Подъемная сила крыла самолета реферат

Обновлено: 02.07.2024

Понятие, сущность и предназначение физики сплошных сред и аэродинамики. Применение, специфика и характеристика уравнения неразрывности потока газа и уравнения Бернулли. Природа подъемной силы крыла, упрощенная схема спектра обтекания плоской пластинки.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.05.2015
Размер файла 336,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ТУВИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

" Подъемная сила крыла"

Выполнил: студент ФМФ

3 круса 3 группы

Ондар Буян Эртинеевич

Проверил: к. ф.-м. н., доцент

Ондар Маадыр Алдын-Херелович

1. Уравнение неразрывности потока газа

2. Уравнение Бернулли

3. Природа подъемной силы крыла

4. Подъемная сила крыла

Введение

Физика сплошных сред -- раздел физики, изучающий макроскопические свойства систем, состоящих из очень большого числа частиц.

Аэродинамика - наука, изучающая законы взаимодействия воздуха с движущимися в нем телами. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

В развитии аэродинамики у нас в стране выдающуюся роль сыграл профессор Николай Егорович Жуковский (1847-1921) -"отец русской авиации". Заслуга Жуковского состоит в том, что он первый объяснил образование подъемной силы крыла и сформулировал теорему для вычисления этой силы. Им была решена и другая проблема теории полета - объяснена сила тяги воздушного винта. Жуковский не только открыл законы, лежащие в основе теории полета, но и подготовил почву для бурного развития авиации в нашей стране. Он связал теоретическую аэродинамику с практикой авиации, дал возможность инженерам использовать достижения ученых-теоретиков

Основным приспособлением, служащим для изучения законов движения тел в воздухе, является аэродинамическая труба. Простейшая аэродинамическая труба представляет собой профилированный канал (рис. 1).

Рис. 1. Аэродинамическая труба.

В одном конце трубы установлен мощный вентилятор, приводимый во вращение электродвигателем. Когда вентилятор начинает работать, в канале трубы образуется воздушный поток. В зависимости от диаметров канала трубы и воздушного винта и мощности двигателя вентилятора можно получить различные скорости воздушного потока вплоть до сверхзвуковых. Современные аэродинамические трубы достигают гигантских размеров. В их каналах можно помещать для исследования не только модели, но и реальные самолеты.

1. Уравнение неразрывности потока газа

Рассмотрим движение газа, не имеющего внутреннего трения на участке, ограниченной двумя произвольно выбранными нормальными сечениями и , площади которых не равны (рис. 2). Скорости потока газа в этих сечениях обозначим через и . Если течение газа установившееся, то масса газа, заключенного в участке между сечениями с площадями S1 и S2, не зависит от времени. Следовательно, масса газа, поступающее в рассматриваемый участок за единицу времени сквозь сечение с площадью S1, равна массе газа , вытекающего из этого участка за то же время сквозь сечение c площадью S2:

Рисунок _2. Труба с переменным сечением.

Если среда несжимаема, то есть , то можно вывести следующее соотношение из формулы (1):

Полученное соотношение называют уравнением непрерывности потока. Это соотношение показывает, что в тех частях, где площадь поперечного сечения больше, скорость потока газа меньше, а в тех частях, где площадь поперечного сечения меньше - скорость больше.

2. Уравнение Бернулли

Пусть за время ?t масса газа m втекает в один конец выделенной части трубки через сечение , где скорость , и давление (рис 1). 3а то же время ?t через другое сечение трубки тока , где скорость газа равна и давление , вытекает такая же масса газа m. При установившемся (стационарном) течении в выделенной части трубки не происходит ни накапливания, ни расходования энергии. Следовательно, энергия, передаваемая за время ?t через сечение , должна быть равна энергии, передаваемой за тоже время ?t через сечение . За время ?t через сечение , проходит масса газа m. Ее кинетическая энергия равна и потенциальная энергия тяжести равна (где g -ускорение силы тяжести и - высота центра тяжести сечении над некоторым уровнем, например уровнем моря). Стало быть, за время ?t через сечение конвекционно передается энергия

Однако, кроме конвенционной передачи энергии, в данном случае еще имеет место передача энергии тягой, а именно, газ, находящийся позади, производит работу, направленную на продвижение жидкости, находящейся впереди. Энергия, передаваемая тягой за время ?t через сечение , равна, очевидно, работе, которую газ, находящийся позади сечения , производит за время ?t, т. е. равна произведению силы на путь . Таким образом, энергия, передаваемая за время ?t через сечение , состоит из трех слагаемых:

Из таких же слагаемых состоит энергия, передаваемая за время ?t через сечение . Поскольку в выделенной части трубки не происходит ни накапливания, ни расходования энергии, то, очевидно должно существовать равенство

Согласно условию неразрывности потока объем газа, втекающего в трубку за время , т. е. , равен объему газа, вытекающего за тот же промежуток времени из трубки потока: =. Разделим обе части предыдущего уравнения на эти равные друг другу объемы, учтя, что масса газа, целенная на ее объем, представляет собой плотность газа . Получаем уравнение, или теорему, Бернулли:

крыло бернулли подъемный газ

Из уравнения Бернулли видно, что на часть трубы с большим поперечным сечением давление газа больше, чем на часть трубы с меньшим попереречным сечением.

3. Природа подъемной силы крыла

Рассмотрим природу возникновения подъемной силы. Опыты, проведенные в аэродинамических лабораториях, позволили установить, что при налегании на тело воздушного потока частицы воздуха обтекают тело.

Картину обтекания тела воздухом легко наблюдать, если поместить тело в аэродинамической трубе в покрашенном потоке воздуха, кроме того, ее можно сфотографировать. Полученный снимок называют спектром обтекания. Упрощенная схема спектра обтекания плоской пластинки, поставленной под углом 90° к направлению потока, изображена на (рис. 2).

Рис.2. Упрощенная схема спектра обтекания плоской пластинки, поставленной под углом 90° к направлению потока.

Из рисунка видно, что в этом случае никакой подъемной силы не возникает. Воздух впереди пластинки создает подпор, плотность его струек повышается, а сзади пластинки воздух оказывается разреженным. Повышенное давление воздуха впереди пластинки и разрежение позади нее приводят к тому, что струйки воздуха с силой устремляются в разреженное пространство, закручиваются и образуют сзади пластинки те завихрения, которые мы и видим на спектре.

На (рис. 3) дано схематическое изображение спектра обтекания пластинки, поставленной под острым углом к потоку. Под пластинкой давление повышается, а над ней вследствие срыва струй получается разрежение воздуха, т. е. давление понижается. Благодаря образующейся разности давлений и возникает аэродинамическая сила. Она направлена в сторону меньшего давления, т. е. назад и вверх.

Отклонение аэродинамической силы от вертикали зависит от угла, под которым пластинка поставлена к потоку. Этот угол получил название угла атаки (его принято обозначать греческой буквой б - альфа). Свойство плоской пластинки создавать подъемную силу, если на нее набегает под острым углом воздух (или вода), известно уже с давних времен. Примером тому служит воздушный змей и руль корабля, время изобретения которых теряется в веках.

Подъемная сила крыла (обозначим ее Y) возникает не только за счет угла атаки. но также и благодаря тому, что поперечное сечение крыла, представляет собой чаще всего несимметричный профиль с более выпуклой верхней частью. Крыло самолета или планера, перемещаясь рассекает воздух. Одна часть струек встречного потока воздуха пойдет под крылом, а другая - над ним (рис. 4).

Рис. 4. Модель крыла самолета

У крыла верхняя часть более выпуклая, чем нижняя, следовательно, верхним струйкам придется пройти больший путь, чем нижним. Однако количество воздуха, набегающего на крыло и стекающего с него, одинаково. Значит, верхние струйки, чтобы не отстать от нижних, должны двигаться быстрее. В соответствии с уравнением Бернулли, если скорость воздушного потока под крылом меньше, чем над крылом, то давление под крылом, наоборот, будет больше, чем над ним.

Рис. 5. Вектор подъемной силы и ее составляющие

Эта разность давлений и создает аэродинамическую силу R (рис. 5), одной из составляющих которой является подъемная сила Y. Подъемная сила крыла тем больше, чем больше угол атаки, кривизна профиля (его несущие свойства), площадь крыла, плотность воздуха и скорость полета V, причем от скорости подъемная сила зависит в квадрате. Но следует помнить, что угол атаки должен быть меньше некоторого критического значения, при превышении которого подъемная сила падает.

Развивая подъемную силу, крыло всегда испытывает и лобовое сопротивление. Сила лобового сопротивления X направлена по потоку прямо против движения и, значит, тормозит его. Подъемная сила всегда перпендикулярна набегающему потоку. Из рисунка видно, что сила лобового сопротивления X и подъемная сила Y являются составляющими силы R по направлению скорости V и перпендикулярно ей. Сила R называется полной аэродинамической силой крыла. Точку приложения полной аэродинамической силы называю центром давления крыла (ЦД).

Подъемная сила летательного аппарата, уравновешивая его вес, даёт возможность осуществлять полет, лобовое же сопротивление тормозит его движение. Отсюда ясно, что крылу надо придать такую форму, чтобы оно развивало как можно большее значение подъемной силы и в то же время давало, малое лобовое сопротивление. Число, показывающее, во сколько раз подъемная сила больше лобового сопротивления, называется аэродинамическим качеством и обозначается буквой К.

4. Подъемная сила крыла

Подъемная сила крыла самолета возникает из-за разности давлений верхней и нижней частей крыла. И можем записать составляющие подъемной силы крыла.

Список использованной литературы

1. Сивухин Д.В. Общий курс физики. Том 1. Механика. 2005 стр. 536 - 539

2. Даффи П., Кандалов А. А.Н.Туполев: Человек и его самолёты. - М.: "Московский рабочий", 1999. - С. 176-183.

3. Краснов Н.Ф. "Аэродинамика" Часть 1. Основы теории. Аэродинамика профиля и крыла. Москва, 1976 г.

4. Двоеносов Д.Л., Замятин В.И, Снежко О.К. "Нагрузки, действующие на планер в полёте" Москва, 1963

Подобные документы

Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

презентация [220,4 K], добавлен 28.09.2013

Причины возникновения подъемной силы летательного аппарата. Заслуги Жуковского в развитии аэродинамики. Понятие турбулентности и процесс возникновения зоны повышенной плотности на передней части снаряда. Принципы всасывания потока воздуха в двигатель.

реферат [2,2 M], добавлен 01.06.2013

Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

реферат [310,4 K], добавлен 18.05.2010

Выбор сечений крыла, в которые устанавливаются профили. Нейронная сеть как генератор геометрий и аппроксиматор аэродинамических характеристик крыла. Универсальный аппроксиматор в многомерном пространстве. Блок схема алгоритма робастной оптимизации крыла.

дипломная работа [1,2 M], добавлен 19.07.2014

Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

Начнем с “простого начала” . Главную роль в этом деле играет крыло самолета (именно крыло, состоящее из двух консолей, а не крылья, в продолжение моей другой статьи). Для простоты рассмотрим классический аэродинамический профиль крыла.


Аэродинамическая подъемная сила

Воздух, обтекая крыло самолета, разделяется на два потока: над крылом и под ним. Нижний поток протекает себе как ни в чем не бывало, а верхний сужается. Ведь профиль крыла выпуклый сверху! И теперь для того, чтобы в верхнем потоке проходило то же количество воздуха и за такое же время, как и в нижнем, ему нужно двигаться быстрее, ведь сам поток стал уже. Далее вступает в силу закон Бернулли: чем выше скорость потока, тем давление в нем ниже и, соответственно, наоборот. Этот закон очень просто иллюстрируется. Если взять не слишком узкий горизонтальный шланг (рукав) из тонкой прозрачной резины и влить в него воды под небольшим давлением. Что вы увидите? Да ничего особенного, вода просто быстро выльется через другой конец. А вот если на этом другом конце окажется наполовину закрытый кран, то вы сразу увидите, что вода выливается, но медленно и стенки рукава раздулись, то есть скорость потока уменьшилась и давление возросло.

Итак… При движении в воздушном потоке над крылом давление меньше, чем под ним. Из-за этой разницы возникает подъемная сила. Она выталкивает крыло самолета и, соответственно, сам самолет вверх. Чем скорость выше, тем подъемная сила больше. А если она равна весу, то самолет летит горизонтально. Ну а скорость зависит от работы двигателя самолета. Между прочим, падение давления над верхней частью крыла можно увидеть воочию.


Конденсация водяного пара над верхней поверхностью крыла в результате резкого падения давления

У резко маневрирующего самолета (обычно это бывает на аэрошоу) над верхней поверхностью крыла возникает что-то вроде струй белой пелены. Это из-за быстрого падения давления конденсируется водяной пар, находящийся в воздухе.

Кстати, не могу удержаться, чтобы не вспомнить еще один простейший, но очень точно иллюстрирующий теорию этого вопроса, школьный опыт. Если взять небольшой узкий лист бумаги за его короткую сторону и, поднеся его ко рту, подуть над листком горизонтально, то провисший было листок сразу резво поднимется. В этом виновата все та же подъемная сила. Мы дуем над листком – поток ускоряется, значит давление в нем падает, а под листком оно осталось прежним. Оно и поднимает листок в горизонтальное положение. Процесс, принципиально похожий на работу профиля.

Ну, вот, вроде бы и все? Можно лететь? Несмотря на вполне логичное приведенное выше объяснение (на мой взгляд ), я бы сказал, что вряд ли . Надо понимать, что описанный случай носит все-таки частный характер. Ведь профиль может быть и симметричным, тогда не будет такого распределения давления и разрежения над и под ним.

Кроме того такой профиль может располагаться и под углом к потоку (что чаще всего и бывает). И вот этот самый угол, который называется углом атаки будет играть большую роль в образовании подъемной силы крыла, которая и сама будет носить иной характер. Об этом в следующей статье. И это будет “простое продолжение” .

На самом-то деле, конечно, полная теория этого вопроса значительно сложнее и одним законом Бернулли, объясненным на пальцах, здесь не обойдешься. Это уже область физики и аэродинамики, ведь и сама подъемная сила в нашем рассмотренном случае случае – это аэродинамическая сила. В скором будущем мы немного коснемся этой области с ее терминами и понятиями, но более глубокое изучение требует, так сказать, общения с фундаментальными науками.

Постскриптум через год.

20.11.12 Исполнился уже почти год моим сайтописательским увлечениям. И, вот, потребовалось внести некоторое пояснение в эту, одну из самых первых моих статей. Похоже, что люди, прочитавшие ее, этим и ограничиваются. Такой подход неверен, потому что вслед за ней надо обязательно прочитать следующую статью этой же рубрики “Угол атаки и аэродинамические силы…..”, написанную практически сразу за первой. Статья “с котом” – это упрощенный вариант, и об этом я упоминал (здесь угол атаки равен нулю), это что-то типа введения в аэродинамику (тоже, кстати, максимально упрощенную ), поэтому и стиль изложения такой вольный . Однако, для правильного понимания вопроса она без второй статьи существовать не может.

Я, по тогдашней неопытности несколько невнятно об этом сказал, и, главное, не поставил ссылку на “простое продолжение”… Ставлю сейчас. Прошу прощения у читателей не слишком сведущих (опытные итак все знают без меня )… Буду рад видеть вас у себя на сайте …

Самолет может подняться в воздух, в том случае, если подъемная сила, возникающая при обтекании крыла воздухом превысит силу тяжести.

Для того, чтобы поднять самолет в воздух и получить требуемую подъемную силу, необходимо обеспечить обтекание крыла потоком воздуха, значит самолету для полета необходима скорость.

Основные силы действующие на самолет

Самолет разбегается по взлетной полосе и, когда величина подъемной силы будет выше силы тяжести отрывается от земли. Попробуем разобраться, как возникает подъемная сила?

Аэродинамическая сила

При обтекании потокам воздуха пластины, расположенной параллельно линиям тока из-за разности давлений и сил трения, возникает аэродинамическая сила. В данном случае обтекание пластины потоком воздуха симметричное.

Симметричное обтекание пластины потоком воздуха

Несимметричным оно станет в том случае, если пластину наклонить, возникающая аэродинамическая сила будет направлена под углом к потоку. Угол наклона пластины называют углом атаки.

Несимметричное обтекание пластины потоком воздуха

Разложим аэродинамическую силу на две составляющие:

  • вертикальную - подъемную силу;
  • горизонтальную силу лобового сопротивления.

При увеличении аэродинамической силы будут возрастать как вертикальная, так и горизонтальная составляющая.

Подъемная сила позволяет поднять самолет, а сила лобового сопротивления действует против направления его движения, то есть тормозит его.

Возникновение подъемной силы на крыле самолета

Наиболее благоприятным будет вариант, при котором, при малой силе сопротивления подъемная сила будет большой. Это позволит снизить потребную мощность двигателей, и расход топлива. Для этого создаются крылья несимметричного профиля.

Подъемная сила возникает при несимметричном обтекании профиля крыла потоком воздуха.

Обтекание крыла потоком воздуха

Струйки потока обтекают крыло сверху и снизу по разному.

При обтекании верхней выпуклой поверхности крыла из-за инертности струйки воздуха сжимаются, и в соответствии с уравнением неразрывности, скорость движения частиц воздуха.

Скорость частиц воздуха обтекающих крыло снизу - уменьшается. Давление на верхней поверхности профиля будет меньше чем на нижней, в соответствии с законом Бернулли.

В результате разницы давлений под крылом и над крылом возникает подъемная сила. Когда подъемная сила будет больше силы тяжести самолет взлетает.

Самолет на взлете

Механизация крыла

Увеличение подъемной силы связано и с увеличением силы лобового сопротивления. Чем выше скорость самолета, тем сильнее сила лобового сопротивления будет тормозить его. Поэтому для полета на больших скоростях необходимо крыло, не вызывающее значительное лобовое сопротивление, подъемная сила у такого него также будет невелика, но когда самолет набрал высоту большая подъемная сила и не нужна.

Для полета на малых скоростях необходимо такое крыло, которое обеспечит максимальную подъемную силу, сила лобового сопротивления такого крыла выше, но на малых скоростях это не так критично.

Получается, что для того, чтобы взлетать на малой скорости, а проводить полет на большой скорости, самолету нужны крылья с разным профилем, или, как минимум, крыло с разными характеристиками. Получить необходимые характеристики на разных этапах полета помогают элементы механизации крыла:

Закрылок

Отклоняемый элемент механизации, расположенный на задней кромке крыла называют закрылком.

Закрылок самолета

Выпуск закрылков позволяет значительно увеличить подъемную силу,при этом возрастает и сила лобового сопротивления.

Закрылки позволяют самолету взлететь на меньшей скорости, и совершать полет на малых скоростях.

Для набора скорости в полете сопротивление необходимо уменьшить, поэтому сначала угол наклона закрылков уменьшается, а затем они и вовсе убираются. В убранном закрылок составляет часть профиля крыла.

В режиме посадки, возрастающее сопротивление при выпуске закрылков позволяет снизить скорость самолета, а возросшая подъемная сила обеспечивает устойчивый полет при снижении скорости.

Предкрылок

Элемент механизации крыла, расположенный на его передней кромке, предназначенный для управления пограничным слоем называют предкрылком. Различают фиксированные предкрылки, жестко связанные с крылом и автоматические предкрылки, которые могут быть прижаты к крылу или выдвинуты в зависимости от угла атаки.

Элементы механизации крыла - щитки, закрылки, предкрылки

Щиток

Щиток - элемент механизации крыла, представляющий собой отклоняемую поверхность, расположенную в задней части крыла.

Наклон щитка позволяет увеличить подъемную силу. Возрастающее сопротивление позволяет снизить пробег при посадке самолета.

Элементы управления

Вертикальное оперение позволяет обеспечить балансировку, устойчивость и управляемость самолета.

Оперение самолета составляют из неподвижные и подвижные элементы:

  • Стабилизатор - неподвижная часть горизонтального оперения;
  • Киль - неподвижная часть вертикального оперения;
  • Руль высоты - подвижный элемент, который крепится к стабилизатору;
  • Руль направления - подвижный элемент, закрепляемый на киле.

Действие рулей основано на изменении аэродинамической силы, при изменении угла наклона по отношению к направлению движения потока воздуха. При изменении угла наклона возникает аэродинамической силы, которая, благодаря плечу относительно центра тяжести самолета, создает вращающий момент.

Руль высоты

При отклонении руля высоты, нос самолета направляется вверх, увеличивается угол тангажа - самолет набирает высоту, кабрирует.

Кабрирование самолета - тангаж положительный

При перемещении руля высоты в противоположном направлении, нос самолета опускается вниз, угол тангажа становится отрицательным, самолет пикирует.

Пикирование самолета, тангаж отрицательный

Руль направления

При изменении положения руля направления, за счет возникающей аэродинамической силы, появляется момент, поворачивающий самолет относительно нормальной оси. С помощью руля направления можно изменяется угол рысканья самолета.

Угол рысканья самолета

Руль направления чаще всего используется для корректировки курса самолета при разбеге или пробеге при посадке.

Элероны

Вид криволинейного полета, служащий для изменения направления называют виражом. Для осуществления виража самолет необходимо изменить угол крена, сделать это позволяют элероны.

Элероны -позволяют выполнить вираж

Элемент управления самолета, расположенный на задней кромке крыла называют элероном.

Принцип действия элеронов основан на изменении аэродинамической силы, если левый элерон отклоняется вниз, а правый вверх, то подъемная сила правой части крыла уменьшается, а левой - возрастает, в результате чего возникает момент, вызывающий крен самолета.

Крен самолета в полете

При крене самолета, из-за изменения режима обтекания крыла, создается центростремительная сила и самолет начинает двигаться по кривой, но демпфирующий момент вертикального оперения противодействует развороту. Для выполнения виража необходимо не только накренить самолет, но и отклонить руль направления в сторону виража, увечить тягу двигателя.

500
500
500
500
500
500
500
500
500

Подъемная сила крыла Автор: Синегубов Андрей Группа: Э3-42 Художественный руководитель: Бурцев Сергей Алексеевич

Постановка проблемы 1) Почему самолет, весящий более 140 тонн, удерживается в воздухе? 2) Какие силы способствует поднятию самолета в воздух и нахождение в нем?

Теорема Жуковского Если потенциальный установившийся поток несжимаемой жидкости обтекает контрольную поверхность перпендикулярно к образующим, то на участок поверхности, имеющей длину образующей, равную единице, действует сила, направленная к скорости набегающего потока и равная произведению плотности жидкости на скорость потока на бесконечности и на циркуляцию скорости по любому замкнутому контуру, охватывающему обтекаемый цилиндр. Направление подъемной силы получается при этом из направления вектора скорости потока на бесконечности поворотом его на прямой угол против направления циркуляции.

Подъемная сила крыла Чаще всего поперечное сечение представляет собой несимметричный профиль с выпуклой верхней частью. Перемещаясь, крыло самолета рассекает среду. Одна часть встречных струек пойдет под крылом другая над крылом. Благодаря геометрии профиля траектория полета верхних струек по модулю выше нижних, но количество воздуха набегающего на крыло и стекающего с него одинаковое. Верхние струйки движутся быстрее, то есть как бы догоняют нижние, следовательно скорость под крылом меньше скорости потока над крылом. Если обратиться к уравнению Бернулли, то можно заметить, что с давлением ситуация совпадает с точностью наоборот. Внизу давление высокое, а наверху низкое. Давление снизу создает подъемную силу, заставляющую самолет подняться в воздух Вследствие такого явления возникает циркуляция вокруг крыла, которая постоянно поддерживает эту подъемную силу.

Читайте также: