Поверхности второго порядка реферат

Обновлено: 02.07.2024

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:
(1)

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h , где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями

Исследуем уравнения (2) при различных значениях h .

  1. Если > c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.
  2. Если , то и линия (2) вырождается в точки (0; 0; + c ) и (0; 0; - c ) (плоскости касаются эллипсоида).
  3. Если

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz .

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.

2. Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

3. Двуполостный гиперболоид.

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями

из которых следует, что при >c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются.

При уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности).

При уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

4. Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию

распадающуюся на две пересекающиеся прямые

Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые

Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Поверхности второго порядка

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:

Исследуем уравнения (2) при различных значениях h.

Если и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c) (плоскости

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями и и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.

2. Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании (5)

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

и или . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h 0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz + 2а14 x + 2а24у+2а34z +а44 = 0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

Уравнение (1) мы будем называть общим уравнением поверхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы координат.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 + a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 • а22 • a33 , то коэффициенты a11 ,а22 , a33 удовлетворяют условию :


Возможны следующие случаи :

1. Коэффициенты a11 ,а22 , a33 одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a11 ,а22 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллипсоида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

2. Из четырех коэффициентов a11 ,а22 , a33 , а44 два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 0, а44 o, а22 > 0, a33 Эллипсоид .

Поверхности второго порядка

2. Гиперболоиды.

1. Однополостный гиперболоид. Обратимся к каноническому уравнению (4) однополостного гиперболоида

Из уравнения (4) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

2. Двуполостный гиперболоид.

Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные плоскости являются его плоскостями симметрии, а начало координат — его центром симметрии.

3. Параболоиды.

1. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.

Поверхности второго порядка


2. Гиперболический параболоид. Из канонического уравнения (15) гиперболического параболоида вытекает, что плоскости Oxz и Оуz являются плоскостями симметрии. Ось Oz называется осью гиперболического пaраболоида.

Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы

В теории поверхностей второго порядка классифицируют и изучают различные виды поверхностей. Методом их изучения является так называемый метод сечения: исследуются сечения поверхности плоскостями, параллельными координатным или самими координатными плоскостями, и по виду сечений делается вывод о форме поверхности.

Содержание

Общие сведения……………………………………………………………………..3
1.Конические поверхности……………………………………………………. 3
1.1. Эллипсоид………………………………………………………………………3
1.2. Однополостный гиперболоид …………………………………………………5
1.3. Двуполостный гиперболоид ………………………………………………. 7
1.4 Конус второго порядка………………………………………………………. 8
1.5. Эллиптический параболоид……………………………………………………9
1.6. Гиперболический параболоид………………………………………………. 11
2. Цилиндрические поверхности…………………………………………………..12
2.1.Эллиптический цилиндр……………………………………………………… .13
2.2. Гиперболический цилиндр…………………………………………………….14
2.3. Параболический цилиндр………………………………………………………14
2.4. Пара пересекающихся плоскостей…………………………………………….15
2.5 Пара параллельных плоскостей………………………………………………. 15
2.6. Пара мнимых параллельных плоскостей………………………………………15
2.7. Пара мнимых пересекающихся плоскостей…………………………………. 15
2.8. Совпадающие плоскости………………………………………………………. 15
2.9. Мнимый эллипсоид………………………………………………………………16
2.10. Мнимый конус…………………………………………………………………. 16
2.11. Мнимый эллиптический цилиндр………………………………………………16
Список литературы…………………………………………………………………….17

Вложенные файлы: 1 файл

реферат матем.docx

1.Конические поверхности………………………………………………… …. 3

1.2. Однополостный гиперболоид ……………………………………………… …5

1.3. Двуполостный гиперболоид ……………………………………………… . 7

1.4 Конус второго порядка……………………………………… ………………. 8

1.5. Эллиптический параболоид…………………………………………………… 9

1.6. Гиперболический параболоид……………………………………………….. .11

2. Цилиндрические поверхности………………………………………………… ..12

2.2. Гиперболический цилиндр…………………………………………………….14

2.4. Пара пересекающихся плоскостей…………… ……………………………….15

2.5 Пара параллельных плоскостей……………………………………………….. .15

2.6. Пара мнимых параллельных плоскостей………………………………………15

2.7. Пара мнимых пересекающихся плоскостей…………………………………. 15

2.8. Совпадающие плоскости……………………………………………………… . 15

2.11. Мнимый эллиптический цилиндр……………………… ………………………16

Поверхностью второго порядка называется множество всех точек пространства, координаты которых удовлетворяют алгебраическому уравнению второй степени

В теории поверхностей второго порядка классифицируют и изучают различные виды поверхностей. Методом их изучения является так называемый метод сечения: исследуются сечения поверхности плоскостями, параллельными координатным или самими координатными плоскостями, и по виду сечений делается вывод о форме поверхности.

Существует семнадцать видов поверхностей второго порядка. Идея классификации поверхностей основана на приведении их уравнений к каноническому виду в результате преобразования системы координат в каноническую.

Рассмотрим подробнее шесть видов поверхностей второго порядка: эллипсоид, однополостный гиперболоид, двуполостный гиперболоид, конус, эллиптический параболоид и гиперболический параболоид.

Эллипсоидом (рис.1) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением

В частности, если a = b = c, то получаем сферу x 2 + y 2 + z 2 = a 2 с центром в начале координат и радиусом a. Числа a, b, c называются полуосями эллипсоида. Если все они различны, то эллипсоид называется трехосным. Точки пересечения эллипсоида с осями координат: A1(−a; 0; 0), A2(a; 0; 0), B1(0; −b; 0), B2(0; b; 0), C1(0; 0; −c), C2(0; 0; c) называются его вершинами.

Оси канонической системы координат являются осями симметрии эллипсоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии.

Рассмотрим сечение эллипсоида плоскостью xOy: z = 0. Оно задается системой уравнений

и представляет собой эллипс с каноническим уравнением

Рассматривая аналогично сечения эллипсоида координатными плоскостями xOz: y = 0 и yOz: x = 0, а также плоскостями, им параллельными (x = h1, y = h2, z = h3), получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при h1 a, h2 > b, h3 > c).

Однополостным гиперболоидом (Рис.2) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением

Оси канонической системы координат являются осями симметрии однополостного гиперболоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии. Оси абсцисс и ординат пересекают однополостный гиперболоид в точках A1(−a; 0; 0), A2(a; 0; 0), B1(0; −b; 0), B2(0; b; 0), которые называются его вершинами. Ось аппликат Oz, не имеющая с гиперболоидом общих действительных точек, называется его мнимой осью.

Если рассмотреть сечения однополостного гиперболоида (16) плоскостью xOy: z = 0 или плоскостями, параллельными ей (z = h3), то в сечении получаются эллипсы. Эллипс называется горловым.

Теперь возьмем сечение однополостного гиперболоида плоскостью xOz: y = 0. Оно задается системой уравнений

и представляет собой гиперболу с действительной осью Ox:

Рассматривая аналогично сечения гиперболоида плоскостью yOz: x = 0, а также плоскостями, параллельными плоскостям xOz: y = h2 и yOz: x = h1, получаем кривые второго порядка гиперболического типа. Это – либо гипербола (при |h1| ≠ a, | h2| ≠ b), либо пара пересекающихся прямых (при |h1| = a, | h2| = b). Например, сечение однополостного гиперболоида плоскостью x = a задается системой уравнений

и представляет собой пару пересекающихся прямых с каноническим уравнением

Двуполостным гиперболоидом (Рис. 3) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением

Ось аппликат Oz канонической системы координат является осью симметрии двуполостного гиперболоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии. Ось аппликат пересекает гиперболоид в точках C1(0; 0; −c), C2(0; 0; c) которые называются его вершинами. Сама ось аппликат называется действительной осью гиперболоида.

Если рассмотреть сечение двуполостного гиперболоида координатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются гиперболы.

Рассматривая аналогично сечения гиперболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при |h| > c), либо пара мнимых пересекающихся прямых, т.е. точка (при |h = c |), либо мнимый эллипс (при |h| c сечение двуполостного гиперболоида плоскостью z = h задается системой уравнений

откуда при подстановке второго уравнения в первое последовательно получаем:

и каноническое уравнение эллипса

1.4. Конус второго порядка

Конус второго порядка (Рис. 4) в канонической системе координат имеет вид

Эта поверхность второго порядка состоит из прямых, пересекающихся в одной точке – вершине конуса. Действительно, если точка с координатами (x0; y0; z0) удовлетворяет уравнению конуса, то ему удовлетворяют также точки с координатами

при любом значении параметра t. Записанные уравнения являются параметрическими уравнениями прямой, проходящей через начало координат и точку (x0; y0; z0). Конус состоит из таких прямых, называемых образующими конуса. Ось аппликат канонической системы координат называется его осью.

Оказывается, плоскость, проходящая через вершину конуса, либо не пересекает его в другой точке, либо пересекает по двум образующим, либо касается вдоль образующей.

Любая плоскость, параллельная этим плоскостям, в первом случае пересекает конус по эллипсу, во втором случае – пересекает по гиперболе, в третьем случае – по параболе. Поэтому эллипс, гиперболу, параболу часто называют коническими сечениями.

1.5. Эллиптический параболоид

Эллиптическим параболоидом (Рис. 5) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением

Ось аппликат Oz канонической системы координат является единственной осью симметрии эллиптического параболоида, плоскости xOz и yOz − плоскостями симметрии. Ось аппликат, называемая осью эллиптического параболоида, пересекает его в начале координат, эта точка называется вершиной параболоида.

Если рассмотреть сечение эллиптического параболоида координатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются параболы. Например, сечение эллиптического параболоида плоскостью y = h2 задается системой уравнений

откуда при подстановке второго уравнения в первое последовательно получаем:

и уравнение параболы

Получаемые таким образом параболы лежат в параллельных плоскостях, отличаясь лишь положением в пространстве.

Рассматривая аналогично сечения эллиптического параболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при h > 0), либо пара мнимых пересекающихся прямых, т.е. точка (при h = 0), либо мнимый эллипс (при h .

Ось аппликат Oz канонической системы координат является единственной осью симметрии гиперболического параболоида, плоскости xOz и yOz − плоскостями симметрии. Ось аппликат, называемая осью гиперболического параболоида, пересекает его в начале координат; эта точка называется вершиной параболоида.

Если рассмотреть сечение гиперболического параболоида оординатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются параболы. Например, сечение гиперболического параболоида плоскостью x = h1 задается системой уравнений

откуда при подстановке второго уравнения в первое последовательно получаем: и уравнение параболы .

Рассматривая аналогично сечения гиперболического параболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка гиперболического типа. Это либо гипербола (при |h| > 0), либо пара пересекающихся прямых (при h = 0). Таким образом, по форме гиперболический параболоид напоминает седло, эту поверхность часто называют седловой.

2. Цилиндрические поверхности

Остальные одиннадцать видов поверхностей относятся к классам цилиндриче ских поверхностей (эллиптический, гиперболический и параболический цилиндры); пар плоскостей (пересекающихся, параллельных и совпавших) и мнимых поверхностей (мнимый эллипсоид, мнимый конус, мнимый эллиптический цилиндр, пары мнимых пересекающихся и мнимых параллельных плоскостей).

Цилиндрической поверхностью называется поверхность, которая в некоторой декартовой системе координат определяется уравнением, в котором не фигурирует одна из переменных:

F(x, y) = 0, F(x, z) = 0 или F(y,z)

Свойство цилиндрических поверхностей.

Если некоторая точка M0(x0, y0, z0) принадлежит цилиндрической поверхности, описываемой уравнением F(x, y) = 0 , то все точкипрямой, проходящей через эту точку параллельно оси OZ , также принадлежат цилиндрической поверхности. Такие прямые называются образующими цилиндрической поверхности, а кривая, описываемая уравнением F(x, y) = 0 и получающаяся в сечении любой плоскостью z = h , называется направляющей.

Читайте также: