Реферат углеродистые конструкционные стали

Обновлено: 05.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Сталь различных способов производства

В зависимости от способа производства стали отличаются по содержанию примесей, чем и обусловлено различие в их свойствах.

Сталь подразделяют на бессемеровскую, мартеновскую, кислородно-конвертерную и электросталь.

Самый прогрессивный способ получения стали – конвертерный (продолжительность плавки – 30-60 мин.).

Длительность мартеновской плавки до 11 часов.

Сталь получают из чугуна, содержащего большое количество Mn, P, S, C, Si.

При производстве стали примеси удаляют, окисляя их и переводя в шлак, снижают содержание углерода.

Большое количество окислов FеО в стали ухудшают ее качество. Для снижения количества окислов (т.е. содержания кислорода) сталь раскисляют, путем добавления ферромарганца – FeMn, ферросилиция – FeSi, а также Al, Ti.

Эти раскислители имеют сродство к кислороду больше, чем железо.

В зависимости от раскисления стали делят на:

спокойную сталь – раскисляют FeMn, FeSi, Al или Ti. Обозначают сп.

кипящую сталь – раскислена только FеMn. Обозначают кп.

полуспокойную сталь – раскислена FеMn и Al, т.е. характеризуется промежуточным раскислением. Обозначают пс.

Стали отличаются по химическому составу в зависимости от раскисления:

сп – 0,14 – 0,3% Si, ~ 0,002% О2;

пс – 0,05 – 0,10% Si, ~ 0,01% О2;

Качество сталей определяется содержанием в них вредных примесей: серы и фосфора.

Конструкционные стали изготавливают обыкновенного качества и качественными; инструментальные стали – качественными и высококачественными.

3. Стали обыкновенного качества

Данные стали в процессе выплавки меньше очищаются от вредных примесей и содержат больше S и Р, большое количество неметаллических включений, значительно развита ликвация. Содержание S до 0,05%; Р до 0,04%.

Маркируются: Cт0, Cт 1, Cт2, Cт3, Cт4, Cт5, Cт6.

Все эти стали по структуре доэвтектоидные – 0,06-0,49%С.

Указание способа раскисления:

Cт 1 пс Cт 3 пс

Cт 1 сп Cт 3 сп

Начиная со стали 4 выпускают только стали сп и пс: Cт6сп, Cт6пс.

Каждая марка стали выполняется в 14 вариантах, которые гарантируют определенные механические, химические свойства (ув, ут, KCV, д, содержание Р, S, Mn, C…).

Рассмотрим в качестве примера сталь – Cт3сп4.

Стали 1-ой категории имеют гарантию по механическим свойствам (предел текучести (ут, МПа), временное сопротивление (ув, МПа), относительное удлинение (д, %)).

Стали 2-ой категории имеют гарантию по механическим свойствам и химическому составу.

Стали 3-й категории – по механическим свойствам, химическому составу и ударной вязкости при +20 0 С.

Стали 4-ой категории – по механическим свойствам, химическому составу и ударной вязкости при -20 0 С.

Стали 5-ой категории – по механическим свойствам, химическому составу, ударной вязкости при -20 0 С и после старения.

Таблица № 1 Состав сталей и механические свойства сталей обыкновенного качества (ГОСТ 380-88)

Содержание

Введение 3
Влияние углерода и постоянных примесей на свойства стали 4
Способы производства 7
Классификация углеродистых сталей 10
Стали обыкновенного качества
11
Качественные конструкционные углеродистые стали
13
Инструментальные качественные углероды
15
Автоматные стали (конструкционные)
16
Заключение 17
Список литературы

Работа содержит 1 файл

Реферат.docx

Наукой, устанавливающей связь между составом, структурой и свойствами металлов и сплавов и изучающей закономерности их изменений при тепловых, химических, механических, электромагнитных и радиоактивных воздействиях называется металловедением. Все металлы и сплавы принято делить на две группы. Железо и сплавы на его основе (сталь, чугун) называются черными металлами, а остальные металлы и их сплавы – цветными. Наибольшее применение нашли черные металлы.

В конце XIX и начале XX века основными конструктивными материалами являлись металлические материалы (стали, чугуны, сплавы на основе алюминия и меди). В последние десятилетия материаловедческая наука была связана не только с совершенствованием традиционных металлических материалов, но и с созданием принципиально новых классов конструкционных материалов.

Основной продукцией черной металлургии является сталь, причем приблизительно 90% изготавливается углеродистой стали и только 10% легированной. Таким образом, основным металлическим материалом промышленности является углеродистая сталь. Это связано с тем, что они обеспечивают удовлетворительное сочетание эксплуатационных свойств с хорошей технологичностью, т.е. относительно малыми затратами при обработке давлением, резанием и сварке. Кроме того, эти стали относительно дешевле.

Влияние углерода и постоянных примесей на свойства стали

Углеродистая сталь промышленного производства – сложный по химическому составу сплав. Кроме основы – железа, содержание которого может колебаться в пределах 97,0 – 99,5%, в ней имеется много элементов (примесей), наличие которых обусловлено технологическими особенностями производства (марганец, кремний), невозможностью полного удаления их из металла (сера, фосфор, кислород, азот, водород), а также случайными обстоятельствами (хром, никель, медь и др.). В зависимости от способа выплавки стали разных производств различаются главным образом по содержанию этих примесей.

Углерод же вводится в простую углеродистую сталь специально. Он сильно влияет на свойство стали даже при незначительном изменении его содержания. С увеличением содержания углерода изменяется структура стали. Сталь, содержащая 0,8% углерода, состоит из одного перлита; в стали, содержащей больше 0,8% углерода, кроме перлита, имеется вторичный цементит; если содержание углерода меньше 0,8%, то структура стали состоит из феррита и перлита. Увеличение содержания углерода в стали приводит к повышению прочности и понижению пластичности. Существенно и влияние углерода на вязкие свойства, увеличение содержания углерода повышает порог хладноломкости и уменьшает ударную вязкость в вязкой области (т.е. при температурах выше порога хладноломкости).

Марганец, кремний, фосфор, сера, водород, азот, кислород – постоянные примеси в том или ином количестве присутствующие в технических сортах стали и влияющие на ее свойства.

Марганец вводится в любую сталь для раскисления, т.е. для устранения вредных примесей закиси железа. Он также устраняет вредные сернистые соединения железа, растворяется в феррите и цементите. Марганец повышает прочность в горячекатаных изделиях. Т.к. содержание марганца во всех сталях примерно одинаково, его влияние на сталь разного состава остается примерно постоянным.

Кремний, как и марганец, раскисляет сталь. Он полностью растворяется в феррите, кроме той части, которая в виде окиси кремния не успела всплыть в шлак и осталась в металле в виде силикатных включений.

Руды железа, а также топливо и флюсы содержат какое-то количество фосфора, которое в процессе производства чугуна остается в нем в той или иной степени и затем переходит в сталь. При выплавке стали в основных мартеновских печах из металла удаляется большая часть фосфора. Сталь, выплавляемая в основной мартеновской печи, содержит немного фосфора (0,02–0,04%), а в электропечи менее 0,02%. Более высокое содержание фосфора повышает температуру перехода в хрупкое состояние, вызывает хладноломкость стали. Но в отдельных случаях фосфор желателен, т.к. он облегчает обрабатываемость стали режущим инструментом.

Сера попадает в металл из руд, а также из печных газов – продукт горения топлива. В основном мартеновском процессе и при выплавке стали в основной электронной печи сера удаляется из стали. Обычно содержание серы для высококачественной стали не должно превышать 0,02–0,03%. Для стали обычного качества допускают более высокое содержание серы: 0,03–0,04%. Обработкой жидкого металла синтетическими шлаками можно уменьшить содержание серы до 0,005%. Сера нерастворима в железе и любое ее количество образует с железом сернистое соединение – сульфид железа FeS, который входит в состав эвтектики, образующейся при 988˚C. Наличие легкоплавкой и хрупкой эвтектики, расположенной по границам зерен, делает сталь хрупкой при 800˚C и выше, т.е. в районе температур красного каления. Серу считают вредной примесью в стали, но, как и фосфор, она облегчает обрабатываемость резаньем.

Водород, азот и кислород содержатся в стали в небольших количествах, зависящих от способа производства. Содержания этих элементов в стали определяют, расплавляя в вакууме пробу металла и измеряя количество газов, выделившихся из жидкого металла (Таблица № 1).


Газ
Содержание газов, %, при способах производства стали
В электропечах Мартеновский

Если водорода в металле много, то это может привести к чрезвычайно опасным внутренним надрывам в металле – флокенам. Образованные азотом и кислородом хрупкие неметаллические включения ухудшают свойства металла. Т.к. содержание этих газов невелико, то их влияние на многие другие свойства незаметно. Однако они сильно влияют на вязкие свойства, уменьшают ударную вязкость и резко повышают порог хладноломкости.

Способы производства

В металлургии применяют различные способы производства стали. Как известно сталь производят (выплавляют) в различных печах. В соответствие с этим сталь подразделяют на бессемеровскую, мартеновскую, кислородно-конверторную и электросталь. Самый прогрессивный способ получения стали – конверторный (продолжительность плавки – 30–60 мин.). Длительность мартеновской же плавки до 11 часов.

В бессемеровском конверторе жидкий чугун продувают воздухом, кислород воздуха соединяется с примесями в чугуне, в том числе с углеродом, и чугун превращается в сталь. Этот способ очень производителен, но при нем сера и фосфор не удаляются в достаточной степени (Таблица № 2), а металл насыщается газами, особенно азотом. Бессемеровский металл вследствие повышенного содержания газа, в первую очередь азота, отличается от мартеновской большей прочностью, но меньшей пластичностью, склонностью к старению, большей загрязненностью неметаллическими включениями.

Кислородно-конверторный способ отличается тем, что вместо воздуха используют технически чистый кислород с очень малым загрязнением азотом. В результате этого содержание азота в металле будет низким. Такой металл называется конверторным, и по свойствам он практически не отличается от мартеновского.

При конверторном и мартеновском способах производства подбором соответствующих шлаков и режимов ведения плавки можно удалить в значительной степени серу и частично фосфор. В зависимости от состава шлаков (основных (CaO и MgO) и кислых (SiO2) окислов) футеровка печи должна быть или основной (магнезит или хромомагнезит) или кислой (динас), чтобы избежать реакции между футеровкой и шлаком. Если шлак имеет основную реакцию, т.е. в избытке имеются окислы CaO и MgO, то он удаляет из металла большую часть фосфора и часть серы. Значит, при сравнительно не очень чистой шихте металл в основной мартеновской печи получается достаточно чистым по сере и фосфору, хотя и более насыщенным кислородом. При кислом процессе в шлаке имеется избыток кремнистая кислота SiO2, при наличии которой сера и фосфор из металла не удаляются, но насыщение металла кислородом происходит в меньшей степени. Поэтому для кислого мартеновского процесса требуются чистые по сере и фосфору исходные материалы, и если это обеспечено, то металл получается лучшего качества, т.к. содержит меньше кислорода.

Удаление из металлов серы, фосфора и кислорода достигается в наибольшей степени в электропечах (дуговых или индукционных). Будучи более дорогой, электросталь является и более качественной. Т.к. практически полное отсутствие газов и связанное с этим улучшение свойств достигаются при плавке в электрических индукционных печах в вакууме, то стали и сплавы для наиболее ответственных назначений производят этим способом. Установки для вакуум-плавки очень сложны. Практически такие же результаты по содержанию газов и наличию неметаллических включений имеет сталь, выплавленная в обычных условиях, но затем помещенная в вакуум. Этот способ дешевле, чем выплавка в вакууме.

Конструкционными называют материалы, предназначенные для изготовления деталей машин, приборов, инженерных конструкций, подвергающиеся механическим нагрузкам.
Конструкционная сталь должна иметь и хорошие технологические свойства: хорошо обрабатываться давлением и резанием, быть не склонной к шлифовочным трещинам, обладать высокой прокаливаемостью и малой склонностью к обезуглероживанию, деформациям и трещинообразованию при закалке.

Содержание

Введение…………………………………………………………………………3
1. Строение и свойства конструкционных сталей……………………………4
2. Классификация конструкционных сталей………………………………….6
3. Конструкционные легированные стали…………………………………….8
3.1 Конструкционные низколегированные стали ……………………………8
3.2 Конструкционные цементуемые легированные стали …………………..8
4. Конструкционные машиностроительные стали и плавы специального назначения ……………………………………………………………………. 12
4.1 Мартенситностареющие высокопрочные стали……………………….…12
4.2 Коррозионностойкие стали ………………………………………………..13
4.3 Жаростойкие стали ………………………………………………………. 14
4.4 Криогенные машиностроительные стали и сплавы……………………. 16
Заключение……………………………………………………………………. 17
Список литературы………………………………………………………….….18

Прикрепленные файлы: 1 файл

Реферат (практика).docx

1. Строение и свойства конструкционных сталей……………………………4

2. Классификация конструкционных сталей………………………………….6

3. Конструкционные легированные стали…………………………………….8

3.1 Конструкционные низколегированные стали ……………………………8

3.2 Конструкционные цементуемые легированные стали …………………..8

4. Конструкционные машиностроительные стали и сплавы специального назначения ……………………………………………………………………. 12

4.1 Мартенситностареющие высокопрочные стали……………………….…12

4.2 Коррозионностойкие стали ………………………………………………..13

4.4 Криогенные машиностроительные стали и сплавы……………………. 16

Детали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при статических, циклических и ударных нагрузках, при низких и высоких температурах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, основные из которых - эксплуатационные, технологические и экономические.

Конструкционными называют материалы, предназначенные для изготовления деталей машин, приборов, инженерных конструкций, подвергающиеся механическим нагрузкам.

Детали машин и приборов, передающих нагрузку, должны обладать жесткостью и прочностью, достаточными для ограничения упругой и пластической деформации, при гарантированной надежности и долговечности. Из многообразия материалов в наибольшей степени этим требованиям удовлетворяют сплавы на основе железа - чугуны и особенно стали.

Конструкционная сталь должна иметь и хорошие технологические свойства: хорошо обрабатываться давлением и резанием, быть не склонной к шлифовочным трещинам, обладать высокой прокаливаемостью и малой склонностью к обезуглероживанию, деформациям и трещинообразованию при закалке.

1. Строение и свойства конструкционных сталей

Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами. Содержание углерода в сталях может доходить до 2,14%. Однако в сталях, применяемых в машиностроении и строительстве, углерода содержится не более 1,3%.

При содержании углерода более 1,3% стали становятся слишком хрупкими, и существенно затрудняется их обработка режущим инструментом.

На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава. Кроме железа и углерода в сталях содержатся полезные и вредные примеси. Сталь - основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств.

Методы широкого производства стали были открыты в середине ХIX века. В это же время были уже проведены и первые металлографические исследования железа и его сплавов. Стали сочетают высокую жесткость с достаточной статической и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. конструкционный сталь закалка

Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства.

Если сталь имеет в своем составе только железо и углерод (Fе, С) и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Сr, Ni, W и др.) с целью улучшения ее служебных и технологических свойств, то такую сталь называют легированной. При легировании могут возникать новые свойства, не присущие углеродистым сталям.

2. Классификация конструкционных сталей

Стали классифицируют по химическому составу, качеству и назначению.

По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы: малоуглеродистые - менее 0,3% С; среднеуглеродистые - 0,3-0,7% С; высокоуглеродистые - более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, Al, B, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов: низколегированные - менее 2,5%; среднелегированные - 2,5-10%; высоколегированные - более 10%. Легированные стали и сплавы делятся также на классы по структурному составу:

  • в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
  • в нормализованном состоянии - перлитный, мартенситный и аустенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.

По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные.

Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойства стали, а также её технологичность во многом зависят от содержания газов (водорода, кислорода) и вредных примесей - серы и фосфора.

Стали обыкновенного качества бывают только углеродистыми (до 0,5% С), качественные и высококачественные - углеродистыми и легированными.

По назначению стали классифицируют на конструкционные и инструментальные.

Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные.

Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего деформирования.

Конструкционные стали подразделяют на машиностроительные, предназначенные для изготовления деталей машин и механизмов, и строительные, используемые для металлоконструкций и сооружений.

3. Конструкционные легированные стали

3.1 Конструкционные низколегированные стали

Низколегированными называются стали, содержащие не более 0,22% углерода и сравнительно небольшое количество недефицитных легирующих элементов. Целью легирования этих сталей является повышение закаливаемости и вследствие этого обеспечение более высоких механических свойств (главным образом, предела текучести) в процессе охлаждения при прокатке. Применение низколегированных сталей взамен углеродистых позволяет сэкономить 15. 30% металла. Для того, чтобы упрочнение не сопровождалось излишним снижением вязкости, пластичности и свариваемости, содержание углерода и легирующих элементов в строительных сталях ограничивается. Достоинством низколегированных малоуглеродистых сталей является также их хорошая свариваемость.

Эти стали в виде листов, сортового фасонного проката применяют в строительстве и машиностроении для сварных конструкций, в основном без дополнительной термической обработки. Низколегированные стали не образуют при сварке холодных и горячих трещин.

3.2 Конструкционные цементуемые легированные стали

Для цементуемых изделий применяют низкоуглеродистые стали. Увеличение действительного зерна в цементованном слое после термической обработки вызывает уменьшение контактной выносливости, предела выносливости, сопротивления хрупкому разрушению и увеличение деформации обработки. Легированные цементуемые стали (15Х, 15ХА, 15ХФ, 12ХНЗА, 12Х2Н4А, 20ХГНР, 18ХГТ и др.) применяют для деталей, более сильно напряженных, а также более крупных размеров и сложной формы - валы, оси, шестерни и др. Легирование в этом случае обеспечивает лучшую прокаливаемость при более прочной сердцевине. В сердцевине образуются структуры бейнита или низкоуглеродистого мартенсита (HRC 30. 45).

Хромистые стали (15Х,15ХА). Хром широко используется для легирования стали. Хромистые стали предназначаются для изготовления небольших изделий простой формы. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при несколько меньшей пластичности в сердцевине и лучшей прочности в цементованном слое. Хромистая сталь чувствительна к перегреву. Прокаливаемость хромистых сталей невелика.

Введение 0,1 – 0,2% ванадия повышает механические свойства хромистых сталей, главным образом вязкость. Эти стали применяют для изделий, работающих при повышенных динамических нагрузках. Введение бора увеличивает прокаливаемость хромистых сталей, но несколько повышает порог хладноломкости. Прокаливаемость стали с бором сравнительно высокая.

Хромованадиевые стали(15ХФ). Легирование хромистой стали ванадием улучшает механические свойства. Кроме того, хромованадиевые стали менее склонны к перегреву. Из-за малой прокаливаемости их используют только для сравнительно небольших изделий.

Хромоникелевые стали(12ХН3А,12Х2Н4А). Эти стали обладают высокой прокаливаемостью, хорошей прочностью и вязкостью. Они применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках (крупные детали ответственного назначения, испытывающих в эксплуатации значительные динамические нагрузки). Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивление хрупкому разрушению. Одновременное легирование хромом и никелем, который растворяется в феррите, повышает прочность, пластичность и вязкость сердцевины и цементованного слоя.

Хромоникелевые стали мало чувствительны к перегреву при длительной цементации и не склонны к пересыщению поверхностных слоев углеродом. Большая устойчивость переохлажденного аустенита в области перлитного и промежуточного превращений обеспечивает высокую прокаливаемость хромоникелевой стали.

Легирование хромоникелевых сталей вольфрамом дополнительно повышает прокаливаемость. Такие сплавы применяют для крупных тяжелонагруженных деталей.

Хромомарганцевые стали (20ХГ, 25ХГТ). Совместное легирование хромом и марганцем позволяет получить стали с достаточно высокой прочностью и прокаливаемостью. Однако хромомарганцевые стали имеют пониженную вязкость, повышенный порог хладноломкости, склонность к отпускной хрупкости. Марганец применяется как заменитель никеля. Повышая устойчивость аустенита, марганец снижает критическую скорость закалки и повышает прокаливаемость стали.

Хромомарганцевые стали применяют во многих случаях вместо дорогих хромоникелевых. Однако эти стали менее устойчивы против перегрева и имеют меньшую вязкость по сравнению с хромоникелевыми.

Хромомарганцевые стали применяют в автомобильной и тракторной промышленности, а также в станкостроении.

Хромомарганцевоникелевые стали (20ХГНМ, 15ХГН2ТА). Повышение прокаливаемости и прочности хромомарганцевых сталей достигается дополнительным легированием их никелем. Эти стали приближаются по своим механическим и технологическим свойствам к хромоникелевым сталям.

Хромокремнемерганцевые стали (хромансил) (20ХГС, 25ХГС). Эти стали обладают высокой прочностью и хорошей свариваемостью. Стали хромансил используют в виде листов и труб для ответственных сварных конструкций (например, в самолетостроении).

Хромоникельмолибденовые стали (40ХН2МА). Для предотвращения склонности к обратимой отпускной хрупкости хромоникелевые стали дополнительно легируют молибденом или вольфрамом.

Хромоникельмолибденованадиевые стали (38ХНЗМФ, 36Х2Н2МФА) . Нередко в хромоникелевую сталь кроме молибдена добавляют ванадий, который способствует получению мелкозернистой структуры. Эти стали обладают высокой прочностью и низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплоемкость.

Недостатками высоколегированных хромоникельмолибденованади- евых сталей являются трудность их обработки резанием и большая склонность к образованию флокенов. Стали применяют для изготовления наиболее ответственных деталей турбин и компрессорных машин, для которых требуется материал особой прочности в крупных сечениях.

На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава.

Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами.

По химическому составу различают стали углеродистые и легированные.

Если сталь имеет в своем составе только Fe, C и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Cr, Ni, W и др.) с целью улучшения ее служебных и технических свойств, то такую сталь называют легированной.

Углеродистая сталь

Углеродистая сталь – наиболее распространенный продукт металлургической промышленности и широко применяется для всевозможных сооружений (железных дорог, мостов, зданий и др.), деталей машин, приспособлений и т.д.

Углеродистую сталь классифицируют по различным ее признакам. Например, по химическому составу, в зависимости от степени раскисления, по структуре, качеству и назначению.

В зависимости от степени раскисления стали делят на спокойную, полуспокойную и кипящую.

Полуспокойную сталь раскисляют в меньшей степени, чем спокойную. По свойствам они занимают промежуточное положение между кипящей и спокойной.

Спокойная сталь полностью раскислена ферромарганцем, ферросилицием и алюминием (путем их последовательного введения): в изложнице застывает спокойно; имеет более однородный состав. Из нее изготавливают рельсы, колеса, оси, листовые рессоры, пружины, а также другие детали подвижного состава, испытывающие большие нагрузки. Используют также для изготовления металлических пролетов мостов.

(Ст3сп2 - сталь углеродистая обыкновенного качества, спокойная, категория поставки-2)

По назначению углеродистые стали делятся на конструкционные и инструментальные.

Конструкционные углеродистые стали используют в машиностроении и строительном деле. В зависимости от величины и характера нагрузки, прикладываемой к изделиям, выполненным из них, они делятся на стали обыкновенного качества и стали качественные.

В сталях обыкновенного качества допускается большее содержание S, P, HMB, газов и других примесей, чем в сталях качественных. Они выплавляются мартеновским, бессемеровским или томасовским способами и применяется для сортового и листового проката, гвоздей, заклепок, болтов, труб и т.д. Особых требований к составу шихты, процессу плавки и разливки обычно не предъявляется.

По ГОСТу сталь обыкновенного качества в зависимости от качества разделяется на две группы:

Группа А – сталь, у которой гарантируются только механические свойства.

Химический состав не гарантируется. Поэтому стали этой группы можно подвергать только механической обработке; нагревать и сваривать их нельзя. Маркируются они следующим образом: Ст0, Ст1…Ст6. Чем выше номер, тем выше содержание углерода в стали, тем она более твердая и менее пластичная. Номер марки характеризует механические свойства. Из этих сталей изготавливают детали для подвижного состава без термической обработки.

Группа Б (БСт0,БСт1…БСт6) - выпускаются с гарантируемым химическим составом, поэтому их можно нагревать (например, для ковки), а затем с помощью термообработки исправлять нарушенную структуру и придавать необходимые свойства.

Группа В (ВСт0,ВСт1…ВСт6) – идущие на изготовление сварных конструкций, различаются по механическим свойствам и химическому составу.

Качественные углеродистые стали выплавляется в мартеновских и электрических печах и применяется для изготовления более ответственных деталей машин и механизмов. Ее получают при более строгом соблюдении технологии выплавки. Она превосходит сталь обыкновенного качества по однородности, а также содержит меньше вредных примесей (серы и фосфора). Маркировка этой стали производится двумя цифрами, указывающими среднее содержание углерода в сотых долях процента. Из-за высокой хрупкости конструкционные углеродистые стали содержат углерода не более 0.85%.Так, марка 25 содержит углерода в среднем 0.25%. Для маркировки кипящей стали используют буквы кп (например. 08 кп). Буква А, стоящая в конце марки, свидетельствует об улучшенном металлургическом качестве.

Инструментальные углеродистые стали являются сталями высокоуглеродистыми (содержание углерода 0.7-1.3%), что гарантирует им высокую твердость, необходимую для придания инструменту режущих свойств и износостойкости. Инструментальная сталь выплавляется в мартеновских и электрических печах; применяется для изготовления различных инструментов (режущих, измерительных, ударных и пр.). Инструментальная сталь делится на качественную и высококачественную. Сталь качественная обозначается буквой У и цифрой, указывающей количество углерода в десятых долях процента, например, У7, У8 и далее до У13.

Сталь высококачественная инструментальная содержит меньше примесей(серы, фосфора), чем качественная; при ее маркировке добавляют букву А, например, У8А. Эти стали используют для изготовления мерительного, режущего и ударно-штампового инструмента. Существенным недостатком углеродистой стали является то, что эта сталь не обладает нужным сочетанием механических свойств. С увеличением содержания углерода увеличиваются прочность и твердость, но одновременно уменьшаются пластичность и вязкость, растет хрупкость.

Выбор марки стали и термическая обработка определяются назначением и характером эксплуатации инструмента.

Читайте также: