Перспективы развития наноэлектроники реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство Образования и Науки Республики Татарстан

Перспективы развития нанотехнологии сегодня в будущем.

Выполнил: Мухотдинов Энвер Ягферович,

учитель физики, МБОУ СОШ №41

г. Набережные Челны 2010г

1. Определение нанотехнологий стр. 2

2. Наночастица стр. 4

3.Классификация направлений нанотехнологий стр. 6

3.1 Наноматериалы стр. 7

3.2 Наноэлектроника стр. 7

3.3 Нанофотоника стр. 8

3.4 Нанобиотехнология стр. 8

3.5 Наномедицина стр. 8

Заключение стр. 10

Список литературы стр. 11

Приложение стр. 12-19

Конец прошлого и начало нынешнего века ознаменовались бурным ростом интереса к нанотехнологиям и значительным ростом инвестиций в их развитие. Сейчас практически во всех развитых странах приняты и реализуются национальные программы развития нанотехнологий. О нанотехнологиях говорится очень много и на самых различных уровнях, начиная от ученых, и заканчивая разговорами на бытовом уровне между людьми, весьма далекими от науки. Тема развития нанотехнологий часто поднимается в средствах массовой информации и в выступлениях политиков самого высокого уровня, включая президентов и премьер-министров. При этом говорится о начале новой научно-технической (нанотехнологической) революции и XXI век называют веком нанотехнологий .

Определение нанотехнологий

Заметим, что, несмотря на наличие различных определений нанотехнологий, единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

Российские определения нанотехнологий

Определение

Концепция развития в Российской Федерации работ в области нанотехнологий на период до 2010 года

Нанотехнологии – это совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Программа развития наноиндустрии в Российской Федерации до 2015 года

Нанотехнологии – технологии, направленные на создание и эффективное практическое использование нанообъектов и наносистем с заданными свойствами и характеристиками.

Под нанотехнологиями предлагается понимать совокупность приемов и методов, применяемых при изучении, проектировании и производстве наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (около 1–100 нм), наличие которых приводит к улучшению либо к появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов.

Наночастицы

Наночастица - аморфная или полукристаллическая структура, имеющая хотя бы один характерный размер в диапазоне 1-100 нм. (Приложение I )

Термин относится к суб-классификации ультрадисперсных частиц с одним из размеров в диапазоне 0,1-0,001 мкм (100-1 нм), которые могут иметь (демонстрировать) или не иметь свойства, обусловленные своими размерами (квантово-размерные эффекты).

Этот термин в настоящее время остается предметом дискуссии относительно определения диапазона размеров и наличия размерных свойств частиц в определении термина.

Согласно международной классификации (IUPAC) предельный размер наночастиц – 100 нм, хотя это формальный критерий. Понятие наночастиц связано не с их размером, а с проявлением у них в этом размерном диапазоне новых свойств, отличных от свойств объемной фазы того же материала. Частицы размером 1 – 5 нм содержат около 1000 атомов, диапазон частиц 5 – 100 нм включает в зависимости от типа вещества 10 3 – 10 8 атомов.

Проблема образования агломератов. Частицы размерами порядка нанометров или наночастицы, как их называют в научных кругах, имеют одно свойство, которое очень мешает их использованию. Они могут образовывать агломераты, то есть слипаться друг с другом. Так как наночастицы многообещающи в отраслях производства керамики, металлургии, эту проблему необходимо решать. Одно из возможных решений -- использование веществ -- дисперсантов, нерастворимых в воде. Их можно добавлять в среду, содержащую наночастицы.

Классификация направлений нанотехнологий

В результате работы были выделены семь основных направлений нанотехнологий: наноматериалы, наноэлектроника, нанофотоника, нанобиотехнологии, наномедицина, наноинструменты (нанодиагностика), технологии и специальное оборудование для создания и производства наноматериалов и наноустройств. Для каждого из выделенных направлений были сформулированы соответствующие определения и предложено первичное наполнение (как правило, от трех до пяти групп технологий). Для уточнения наименований классификационных позиций и определений широко использовались материалы административных источников, базы данных научных публикаций и патентов и т.п. Комбинация материалов позволила получить разнообразную информацию о возможных подходах к выявлению направлений применения нанотехнологий и предложить проект их классификации. Кроме того, для оценки полноты и адекватности разработанного перечня направлений, уточнения их наименований, определений и последовательности, проверки корректности формулировок была сформирована группа, включавшая более пятидесяти экспертов из различных областей науки и производства.

Представлено общее описание состава основных направлений нанотехнологий.

Наноматериалы – научно-исследовательское направление, связанное с изучением и разработкой объемных материалов пленок и волокон, макроскопические свойства которых определяются химическим составом, строением, размерами и/или взаимным расположением наноразмерных структур. (Приложение II )

Объемные наноструктурированные материалы могут быть упорядочены в рамках направления по типу (наночастицы, нанопленки, нанопокрытия, гранулированные наноразмерные материалы и др.) и по составу (металлические, полупроводниковые, органические, углеродные, керамические и др.). Сюда входят также наноструктуры и материалы, выделяемые по общефункциональному признаку, например детекторные и сенсорные наноматериалы.

В данное направление не включаются наноматериалы, имеющие узкое функциональное назначение. Так, наноматериалы, полученные с использованием биотехнологий, относятся к направлению нанобиотехнологий, а полупроводниковые наногетероструктуры (квантовые точки) – к направлению наноэлектроники.

Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм (в том числе интегральных схем), и приборов на основе таких устройств, а также с изучением физических основ функционирования указанных устройств и приборов. (Приложение III )

Данное направление охватывает физические принципы и объекты наноэлектроники, базовые элементы вычислительных систем, объекты для квантовых вычислений и телекоммуникаций, а также устройства сверхплотной записи информации, наноэлектронные источники и детекторы. В его состав не входят наночастицы и наноструктурированные материалы общего или многоцелевого назначения. В частности, металлические наноструктурированные материалы относятся к направлению наноматериалов.

Нанофотоника – область фотоники, связанная с разработкой архитектур и технологий производства наноструктурированных устройств генерации, усиления, модуляции, передачи и детектирования электромагнитного излучения и приборов на основе таких устройств, а также с изучением физических явлений, определяющих функционирование наноструктурированных устройств и протекающих при взаимодействии фотонов с наноразмерными объектами.

К этому направлению относятся физические основы генерации и поглощения излучения в различных диапазонах, полупроводниковые источники и детекторы электромагнитного излучения, наноструктурированные оптические волокна и устройства на их основе, светодиоды, твердотельные и органические лазеры, элементы фотоники и коротковолновой нелинейной оптики. (Приложение IV )

Нанобиотехнологии – целенаправленное использование биологических макромолекул и органелл для конструирования наноматериалов и наноустройств. (Приложение V )

Нанобиотехнологии охватывают изучение воздействия наноструктур и материалов на биологические процессы и объекты с целью контроля и управления их биологическими или биохимическими свойствами, а также создание с их помощью новых объектов и устройств с заданными биологическими или биохимическими свойствами.

Нанобиотехнологии представляют собой узкую синтетическую область, объединяющую биоэлектромеханические машины, нанобиоматериалы и наноматериалы, полученные с использованием биотехнологий. Данное направление включает еще и такие области, как нанобиоэлектроника и нанобиофотоника.

Наномедицина – практическое применение нанотехнологий в медицинских целях, включая научные исследования и разработки в области диагностики, контроля, адресной доставки лекарств, а также действия по восстановлению и реконструкции биологических систем человеческого организма с использованием наноструктур и наноустройств. (Приложение VI ).

К этому направлению относятся медицинские методы диагностики (включая методы интроскопических исследований/визуализации и молекулярно-биологические методы исследований с применением наноматериалов и наноструктур), нанотехнологии терапевтического и хирургического назначения (методы клеточной и генной терапии с использованием наноматериалов, применение лазеров в микро- и нанохирургии, медицинские нанороботы и др.), тканевая инженерия и регенеративная медицина, нанотехнологии в фармакологии, фармацевтике и токсикологии.

1. Ратнер М., Ратнер Д. Нанотехнология: простое объяснение очередной гениальной идеи. / Пер. с англ. – М.: Вильямс, 2004. С. 20–22.

2. Игами М. Библиометрические индикаторы: исследования в области нанонауки // Форсайт. 2008. № 2 (6). С . 36–45.

5. ISO. Business plan ISO/TC 229. Nanotechnologies. Draft. 23.04.2007.

6. А . И . Гусев Наноматериалы , наноструктуры , нанотехнологии . М., Физматлит, 2005.

Роснано. Список терминов.

7. Хульман А. Экономическое развитие нанотехнологий: обзор индикаторов // Форсайт. 2009. № 1 (9). С. 31–32.

8. Тодуа П.А. Метрология в нанотехнологии // Российские нанотехнологии. 2007. Т. 2, № 1–2. P . 61–69.

Однако наноэлектроника связана с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами элементов на порядки меньше, не превышающими 100 нм, а иногда и 10 нм.

  • Главной особенностью наноэлектроники является в первую очередь не простое механическое уменьшение размеров, а то, что для элементов таких размеров начинают преобладать квантовые эффекты, использование которых может стать очень перспективным. При переходе от микро- к наноэлектронике появляющиеся квантовые элементы зачастую мешают, например, работа обычного транзистора затрудняется из-за появления туннелироания носителей заряда, однако в новой электронике квантовые эффекты становятся основой.

Уже в 70–80 годы в полупроводниковую технику вошли такие наноразмерные структуры как гетеропереходы, сверхрешетки, квантовые ямы и квантовые точки, синтезируемые на основе многокомпонентных соединений изменяющегося состава. Для их создания были разработаны соответствующие технологические процессы, представляющие собой логическое развитие и совершенствование полупроводниковой классики: эпитаксии, диффузии, имплантации, напыления, окисления и литографии. В производство электронных компонентов стали внедряться такие технологии, как молекулярно-лучевая эпитаксия, ионно-плазменная обработка, ионно-лучевая имплантация, фотонный отжиг и многие другие.

  • Одной из важных вех на пути развития наноэлектроники стало создание сканирующий туннельный микроскоп и атомно-силовой микроскоп.

Метод сканирующей туннельной микроскопии,изобретенный в начале 80-х, основан на квантовом туннелировании. Иглы-зонды из металлической проволоки подвергаются предварительной обработке (такой, как механическая полировка, скол или электрохимическое травление) и последующей обработке в сверхвысоковакуумной камере. Если приложить напряжение между иглой и образцом, то через промежуток потечет туннельный ток. Приложив несколько большее, чем при сканировании, напряжение между поверхностью объекта и зондом, можно добиться того, что к зонду притянутся один или несколько атомов, которые можно поднять и перенести на другое место. Прикладывая к зонду определенное напряжение, можно заставить атомы двигаться вдоль поверхности или отделить несколько атомов от молекулы. Именно так была в 1990 году сделана знаменитая надпись IBM из 35 атомов ксенона.

  • Что касается атомно-силового микроскопа, то он представляет собой сканирующий зондовый микроскоп высокого разрешения и используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Кроме того, с помощью атомно-силового микроскопа можно изучать взаимодействие двух объектов: измерять силы трения, упругости, адгезии, и, так же, как и с помощью туннельного, перемещать отдельные атомы, осаждать и удалять их с какой-либо поверхности.

Следующим открытием, по мнению многих ученых, определившим облик электронных схем будущего, стало появление нанотрубок и графена.

  • Нанотрубка представляет собой цилиндрическую структуру толщиной в несколько атомов, которая в зависимости от размера и формы может обладать проводящими либо полупроводниковыми свойствами. Например, если трубка прямая, она является проводником, а если скручена или изогнута — полупроводником. Нанотрубки могут придать электронным схемам революционные механические и оптические свойства, или, говоря простым языком, сделать электронику гибкой и прозрачной. Нанотрубки более подвижны и не задерживают свет в тонком слое, так что опытные матрицы с интегральными схемами можно изгибать без потери электронных свойств. Оптимисты предсказывают, что не за горами день, когда ноутбук можно будет носить в заднем кармане джинсов, потом, сев на скамейку, развернуть до размера газеты, причем вся его поверхность станет экраном высокого разрешения, а после этого снова свернуть и, скажем, превратить в браслет на запястье.
  • Графен – один из самых известных видов материалов, при создании которых использовались нанотехнологии. Графен – двумерный кристаллический углеродный наноматериал, который можно представить себе как пластину, состоящую из атомов углерода. Данный материал обладает уникальными токопроводящими свойствами, которые позволяют ему служить как очень хорошим проводником, так и полупроводником. Кроме того, графен чрезвычайно прочен и выдерживает огромные нагрузки, как на разрыв, так и на прогиб. В настоящее время графен получают путем отшелушивания чешуек от частиц графита, однако существуют разработки, позволяющие получать данный материал в промышленных масштабах. Данный материал впервые получен и открыт группой российских ученых из Манчестерского университета.
  • Изобретение транзистора в 1947 привело к бурному развитию транзисторных полупроводниковых технологий, которые легли в основу современной электроники. За полвека транзистор уменьшился примерно в сто тысяч раз по линейному размеру и в 1010 раз — по массе и сегодня мы наблюдаем появление нанотранзисторов, то есть транзисторов, размеры которых исчисляются нанометрами.

Уже сейчас микроэлектронной промышленностью в опытном порядке создаются транзисторы с размером рабочих элементов 20–30 нм. Они еще способны работать с обычными электрическими сигналами.

Первые работающие прототипы нанотранзисторов созданы еще 10 лет назад. В 2001 г. IBM представила первый одноэлектронный транзистор на базе нанотрубок. По мнению специалистов из IBM Research, в идеале нанотрубкой в таком транзисторе будет заменяться только элемент доступа. При этом исток, сток и сама архитектура транзистора остаются без изменений. Одна из особенностей нанотранзистора заключается в улучшенной емкостной связи между нанотрубкой и затвором, которая усиливает донорство как электронов, так и дырок, а также распространение заряда вдоль нанотрубки на большие расстояния.

  • В то время, как одни исследователи видят будущее наноэлектроники за углеродными материалами, другие работают с традиционным кремнием. Ученые Кембриджского университета и Японской научно-технической корпорации (Токио) разработали одноэлектронный транзистор. Материалом для острова транзистора служит отдельный кластер аморфного кремния.

Проводящий канал транзистора (остров) отделён от стока истока туннельными барьерами из тонких слоёв изолятора, при этом размеры острова – 10 нм. Важной особенностью этого транзистора является то, что он функционирует при комнатной температуре, а, как известно, быстродействие и размеры компьютерных микросхем ограничены тем, сколько теплоты они выделяют. Это явление носит название резистивного нагрева.

  • Совсем недавно, в 2011 году, физики из Техасского университета в Далласе (UT Dallas) собрали полевой транзистор из нанопроводов. Диаметр нанопроводов, изготовленных методом литографии, составляет всего 3–5 нм. В устройстве нет легированных полупроводниковых переходов и тем не менее его работа показывает высокую подвижность дырок, хорошую плотность тока, низкий ток утечки и целый ряд других привлекательных свойств.

Еще одной областью, в которой старые методы уступают место нанотехнологиям, является создание накопителей информации.

  • Возможности современных накопителей информации приближаются к своему пределу и в этой связи чрезвычайно актуальной является проблема создания накопителей, работающих на новых принципах. Идеи из области нанотехнологий обращаются к различным физическим принципам.

Одним из подходов является создание схем одноэлектронной памяти, где два-три электрона хранят один бит информации (в современной микроэлектронной памяти для хранения одного бита информации задействовано около 10.000 электронов).

  • Эффект хранения информации в ячейке памяти создается за счет нескольких туннельных переходов, которые определенным образом коммутированы с конденсатором хранения информации. Активными элементами выступают органические молекулы, расположенные в перекрестиях двойной ортогональной сетки перекрещивающихся печатных проводников.

Другая идея нанопамяти подсказана принципом считывания обычного патефона, в котором игла считывает аналоговую информацию. В цифровом варианте единице и нулю соответствуют ямки, выдавленные в полимерном носителе. Ширина каждой ямки – около 40 нм, а глубина – не более 25 нм. Запись осуществляется с помощью щупа высоко допированного кремниевого кантилевера путем локального разогрева – щуп выдавливает ямки в полимере. Считывание осуществляется с помощью того же щупа. Нагрев меняет электрическое сопротивление, что фиксируется и преобразуется в цифровой сигнал. Таким образом, в один квадратный сантиметр можно вместить порядка 500 гигабит информации.

  • Совсем недавно ученые из Тайваня и университета Калифорнии сообщили о разработке памяти на базе наноточек, которые располагаются на слое изолятора и покрыты металлическим слоем, играющем роль затвора. Запись и считывание ведутся с помощью свехркоротких вспышек зеленого лазера, который выборочно активирует определенные участки металлического слоя, создавая затвор над определенной наноточкой. Скорость записи и стирания информации у такого запоминающего элемента в 50–100 раз выше, чем у современных устройств.

Мы видим, что переход к наноэлектронике в определенной степени базируется на достижениях микроэлектроники – использование уменьшающихся до атомарных размеров транзисторов и диодов и собранных из них схем. В то же время будущее сулит новые достижения на основе новых принципов работы на уровне отдельных атомов – использование квантовых эффектов, волновых свойств электрона и других явлений наномира.

Пример готового реферата по предмету: Электроника, электротехника, радиотехника

Содержание

1. Общие сведения о нанотехнологиях и нанообъектах 4

2. Тенденции развития наноэлектроники 7

2.1 Закон Мура 7

2.2 Основные тенденции развития наноэлектронных систем 8

2.3 Перспективы развития модульных систем 10

2.4 Перспективы развития навигационных систем 12

2.5 Перспективы развития цифрового телевидения 15

2.6 Перспективы развития осветительной техники и дисплеев 21

2.7 Перспективы развития электронной промышленности в России 24

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 27

Выдержка из текста

Уже с 2003 года нанотехнологии обеспечивают плавный переход от микроэлектроники к наноэлектронике – основе информационных технологий двадцать первого века. В 2003 году элитные вузы Российской Федерации начали подготовку специалистов в области наноэлектроники и нанотехнологии.

Актуальность темы заключается в том, что научно-технический прогресс однозначно связан с развитием нанотехнологий и наноэлектроники.

Цель работы — более полное изучение развития наноэлектроники.

Задачи, необходимые для достижения поставленной цели: рассмотреть общие сведения о нанотехнологиях и нанообъектах, закон Мура, основные тенденции развития наноэлектронных систем, перспективы развития модульных систем, перспективы развития навигационных систем, перспективы развития цифрового телевидения, перспективы развития дисплеев и осветительной техники, перспективы развития электронной промышленности в России.

Структура реферата включает в себя: введение, основную часть (две главы), заключение и библиографический список, состоящий из пяти источников литературы.

Список использованной литературы

1. Душутин Н.К. и др. Из истории электроники. — Учебник, Иркутск, 2015. — 343 стр.

2. Игнатов А. Н. Наноэлектроника. — Учебное пособие, Москва, 2012. — 360 стр.

3. Щука А.А. Наноэлектроника, Учебное пособие, Москва, 2012. — 342 стр.

4. Душутин Н. К. и др. Из истории вычислительной техники, Иркутск : 2011. – 298 стр.

5. Барыбин А. А. Электроника и микроэлектроника. — Москва : 2006. – 293 стр.

Об авторе

Александр Васильевич Латышев — академик РАН, доктор физико-математических наук, директор Института физики полупроводников им. А. В. Ржанова (Новосибирск). Автор и соавтор 250 научных работ, из них 6 монографий и 9 патентов.

Сейчас количество транзисторов на одном чипе, одной ячейке микросхемы компьютера характерного размера 1 см 2 , достигает несколько десятков миллиардов. Согласно данным официальной статистики, к 2015 г. минимальный размер транзистора по сравнению с 1971 г. уменьшился в 715 раз! Если бы, к примеру, железная дорога развивалась такими темпами, то мы бы сейчас от Москвы до Новосибирска доезжали за 4 минуты.

Мир в двоичном коде

У этого МДП-транзистора с индуцированным каналом N-типа есть только два состояния: открыт — закрыт

Работа на будущее

Фотолитография в микро- и наноэлектронике — это формирование в специальном чувствительном слое, нанесенном на поверхность подложки, рельефной маски (рисунка), повторяющего топологию микросхемы. Используется практически тот же процесс, что и при проявке фотографий. Как будто на одну и ту же подложку экспонируют несколько фотопленок, поочередно их проявляют, протравливают, в образовавшиеся окна фотослоя напыляют подходящий материал, затем удаляют неэкспонированный фотослой — так получают микросхему. Только травят уже не в жидкости, а в газах или в плазме. Сейчас этот технологический процесс совершенствуется с огромной скоростью.

Но мы забежали вперед, а на самом деле создание новой микросхемы начинается с ее разработки в дизайн-центре. До производства микросхемы инженеры проектируют будущий компьютер, созданный пока еще на виртуальной микросхеме — стараются работать на опережение. И только после этого начинается само производство, тесты, испытания, исправление ошибок. Так появляются все новые и новые поколения работающих микросхем.

Единственное, в чем микросхемы пока точно проигрывают человеку, это в электропитании. С точки зрения потребления энергии мы намного более экономичны. Если создать искусственный мозг наподобие человеческого, то на его поддержание потребуются гигаватты энергии. Понадобятся атомные электростанции, которые будут работать всего лишь на один искусственный мозг, эквивалентный мозгу одного человека. Поэтому сейчас в этой области очень остро стоит задача уменьшения энергопотребления.

Да будет синий!

Разработки в области физики полупроводников позволили не только развить современную элементную базу информационных технологий, но и совершить прорыв в области энергосбережения, решив глобальную задачу — освещения.

Самый простой способ получить свет — это разжечь костер. Много света, но и много тепла. Потом придумали электрическую лампочку с вольфрамовой спиралью в вакууме, накаленной до высокой температуры. Получили свет и вновь — тепло. Снова колоссальные потери энергии. Затем придумали энергосберегающие лампы с ртутьсодержащими элементами. Благодаря электрическому разряду в парах ртути возникает низкотемпературная плазма, которая преобразуется в ультрафиолетовое излучение. А люминофор, покрывающий внутреннюю поверхность трубки, преобразует его уже в видимый свет. У этих ламп до 75% энергии излучается в виде света. Это большой плюс, но есть и минусы. Например, мерцание.

Человеческая мысль не стояла на месте — появились светодиодные лампы. Полупроводниковый диод в принципе не нагревается. Нагрев — паразитное явление, связанное с тем, что мы не умеем делать хорошие полупроводники, в первую очередь это относится к границам раздела полупроводника. Но даже с учетом этой проблемы полупроводниковые элементы нагреваются много меньше, чем элементы других ламп.

Проведение электронно-микроскопических и литографических работ в ИФП им. А. В. Ржанова СО РАН

В общем, все дело в материале полупроводника, который нужно тщательно подбирать. Именно в этом и была проблема создания синего светодиода. С красным светодиодом, а потом и с зеленым справились достаточно быстро, а вот синим занимались многие ученые, но безуспешно. Известные американские фирмы вложили в его разработку миллиарды долларов, но эти проекты были закрыты ввиду отсутствия результатов. Хироси Амано вспоминал, что, когда он в первый раз читал свой доклад о синем светодиоде, в зале было очень мало людей. Многие участники конференции просто не пришли, посчитав тему доклада бесперспективной.

Но японские ученые Исаму Акасаки, Хироси Амано и Сюдзи Накамура со всей присущей им настойчивостью продолжали внимательно и тщательно работать и, в конце концов, обнаружили ряд интересных явлений, способствующих созданию голубого светодиода.

По словам Амано, помогла и случайность. Обычно исследователи работали по стандартному алгоритму: выращивали нитрид-галлиевую структуру, создавали контакты, подавали напряжение, проводили измерения, а потом несли образец на электронную микроскопию, чтобы посмотреть, какая структура получилась. Но однажды в обычном порядке работы произошел сбой: образец сначала просмотрели на электронном микроскопе и лишь потом провели измерения. И обнаружили колоссальное усиление люминесценции (светимости) структур. Только через некоторое время они поняли, что причиной стало воздействие электронного пучка. И действительно, они нашли опубликованные работы, где сообщалось, что люминесценция некоторых материалов, подвергнутых подобной бомбардировке электронами, становилась ярче.

Использовав этот эффект, удалось создать новую генерацию полупроводниковых структур, которые были более эффективны, хотя поначалу и ненамного. Они пошли дальше. Традиционно для таких материалов в качестве легирующей примеси использовался цинк и селен, но Амано предложил применить магний, и голубой диод стал работать гораздо лучше.

Однако технология воздействия электронным пучком была далека от идеальной, особенно с точки зрения промышленного производства. К тому же облучение высокоэнергетическим потоком электронов приводило к появлению радиационных дефектов, которые ухудшали свойства фотодиода. В результате японцы создали установку эпитаксиального роста многослойных нитрид-галлиевых структур, основанную на промышленной МОС-гидридной эпитаксии — химическом осаждении металлоорганических соединений. В этой установке, на создание которой группа Амано потратила много сил, полупроводниковые структуры выращивались в газовой среде, а вместо облучения использовался термический отжиг.

В нашем Институте физики полупроводников мы разрабатываем методы получения наноструктур с принципиально новыми возможностями для нано- и оптоэлектроники, средств связи, информационных технологий, измерительной техники и пр. Эти работы связаны с развитием технологии молекулярно-лучевой эпитаксии (МЛЭ) — одной из основных в современной физике полупроводников и полупроводниковой электронике. МЛЭ представляет собой процесс послойного, контролируемого эпитаксиального роста различных соединений на уровне одного монослоя. Резкие границы раздела создаются за счет низкой скорости роста и резкого изменения потоков в условиях атомарной чистоты материалов в сверхвысоком вакууме.

Установка для молекулярно-лучевой эпитаксии (МЛЭ — напыление различных материалов на плоские подложки в условиях сверхвысокого вакуума) была изготовлена и работает в ИФП им. А. В. Ржанова СО РАН

Развитие современных МЛЭ нанотехнологий открыло возможности конструирования методами зонной инженерии и инженерии наноструктур с электронным спектром и свойствами, определяемыми квантово-механической природой элементарных возбуждений в твердом теле. Использование квантовых эффектов в полупроводниковых системах пониженной размерности — это принципиальная основа для повышения на несколько порядков степени интеграции, увеличения быстродействия и уменьшения потребляемой мощности полупроводниковых устройств в электронике нового поколения.

Когда синий светодиод стал реальностью, он совершил революцию. Появились матричные дисплеи разных конструкций, в которых использованы все три светодиода. Они могут стоять рядом — все равно наш глаз этого не различит. Нам будет казаться, что светится одна точка, и в зависимости от пропорции красного, синего и зеленого мы увидим разные цвета. Сейчас, если научиться печатать подобные структуры дешево, как на бумаге, можно даже выпускать газету, которая будет чуть-чуть светиться.

В новосибирском Институте физики полупроводников им. А. В. Ржанова СО РАН проводятся исследования в рамках основных тенденций развития полупроводниковой электроники. К ним относятся работы по уменьшению размера транзисторов и увеличению степени их интеграции, разработка новых материалов на основе гетероэпитаксиальных полупроводниковых структур и однослойных пленок толщиной в один атомный слой. Активно идет работа по развитию электронной компонентной базы на новых физических принципах. Также проводятся работы, относящиеся к переходу от двумерной к трехмерной схемотехнической архитектуре полупроводниковой электроники.

Точка пересечения

Нобелевский лауреат Х. Амано в ИФП СО РАН. 2019 г.

В те годы я принимал участие в крупном мегапроекте под руководством профессора К. Яги из Токийского технологического университета, посвященном изучению поверхности и границ раздела полупроводниковых гетероструктур. В проекте принимали участие несколько университетов, в том числе и Национальный университет Нагои, где работал Амано. В рамках проекта проходило много научных мероприятий, и, возможно, на каком-то из них мы могли повстречаться.

В Японию же я приехал потому, что в то время там работала группа, которая занималась исследованием процессов на поверхности полупроводника. И они очень заинтересовались эффектом эшелонирования атомных ступеней, который мы тогда открыли. Нас с Амано объединяет то, что мы оба хорошо понимаем, как важно все, что происходит на поверхности полупроводника во время его роста. Увидеть и проконтролировать эти процессы на атомном уровне гораздо легче в вакууме, а не в газовой фазе, где их трудно изучать детально. Конечно, есть еще моделирование, но в любом случае в этом направлении мы продвинулись дальше, чем наши японские коллеги. И когда Амано впервые посетил наш институт, то был потрясен, увидев то, что мы делаем.

Фокус совместных интересов нашего института и организации, которую представляет Амано, — низкоразмерные системы, двумерный электронный газ и т. д. Это область, в которой мы работаем и которая пересекается с областью научных интересов Амано и его коллег. Нас же привлекает промышленная ориентированность исследований японских ученых. У нас в стране подобной тематикой занимается ограниченное число научных групп. И, за исключением нашего института, это, как правило, фундаментальные исследования, не имеющие никакого отношения к практике, — так легче добиться результата.

При прогреве постоянным током до температуры сублимации кремния система атомных ступеней на поверхности Si(111) (справа, а) быстро трансформируется в кластеры — эшелоны ступеней, которые на ОЭМ-изображении появляются в виде широких темных полос (б). Это изменение морфологии поверхности обратимо путем смены направления электрического тока, пропускаемого через образец

Амано руководит своим центром, где сейчас проводятся исследования с нитрид-галлиевыми гетероструктурами, которыми мы тоже занимаемся. Вырастить подобные кристаллы очень трудно — требуются громадные давления, чуть ли не 30 атмосфер. Но можно выращивать их тонким монокристаллическим слоем с помощью эпитаксиальных методов, о которых говорилось выше и которыми мы хорошо владеем. Пока у японцев результаты не слишком впечатляющие, но они понимают, что их можно улучшить за счет применения методов молекулярно-лучевой эпитаксии.

Атомные ступени на поверхности кремния формируются за счет выхода плотно упакованных атомами плоскостей кристаллической решетки. Вверху — схематическое изображение различных видов встраивания атомов в ступень при их осаждении на поверхность

Сам Амано сейчас отходит от классических светодиодов — его больше интересует область их практического применения. Например, в ультрафиолетовых облучателях для воды. Для Японии это очень актуальная проблема, так как пресной воды там мало, а благодаря потеплению климата обострилась проблема бактериального загрязнения воды. Требуется постоянное обеззараживание, а пока самый простой, доступный и не очень приятный способ — обыкновенная хлорка.

Еще один интерес — беспроводное энергоснабжение с помощью микроволнового излучения, например, на основе все тех же нитрид-галлиевых гетероструктур. Предполагается, что с помощью СВЧ мы сможем подзаряжать суперконденсаторы в наших мобильных устройствах. Ведь если из современного телефона вытащить аккумулятор, сколько он будет весить? Основной вес наших сотовых телефонов приходится на батарею и защитное стекло. Ведь, благодаря успехам полупроводниковой электроники, самое главное в них — микросхема — практически ничего не весит.

Завершая визит в научную столицу Сибири, Хироси Амано увез пакет конкретных предложений о взаимовыгодном сотрудничестве с новосибирскими учеными. Его основные пункты были прописаны еще в прошлом году в меморандуме, заключенном между Нагойским университетом и Институтом физики полупроводников СО РАН. Они касаются наших работ по низкоразмерным системам на основе материалов А3В5, А2В6 и четвертой группы (германий, кремний), а также исследований атомных процессов на поверхности и границах раздела полупроводников и анализа дефектов в эпитаксиальных структурах.

Профессор Х. Амано вместе с российским коллегой, академиком А. В. Латышевым, директором ИФП СО РАН. Слева — К. Амано, супруга проф. Амано

В публикации использованы фото С. Зеленского, Д. Щеглова, В. Яковлева и Р. Мельгунова.

Литература
1. Асеев А. Л. Нанотехнологии: вчера, сегодня, завтра // Наука из первых рук. 2008. Т. 23. № 5. С. 24–41.
2. Латышев А. В., Асеев А. Л. Моноатомные ступени на поверхности кремния. Новосибирск: Издательство СО РАН, 2006. 242 с.
3. Латышев А. В., Фелина Л. И. Прогулка по атомным ступеням, или Как перейти от фундаментальных исследований на поверхности к измерениям в мире нано // Наука из первых рук. 2015. Т. 60. № 6. С. 48–59.
4. Latyshev A. V., Aseev A. L., Krasilnikov A. B., Stenin S. I. Transformations on clean Si(111) stepped surface during sublimation // Surf. Sci. 1989. V. 213. N. 1. P. 157–169.

Однако принципиально новая особенностью наноэлектроники связана с тем, что для элементов таких размеров начинают преобладать квантовые эффекты. Появляется новая номенклатура свойств, открываются новые заманчивые перспективы их использования. Если при переходе от микро- к наноэлектронике квантовые эффекты во многом являются паразитными, (например, работе классического транзистора при уменьшении размеров начинает мешать туннелирование носителей заряда), то электроника, использующая квантовые эффекты, — это уже основа новой, так называемой наногетероструктурной электроники.

Объём нынешнего рынка исследований и разработок в области микроэлектроники эксперты оценивают в два-три триллиона долларов. Ожидается, что в ближайшие годы рынок, связанный с нанотехнологией, достигнет одного триллиона долларов, и примерно треть от этой цифры — изделия наноэлектроники. Сбудется ли этот прогноз, трудно сказать, но пока всё к тому сходится.

В России ситуация с развитием наноэлектроники является неоднозначной. Микроэлектроника по сравнению с передним мировым фронтом в России развита достаточно слабо. Разработки в таких областях, как СВЧ, фотоприёмники, излучательные структуры, солнечные батареи, силовая электроника и сейчас на очень хорошем уровне. Потенциал у нас есть, необходимо создать условия для развития наноэлектроники И, к сожалению, за последние пятнадцать лет экономические реформы вместо ожидаемого рывка в этой области привели к потере позиций, сформированных во времена Советского Союза. Тогда наша страна была третьей микроэлектронной державой мира — отставая от Японии и США, конечно, но превосходя по уровню и номенклатуре другие страны. Нишу, которую занимал СССР, сейчас прочно занимают Южная Корея, Тайвань, Китай, небольшие страны Азии, такие как Сингапур, и европейские страны — Германия, Франция, Англия.

В наноэлектронике Россия сохранила преимущества, которые были у Советского Союза. Это касается таких областей, как СВЧ-техника, инфракрасная техника, излучательные приборы на основе полупроводников. Россия является родиной одного из наиболее значимых электронных приборов — полупроводникового лазера, за который получил Нобелевскую премию академик Жорес Алферов.

Во многих областях наноэлектроники стартовые позиции у России достаточно неплохие. На полупроводниковых наногетероструктурах с двумерным электронным газом основывается, например, сотовая связь. Здесь мы, к сожалению, не в лидерах, но сделанные ранее разработки в областях СВЧ, фотоприёмников, излучательных структур, солнечных батарей, силовой электроники и сейчас на очень хорошем уровне. Потенциал у нас есть, особенно если учитывать, что многие специалисты, уехавшие из России в тяжелые времена экономических реформ, весьма успешно работают в самых передовых областях наноэлектроники за рубежом. Необходимо только создать организационные и экономические условия, чтобы всё это развивалось и у нас. Насколько я понимаю последние административные новации в области нанотехнологий, правительственные структуры уже этим озабочены. Ближайшее будущее покажет, насколько всё это правильно, верно и обоснованно. Моё мнение — результаты должны быть.

Ещё один важный момент состоит в том, что Россия — большая, многонациональная страна, и уже поэтому ее наука обречена иметь особые задачи, поставленные силовыми ведомствами. Военные действия ведутся сейчас преимущественно с использованием всё более высокоточного оружия. Космическая система наблюдения и связи важна для удержания контроля на большой территории. Мне очень нравится один из прогнозов Артура Кларка о том, что к 2010 году будет создана глобальная система тотального наблюдения всех за всеми, построенная по тому же принципу, что и сотовая связь, и интернет, — для борьбы с терроризмом. Это весьма актуальная и серьёзная задача также и для России.

Для решения подобных всё более усложняющихся задач требуется электроника качественно нового уровня, и наноэлектроника становится важнейшим компонентом при ответе на вызовы современности.

Читайте также: