дифференциальные уравнения и системы, задачи оптимизации (линейного программирования, нахождения экстремумов функций), а также задачи математической статистики. При численном решении математических задач наряду с правильностью алгоритмов расчета особую роль играет точность вычислений.

В Mathematica 5.2 реализован адаптивный контроль точности, основанный на выборе внутренних алгоритмов, позволяющих ее максимизировать. В этой версии программы повышена эффективность многомерной интерполяции, оптимизированы алгоритмы численного решения дифференциальных уравнений. Оптимизированы алгоритмы нахождения экстремумов. Поддерживается арифметика интервалов.

Осуществлен независимый от конкретной компьютерной платформы механизм ввода и вывода числовых данных без потери точности.

Математические функции.

Мathernatica 5.2 позволяет включать в расчеты все известные элементарные функции, а также сотни специальных встроенных функций. Разумеется, пользователь программы может вводить и свои функции как для применения в течение одного сеанса работы так и для постоянного использования. В новой версии 5.2 добавлены интегралы Френеля интегральные гиперболические синус и косинус, обратная функция ошибок, гаммa и бета функции, дополнительная функция Вейерштрасса, эллиптические и родственные с ними функции. Введены числа и полиномы Фибоначчи.

Графика и звук.

Mathernatica позволяет строить двух и трехмерные графики различных типов в виде точек и линии на плоскости, поверхностей, а также контурные, градиентные (dencity plot), параметрические. Имеется большое количество опций оформления и настройки, например изменение подсветки, цвета, размеров и точки наблюдения. Mathematica выполняет построение графика в три этапа. На первом создается множество графических примитивов, на втором они преобразуются в независимое от вычислительной платформы описание на языке PostScript, а на третьем это описание переводится в графический формат для той системы, на которой установлена Mathematicа. Если первые два этапа осуществляет ядро программы, то последний — интерфейсный процессор. Mathematica позволяет также строить серии картинок, которые могут быть воспроизведены как анимация. Программа содержит функции, позволяющие создавать и воспроизводить различные звуки, а также воспринимает и может анализировать некоторые типы стандартных звуковых файлов.

Программирование.

· основанный на операциях со списками – этот метод использует особенности универсального объекта программы — списка выражений, с которыми можно производить математические операции, как с алгебраическими выражениями, при этом заданные операции выполняются всеми элементами списка;

· основанный на операциях над строками (string-based);

· функционального программирования (functional programming), позволяющий создавать сложные функции и последовательности вложенных функций;

· на базе правил преобразования выражений (rule-based); объектно-ориентированный (object-oriented).

В каждой конкретной программе пользователь может одновременно применять несколько методов или даже все перечисленные. Серьезным недостатком предыдущей версии программы было неэкономное использование памяти компьютера. Для ускорения загрузки уменьшено количество первоначально загружаемых в память функций. Введены новые мощные операторы символьного программирования и усовершенствованные операторы для манипулирования строками. Появилась возможность компилировать вычисляемые выражения и процедуры. При этом скорость вычислений может быть сравнима со скоростью такой же процедуры, написанной на языке Си, или даже выше.

Стандартные дополнения.

Mathematica 5.2 содержит множество стандартных дополнений, включающих подпрограммы (пакеты), значительно расширяющие функциональные возможности в таких областях, как алгебра, аналитические и численные расчеты, графика, дискретная математика, теория чисел и статистика. Стандартные дополнения могут загружаться по мере надобности. Для загрузки пакета используется соответствующее название, включающее имя дополнения и имя пакета из данного дополнения. Рассмотрим подробнее стандартные дополнения.

В это дополнение входят пакеты, позволяющие задавать различные алгебраические поля и оперировать в них, а также несколько пакетов, расширяющих функциональность программы при оперировании с полиномами и нахождении их корней. В новой версии оно пополнилось пакетами для решения некоторых типов алгебраических неравенств и симметричных полиномов и, кроме того, добавлена Гамильтонова алгебра кватернионов и элементы полей Пигуа.

Это дополнение содержит пакеты, позволяющие расширять возможности программы при вычислении интегралов, нахождении пределов, решении дифференциальных уравнений и задач линейной алгебры в различных системах координат, а также включает команды преобразования Фурье и Лапласа, обобщенные функции, вариационные методы. В новой версии оно пополнилось пакетом для нахождения полных интегралов и дифференциальных инвариантов нелинейных уравнений в частных производных.

Дискретная математика.

Дополнение предлагает примерно 200 функций для проведения исследований в области комбинаторики и теории графов; вычислительную геометрию, которая содержит несколько геометрических функций для непараметрического анализа данных; пакеты для оперирования с функциями от целых чисел, в частности для решения рекуррентных уравнений, выполнения преобразований.

Дополнение включает 21 пакет. Оно значительно расширяет возможности программы при построении графиков и анимации. Введены новые типы: логарифмические графики, графики тел вращения, полярные, контурные, матричные графики, трехмерные параметрические, двух- и трехмерные графики векторных полей, графики неявно заданных функций и др. Появилась возможность отображать ортогональные проекции трехмерных графических объектов на координатные плоскости. Добавлены также функции для графического представления комплексных функций.

Геометрическое дополнение содержит пакеты, включающие функции для задания параметров правильных многоугольников и многогранников, а также функции, обеспечивающие вращение на плоскости и в пространстве.

Линейная алгебра.

В это дополнение входят функции для создания ортогональных векторных базисов, решения матричных уравнений, разложения матриц и выполнения других операций с матрицами.

Теория чисел.

Функции, относящиеся к теории чисел, широко представлены в ядре программы Mathematica. Дополнение теории чисел расширяет этот список функций. В нее включены пакеты для доказательства простоты чисел, разложения целых чисел на множители. Имеются функции для аппроксимации действительных чисел рациональными и полиномов с действительными корнями полиномами с целыми коэффициентами. Пользуясь дополнениями, можно найти разложение действительного числа в бесконечную дробь. В новой версии появились возможности для нахождения базисных элементов для произвольных алгебраических расширений рациональных чисел.

Приближенные вычисления.

Это дополнение расширяет список встроенных функций программы Mathematica для приближенных численных расчетов. Оно содержит средства подгонки функциями (полиномом, сплайнами, тригонометрическими), численные версии некоторых аналитических функций ядра (ND, NLiunit, NResldue, NSencs), функции численного интегрирования (CauchyPrincipalValue, Listintegrate, IntegrateInterpolationFunction), аппроксимации отношением полиномов, поддержки численного решения дифференциальных уравнений (BesscIZeros, Butcher, Order-Star), а также альтернативный способ нахождения корней (FindRout) с использованием методов интервалов или интерполяции. В последнюю версию введены пакеты для численного нахождения вычетов и разложений комплексных функций.

Это дополнение включает методы статистической обработки данных. В нем содержатся функции известных непрерывных и дискретных статистических распределений. В новую версию добавлены пакеты подгонки и сглаживания данных, классической и робастной описательной статистики, линейной и нелинейной регрессии с диагностикой.

Профессиональные приложения.

Для программы Mathematica помимо стандартных дополнений разработано большое количество профессиональных приложений – пакетов, расширяющих возможности программы в специальных областях. Библиотека приложений в настоящее время содержит 23 различных пакета, из которых 18 разработано корпорацией, а остальные – другими разработчиками. Причем эта библиотека очень быстро пополняется.

Едва исчезли со страниц журналов восторженные отзывы на новую версию математического пакета Maple V 4.0 компании Maple Waterloo, как компания Wolfram Research представила не менее интересный продукт — Mathematica 3.0.

Немного истории для тех, кто недостаточно хорошо знаком с этой программой.

Она разработана компанией Wolfram Research Inc, основанной известным математиком и физиком Стефаном Вольфрамом, одним из создателей теории сложных систем. Первая версия программы, появившаяся в 1988 г, стала новым словом в автоматизации математических расчетов.

Mathematica отличается охватом широкого круга задач, так как ее разработчики задались целью объединить все известные математические методы, использующиеся для решения научных задач, в унифицированном и согласованном виде, включая аналитические и численные расчеты.

Mathematicа дает возможность специалистам решать большое количество достаточно сложных задач, не вдаваясь в тонкости программирования. Благодаря этому программа получила широкое распространение в таких областях, как физика, биология, экономика. Программа также применяется как для выполнения, так и для оформления инженерных проектов.

Mathematica является важным инструментом при разработке программного обеспечения. Она может быть модернизирована самим пользователем, так как oтносится к открытым программным продуктам. Была разработана примерно сотня профессиональных" приложений, расширяющих возможности системы применительно к конкретным областям деятельности.

Программа Mathematica наряду с программами Maple, MatLab и MathCad применяется в качестве базисной для построения курса математики во многих высших как технических, так и гуманитарных учебных заведениях Несколько периодических икании и более двухсот книг посвящено этой программе.

Программа состоит из двух частей — ядра, которое, собственно, и производит вычисления, выполняя заданные команды, и интерфейсного процессора, который определяет внешнее оформление и характер взаимодействия с пользователем и системой. Основной рабочий документ программы — тетрадь, в которой пользователь записывает все выкладки. Вид рабочей тетради на экране монитора зависит от интерфейсного процессора, реализация которого для разных платформ несколько отличается.

Пользовательский интерфейс программы Mathematica 3.0 сначала кажется несколько примитивным: инструментальная панель — это просто строка меню, а отдельное окно документа выглядит как бы подвешенным. Кроме того, на инструментальной панели отсутствуют кнопки для выполнения часто повторяемых операций, которые были в предыдущей версии.

Однако впечатление примитивности интерфейса сразу же исчезает, когда выясняется, что можно подключать настраиваемые кнопочные палитры, которых в программе имеется больше десятка. С их помощью можно выполнять различные функции, а часть кнопок соответствует специальным символам. Всего в программе более 700 математических, языковых и других символов. При нажатии на кнопки с символом последний переносится в рабочий документ на указанное курсором мести. Другие кнопки палитры соответствуют наименованиям ряда функций программы, которые при выборе вводятся в командную строку. При нажатии кнопки алгебраических преобразований предварительно выделенное алгебраическое выражение трансформируется в соответствии с названием выбранной команды, например упрощается командой simplify.

Программа позволяет применять различные стили для оформления документа на экране и вывода его на печать, причем в новой версии стилей может быть значительно больше, чем в предыдущей. Для их изменения предусмотрена специальная палитра.

Программа дает возможность отображать математические символы с достаточно высоким полиграфическим качеством в тексте на экране, в командах, а также при выводе на печать. Увеличено количество опций. Возможно создание гипертекстовых связей.

Рабочую тетрадь можно сохранять в HTML-формате, а также в формате полиграфического языка LaTex и некоторых других.

Усовершенствована и расширена система подсказок, имеется интерактивный доступ к полному тексту электронной версии документации, которая состоит из инструкции пользователя, справочника по стандартным дополнениям, учебника для начинающих и демонстрационных файлов.

Меню окна справки очень хорошо продумано, что позволяет получить информацию различными путями. Можно получить справку по интересующей теме или функции, а также просмотреть текст всех документов, содержащих введенное ключевое слово.

Умение проводить аналитические расчеты — одно из главных достоинств этой программы, автоматизирующей математические расчеты. Mathematica умеет преобразовывать и упрощать алгебраические выражения, дифференцировать и вычислять определенные и неопределенные интегралы, вычислять конечные и бесконечные суммы и произведения, решать алгебраические и дифференциальные уравнения и системы, а также разлагать функции в ряды и находить пределы. Кроме того, Mathematica имеет стандартные дополнения для аналитических расчетов, которые будут рассмотрены ниже.

Следует заметить, что возможности каждой новой версии программы качественно возрастают. В версии 3.0 программы команда упрощения алгебраических выражений Simplify дополнена значительно более мощной командой FullSimplify, которая позволяет обрабатывать математические выражения, включающие специальные функции.

Расширен спектр математических выражений, для которых аналитически находятся неопределенные и определенные интегралы. Появилась также возможность задавать область изменения параметров в подынтегральных выражениях, что позволяет интегрировать многие выражения, которые в общем случае не имеют первообразной.

Значительно возросло число различных (конечных и бесконечных) сумм и произведений, вычисляемых аналитически, а также аналитически решаемых обыкновенных дифференциальных уравнений и уравнений в частных производных.

Из числа других улучшений можно выделить повышение скорости решения задач линейной алгебры.

Для тех задач, которые невозможно решить аналитически, Mathematica 3.0 предлагает большое количество эффективных алгоритмов для проведения численных расчетов. Она позволяет находить конечные и бесконечные суммы и произведения, вычислять интегралы, решать алгебраические и дифференциальные уравнения и системы, задачи оптимизации (линейного программирования, нахождения экстремумов функций), а также задачи математической статистики. При численном решении математических задач наряду с правильностью алгоритмов расчета особую роль играет точность вычислений. В Mathematica 3.0 реализован адаптивный контроль точности, основанный на выборе внутренних алгоритмов, позволяющих ее максимизировать. В этой версии программы повышена эффективность одно и многомерной интерполяции, оптимизированы алгоритмы численного решения дифференциальных уравнений Добавлены многократное численное интегрирование) а также численное дифференцирование Оптимизированы алгоритмы нахождения экстремумов Поддерживается арифметика интервалов

Осуществлен независимый от конкретной компьютерной платформы механизм ввода и вывода числовых данных без потери точности.

Мathernatica 3.0 позволяет включать в расчеты все известные элементарные функции, а также сотни специальных встроенных функций. Разумеется, пользователь программы может вводить и свои функции как для применения в течение одного сеанса работы так и для постоянного использования. В новой версии 3.0 добавлены интегралы Френеля интегральные гиперболические синус и косинус, обратная функция ошибок, гаммa и бета функции, дополнительная функция Вейерштрасса, эллиптические и родственные с ними функции, функции Матье. Введены числа и полиномы Фибоначчи.

Mathernatica позволяет строить двух и трехмерные графики различных типов в виде точек и линии на плоскости, поверхностей, а также контурные, градиентные (dencity plot), параметрические. Имеется большое количество опций оформления и настройки, например изменение подсветки, цвета, размеров и точки наблюдения. Mathematica выполняет построение графика в три этапа. На первом создается множество графических примитивов, на втором они преобразуются в независимое от вычислительной платформы описание на языке PostScript, а на третьем это описание переводится в графический формат для той системы, на которой установлена Mathematicа. Если первые два этапа осуществляет ядро программы, то последний — интерфейсный процессор. Mathematica позволяет также строить серии картинок, которые могут быть воспроизведены как анимация. Программа содержит функции, позволяющие создавать и воспроизводить различные звуки, а также воспринимает и может анализировать некоторые типы стандартных звуковых файлов.

После выполнения команды в рабочей тетради появляется картинка, представляющая собой график синусоид, входящих в аргумент команды, а звуковой файл (так же как и файл анимации) запоминается в документе. Это позволяет сразу после открытия документа воспроизвести их без повторного вычисления. В новой версии 3.0 программы заметно улучшено текстовое оформление графиков. Теперь заголовки и текст меток на графиках могут быть представлены с достаточно высоким полиграфическим качеством (правильное изображение математических символов). Возможно также включение в сам график форматированных текстовых строк. Ячейки рабочего документа теперь автоматически конвертируются в EPS, TIFF, GIF и другие графические форматы.

- основанный на операциях со списками, этот метод использует особенности универсального объекта программы — списка выражений, с которыми можно производить математические операции, как с алгебраическими выражениями, при этом заданные операции выполняются всеми элементами списка,

- основанный на операциях над строками (string-based),

- функциональною программирования (functional programming), позволяющий создавать сложные функции и последовательности вложенных функций;

- на базе правил преобразования выражений (rule-based);

В каждой конкретной программе пользователь может одновременно применять несколько методов или даже все перечисленные. Серьезным недостатком предыдущей версии программы было неэкономное использование памяти компьютера. В третьей версии программы типичные операции ядра осуществляются быстрее и с меньшим использованием памяти, чем во второй Для ускорения загрузки уменьшено количество первоначально загружаемых в память функций Введены новые мощные операторы символьного программирования и усовершенствованные операторы для манипулирования строками. Появилась возможность компилировать вычисляемые выражения и процедуры При этом скорость вычислений может быть сравнима со скоростью такой же процедуры, написанной на языке Си или Фортран, или даже выше.

Mathematica 3.0 содержит 11 стандартных дополнений, включающих подпрограммы (пакеты), значительно расширяющие функциональные возможности в таких областях, как алгебра, аналитические и численные расчеты, графика, дискретная математика, теория чисел и статистика. Стандартные дополнения могут загружаться по мере надобности. Для загрузки пакета используется соответствующее название, включающее имя дополнения и имя пакета из данного дополнения. Рассмотрим подробнее стандартные дополнения.

В это дополнение входят пакеты, позволяющие задавать различные алгебраические поля и оперировать в них, а также несколько пакетов, расширяющих функциональность программы при оперировании с полиномами и нахождении их корней. В новой версии оно пополнилось пакетами для решения некоторых типов алгебраических неравенств и симметричных полиномов и, кроме того, добавлена Гамильтонова алгебра кватернионов и элементы полей Пигуа.

Это дополнение содержит пакеты, позволяющие расширять возможности программы при вычислении интегралов, нахождении пределов, решении дифференциальных уравнений и задач линейной алгебры в различных системах координат, а также включает команды преобразования Фурье и Лапласа, обобщенные функции, вариационные методы. В новой версии оно пополнилось пакетом для нахождения полных интегралов и дифференциальных инвариантов нелинейных уравнений в частных производных.

Дополнение предлагает примерно 200 функций для проведения исследований в области комбинаторики и теории графов; вычислительную геометрию, которая содержит несколько геометрических функций для непараметрического анализа данных; пакеты для оперирования с функциями от целых чисел, в частности для решения рекуррентных уравнений, выполнения преобразований.

Дополнение включает 21 пакет. Оно значительно расширяет возможности программы при построении графиков и анимации. Введены новые типы: логарифмические графики, графики тел вращения, полярные, контурные, матричные графики, трехмерные параметрические, двух- и трехмерные графики векторных полей, графики неявно заданных функций и др. Появилась возможность отображать ортогональные проекции трехмерных графических объектов на координатные плоскости. Добавлены также функции для графического представления комплексных функций.

Геометрическое дополнение содержит пакеты, включающие функции для задания параметров правильных многоугольников и многогранников, а также функции, обеспечивающие вращение на плоскости и в пространстве.

В это дополнение входят функции для создания ортогональных векторных базисов, решения матричных уравнений, разложения матриц и выполнения других операций с матрицами. Оно включает пакеты Cholcsky, GaussianElimmatlon, MatrixManipulation, Orthogonalizaltion, Tridiagonal.

Функции, относящиеся к теории чисел, широко представлены в ядре программы Mathematica, например PrimePi, EulerPhi, MoebiusMu и DivisorSigma. Дополнение теории чисел расширяет этот список функций. В нее включены пакеты для доказательства простоты чисел, разложения целых чисел на множители. Имеются функции для аппроксимации действительных чисел рациональными и полиномов с действительными корнями полиномами с целыми коэффициентами. Пользуясь дополнениями, можно найти разложение действительного числа в бесконечную дробь или произвольное разложение действительного числа разбить на непериодическую и периодическую части. Поддерживаются также такие функции теории чисел, как Ramujan и Siegel.

В новой версии появились возможности для нахождения базисных элементов для произвольных алгебраических расширений рациональных чисел.

Это дополнение расширяет список встроенных функций программы Mathematica для приближенных численных расчетов. Оно содержит средства подгонки функциями (полиномом, сплайнами, тригонометрическими), численные версии некоторых аналитических функций ядра (ND, NLiunit, NResldue, NSencs), функции численного интегрирования (CauchyPrincipalValue, Listintegrate, IntegrateInterpolationFunction), аппроксимации отношением полиномов, поддержки численного решения дифференциальных уравнений (BesscIZeros, Butcher, Order-Star), а также альтернативный способ нахождения корней (FindRout) с использованием методов интервалов или интерполяции. В последнюю версию введены пакеты для численного нахождения вычетов и разложений комплексных функций.

Это дополнение включает методы статистической обработки данных. В нем содержатся функции известных непрерывных и дискретных статистических распределений. В новую версию добавлены пакеты подгонки и сглаживания данных, классической и робастной описательной статистики, линейной и нелинейной регрессии с диагностикой.

Утилиты и разное

Дополнение "утилиты" содержит команды для контроля времени вычислений, оптимизации использования памяти и др. К "разному" относятся те функции, которые трудно классифицировать, в частности функции, расширяющие аудиовозможности системы, — модуляция звуковых волн и музыкальные гаммы. В "разное" входят также календарные данные, физические постоянные, единицы измерения физических величин, свойства химических элементов и, кроме того, различные географические данные и даже функции для построения географических карт.

Пакеты и отдельные функции из них могут загружаться по мере необходимости. Если же какой-либо пакет часто используется, то его можно инициализировать при загрузке ядра программы.

В новой версии доступна полная документация по стандартным дополнениям в интерактивном режиме.

Для программы Mathematica помимо стандартных дополнений разработано большое количество профессиональных приложений - пакетов,. Расширяющих возможности программы в специальных областях. Библиотека приложений в настоящее время содержит 23 различных пакета, из которых 18 разработано корпорацией, а остальные - другими разработчиками. Причем эта библиотека очень быстро пополняется.

Перечислим только некоторые из профессиональных приложений, демонстрирующих их разнообразие: Structural Mechanics, Experimental Data Analyst, Time Series, Finance Essentials, Fuzzy logic и т.д.

Нажмите, чтобы узнать подробности

Цель: исследование функций математического пакета Wolfram Mathematica для решения систем линейных уравнений графическим способом.

Задачи:

  1. изучить математический пакет Wolfram Mathematica и его онлайн версию Wolfram Alpha,
  2. рассмотреть графический способ решения систем линейных уравнений, изучаемый в школе,
  3. решить 10 систем линейных уравнений с помощью Wolfram Alpha и изучить полученный результат.

Муниципальное бюджетное общеобразовательное учреждение

Исследование возможностей математического пакета Wolfram Mathematica для графического способа решения систем уравнений

Зайцев Сергей Антонович

Платошина Екатерина Александровна

1 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ 3

1.1 Математический пакет Wolfram Mathematica 5

1.2 Wolfram Alpha 7

2 РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ 9

2.1 Графический способ решения систем уравнений 9

2.2 Решение систем линейных уравнений с помощью Wolfram Alpha 10

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 18

В современном мире, когда информационные и компьютерные технологии развиваются с огромной скоростью, человек может себе позволить отдохнуть от нудных и однообразных вычислительных работ, перепоручив этим заниматься компьютеру, который не только облегчит работу человеку, но и ускорит ее.

Современные компьютеры могут выполнять миллионы операций в минуту, следовательно, скорость вычислений у них огромная. Задачу, которую человек будет решать несколько минут, машина в состоянии решить всего за пару секунд. Конечно, при условии, что компьютер прежде будет запрограммирован на решение данной задачи.

Это означает, что человеку достаточно один раз записать алгоритм для решения какого-либо типа задач, после чего компьютер решит любую задачу данного типа, человеку останется только вносить нужные исходные данные.

Программ, способных выполнять вычисления по заданной человеком программе, множество, но сейчас наибольшую популярность в научном мире набирает математический пакет Wolfram Mathematica или ее онлайн версия Wolfram Alpha. Причем вторая доступна любому: она бесплатна и гораздо более проста, чем первая.

В данном проекте исследуются функции этих программ, а именно функция решения систем линейных уравнений.

Цель: исследование функций математического пакета Wolfram Mathematica для решения систем линейных уравнений графическим способом.

изучить математический пакет Wolfram Mathematica и его онлайн версию Wolfram Alpha,

рассмотреть графический способ решения систем линейных уравнений, изучаемый в школе,

решить 10 систем линейных уравнений с помощью Wolfram Alpha и изучить полученный результат.

1 Программное обеспечение 1.1 Математический пакет Wolfram Mathematica

Mathematica — система компьютерной алгебры (обычно называется Математика, программный пакет Математика), широко используемая в научных, инженерных, математических и компьютерных областях. Изначально система была разработана Стивеном Вольфрамом, впоследствии — компанией Wolfram Research.

На протяжении трёх десятилетий система Mathematica определяет передовой край технических вычислений и обеспечивает основную среду для проведения расчётов для миллионов изобретателей, педагогов, студентов и других пользователей по всему миру.

Благодаря энергичному развитию и стабильному видению на протяжении трёх десятилетий, система Mathematica не имеет себе равных в большом диапазоне измерений и уникальна в своей поддержке современной среды и организации рабочего процесса для технических расчётов.

Система Mathematica имеет в наличии почти 5000 встроенных функций, покрывающих все области технических расчётов—все они тщательно интегрированны для идеальной совместной работы, и все они включены в полностью интегрированную систему Mathematica.

Полагаясь на три десятилетия наработок, система Mathematica превосходит во всех областях технических расчётов, включая нейронные сети, машинное обучение, обработку изображений, геометрию, теорию анализа и обработки данных, визуализацию и многое другое.

Система Mathematica строится на беспрецендентно мощных алгоритмах всех предметных областей; многие из них были созданы компанией Wolfram, используя уникальные методы развития и уникальные возможности языка Wolfram Language.

Система Mathematica построена с целью предоставления возможностей промышленной мощности, с крепкими эффективными алгоритмами во всех областях, способными решать крупномасштабные задачи с параллелизмом, вычислениями на графических процессорах и многим другим.

Система Mathematica использует свои алгоритмические возможности и тщательное проектирование языка Wolfram Language для создания уникальной в использовании системы, имеющей предиктивные рекомендации, поддержку ввода на естественном языке и многое другое.

Система Mathematica использует Wolfram Notebook Interface, который позволяет организовать всё, что Вы делаете, в богатый содержанием документ, который включает текст, выполнимый код, динамичную графику, пользовательский интерфейс и многое другое.

Благодаря когерентному дизайну и использованию интуитивных названий функций, состоящих из полных английских слов, язык Wolfram Language исключительно просто читать, использовать и изучать.

Благодаря утончённой вычислительной эстетике и отмеченному наградами дизайну, система Mathematica представляет Ваши результаты в прекрасном виде, мгновенно создавая передовые интерактивные визуализации и готовые к публикации документы.

Начните с практически любого проекта с помощью более 150000 примеров из Documentation Center и более 10000 демонстраций с открытым кодом в Wolfram Demonstrations Project и большого количества других ресурсов.

Система Mathematica имеет доступ к широкой Wolfram Knowledgebase, которая включает актуальные реальные данные из тысяч предметных областей.

1.2 Wolfram Alpha

История проекта началась в 1988 году, когда Стивен Вольфрам, британский математик, написал пять миллионов строчек алгоритма Wolfram|Alpha на придуманном им самим языке Mathematica. Прошло 20 лет, прежде чем на его основе была создана целая система, способная систематизировать все, что поддается систематизации, и находить точные ответы на миллионы фактических вопросов.

Внешне Wolfram|Alpha напоминает обычный поисковик, но, в отличие от похожих сервисов, выдает структурированные ответы, а не набор ссылок, где эти ответы еще придется поискать. С помощью сервиса можно, к примеру, составлять таблицы по характеристикам минералов или населению и экономике разных стран. Всем этим можно пользоваться прямо на уроках: у Wolfram|Alpha есть мобильные приложения для iOS и Android.

В отличие от Википедии, которую иные преподаватели просто запрещают упоминать, на Wolfram|Alpha можно безбоязненно ссылаться в научных работах. Структурированную базу знаний на протяжении нескольких лет формировали профессиональные математики, физики, историки и биологи, основываясь на авторитетных источниках. Нередко в блоге компании можно увидеть объявления, например, о том, что в систему внесли полное собрание сочинений Шекспира или возможность поворачивать 3D модели стереометрических фигур.

Если запрос касается персоналий, информация представляется в таблице — в нее можно внести сразу несколько имен для сравнения, узнать, кто был современником Байрона или какой философ XIX века дольше всех прожил.

Впрочем, случаются и забавные просчеты. Так, некоторое время Wolfram|Alpha считал президентом России Аслана Масхадова, а лучшим смартфоном по всем показателям оказывался один из аппаратов Nokia.

Запустив невероятно сложную машину знаний, создатели Wolfram|Alpha в какой-то момент поняли, что даже они сами не в состоянии быть в курсе всех ее возможностей. Использованию Wolfram|Alpha в образовании посвящен целый раздел. На уроках истории ученики ищут, какую сумму в 1950 году составляли современные $100, каким был уровень инфляции в разное время и что можно было купить, а на занятии, посвященном землетрясениям, предлагается выяснить, в какой части света чаще всего происходят землетрясения и какова вероятность их возникновения в том районе, где стоит школа. Учителей просят присылать планы занятий, на которых используется сервис, и периодически устраивают на эту тему конкурсы.

А в начале учебного года в блоге проекта опубликовали подборку из 100 скриншотов, иллюстрирующих возможности сервиса на примере синусов.

2 Решение систем линейных уравнений 2.1 Графический способ решения систем уравнений

Способ заключается в построении графика каждого уравнения, входящего в данную систему, в одной координатной плоскости и нахождении точки пересечения этих графиков. Координаты этой точки (x; y) и будут являться решением данной системы уравнений.

Если прямые, являющиеся графиками уравнений системы, пересекаются, то система уравнений имеет единственное решение.

Если прямые, являющиеся графиками уравнений системы, параллельны, то система уравнений не имеет решений.

Если прямые, являющиеся графиками уравнений системы, совпадают, то система уравнений имеет бесконечное множество решений.

На рисунке 1 показан пример графического способа решения системы линейных уравнений.


Рисунок 1 – Графический способ решения системы линейных уравнений

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.





Результат:



Рисунок 2 – Графическое решение системы уравнений 


2. 

Команда для решения системы уравнений: solve x+5y =7, 3x−2y=4


Результат:



Рисунок 3 – Графическое решение системы уравнений 




Команда для решения системы уравнений: solve 3x+2y=1, y-4x=-16


Результат:



Рисунок 4 – Графическое решение системы уравнений 




Команда для решения системы уравнений: solve x=2+y, 3x-2y=9


Результат:



Рисунок 5 – Графическое решение системы уравнений 




Команда для решения системы уравнений: solve y=11-2x, 5x-4y=8


Результат:



Рисунок 6 – Графическое решение системы уравнений 




Команда для решения системы уравнений: solve x=3+2y, 5x+y=4


Результат:



Рисунок 7 – Графическое решение системы уравнений 

Команда для решения системы уравнений: solve 3x-y=5, 5x+2y=23

Рисунок 8 – Графическое решение системы уравнений 

Команда для решения системы уравнений: solve 5x+6y=13, 7x+18y=-1

Рисунок 9 – Графическое решение системы уравнений 

Команда для решения системы уравнений: solve 2x+y=8, 3x+4y=7

Рисунок 10 – Графическое решение системы уравнений 

Команда для решения системы уравнений: solve 2x+5y=15, 3x+8y=-1

Рисунок 11 – Графическое решение системы уравнений 

В современном мире сверхбыстрого развития информационных технологий все больше становится важна скорость вычислений. Огромная часть из них, ранее выполнявшаяся исключительно человеком, теперь может выполняться практически без его участия. Достаточно только написать однажды программу, а затем можно изменять лишь исходные данные – машина сама найдет решение той или иной типовой задачи.

Программы Wolfram Mathematica и ее онлайн версия Wolfram Alpha позволяют производить достаточно сложные вычисления с огромной точностью, без ошибки, которую может совершить человек.

В данном проекте были исследованы некоторые функции языка Wolfram, а именно – решение систем линейных уравнений. Достаточно всего одной команды, чтобы программа нашла ответ за считанные секунды.

С помощью онлайн версии математического пакета Wolfram Mathematica - Wolfram Alpha – было решено 10 систем линейных уравнений, и полученные результаты совпадают с графическим способом решения этих уравнений вручную.

Читайте также: