Основные свойства жидкостей реферат

Обновлено: 02.07.2024

Плотность и удельный вес. К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в пространстве, свойства, определяющие процессы деформации жидкости, определяющие величину внутреннего трения в жидкости при её движении, поверхностные эффекты.

Содержание

Плотность и удельный вес
Упругость
Вязкость
Поверхностное натяжение
Растворимость газов в капельных жидкостях
Испаряемость
Адсорбция
Список используемой литературы

Прикрепленные файлы: 1 файл

Свойства жидкостей и их технические характеристики.docx

Федеральное государственное бюджетное учреждение

Высшего профессионального образования

Реферат по дисциплине: Гидравлика

Тема: Свойства жидкостей и их технические характеристики

Студента 3 курса

  1. Плотность и удельный вес
  2. Упругость
  3. Вязкость
  4. Поверхностное натяжение
  5. Растворимость газов в капельных жидкостях
  6. Испаряемость
  7. Адсорбция
  8. Список используемой литературы

Плотность и удельный вес. К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в пространстве, свойства, определяющие процессы деформации жидкости, определяющие величину внутреннего трения в жидкости при её движении, поверхностные эффекты.

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости:

где: М - масса жидкости,

W - объём, занимаемый жидкостью.

В международной системе единиц СИ масса вещества измеряется в кг, объём жидкого тела в м 3 ,тогда размерность плотности жидкости в системе единиц СИ - кг/м 3. В системе единиц СГС плотность жидкости измеряется в г/см 3.

Величины плотности реальных капельных жидкостей в стандартных условиях изменяются в системе единиц СИ в широких пределах от 700 кг/м 3 до 1800 кг/м 3, а плотность ртути достигает 13550 кг/м ,плотность чистой воды составляет 998 кг/м 3. В системе единиц СГС пределы изменения плотности жидкости от 0,7 г/см до 1,8 г/см 3, плотность чистой воды 0,998 г/см . Величины плотности газов меньше плотности капельных жидкостей приблизительно на три порядка, т.е. в системе единиц СИ плотности газов при атмосферном давлении и температуре О °С изменяются в пределах от 0,09 кг/м 3 до 3,74 кг/м ,плотность воздуха составляет 1,293 кг/м 3.

Плотность капельных жидкостей и газов зависит от температуры и давления. Зависимость величины плотности жидкости и газа при температуре отличной от 20 °С определяется по формуле Д.И. Менделеева:

где: р и р20 - плотности жидкости (газа) при температурах соответственно

βi - коэффициент температурного расширения.

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С

Плотность капельных жидкостей в зависимости от давления может быть определена в соответствии с уравнением состояния упругой жидкости:

• где: - плотность капельной жидкости при атмосферном давлении рат ,

- коэффициент объёмного сжатия капельной жидкости.

Плотность идеальных газов при давлениях отличных от атмосферного можно определить по известному закону газового состояния Менделеева-Клайперона:

удельный объём газа,

универсальная газовая постоянная,

Кроме абсолютной величины плотности капельной жидкости, на практике пользуются и величиной её относительной плотности, которая представляет собой отношение величины абсолютной плотности жидкости к плотности чистой воды при температуре 4 °С: . Относительная плотность жидкости - величина безразмерная.

Имеется аналогичная характеристика и для газов. Под относительной плотностью газа (по воздуху) понимается отношение величины абсолютной плотности газа к плотности воздуха при стандартных условиях.

О плотности жидкости косвенно можно судить по весовому показателю, - удельному весу жидкости. Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа):

где:G-вес жидкости (газа),

W-объем, занимаемый жидкостью (газом).

Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

Размерность удельного веса жидкости в системе единиц СИ н/м 3 , удельный вес чистой воды составляет 9810 н/м3. Аналогично вводится понятие об относительном удельном весе жидкости,

На практике величина плотности жидкости определяется с помощью простейшего прибора - ареометра. По глубине погружения прибора в жидкость судят о её плотности.

Упругость. Капельные жидкости относятся к категории плохо сжимаемых тел. Причины незначительных изменений объёма жидкости при увеличении давления очевидны, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидкости приходится преодолевать значительные силы отталкивания, действующие между молекулами, и даже испытывать влияние сил, действующих внутри атома. Тем не менее, сжимаемость жидкостей в 5 - 10 раз выше, чем сжимаемость твёрдых тел, т.е. можно считать, что все капельные жидкости обладают упругими свойствами.

Оценка упругих свойств жидкостей может осуществляться по ряду специальных параметров.

-коэффициент объёмного сжатия жидкости представляет собой относительное изменение объёма жидкости при изменении давления на единицу. По существу это известный закон Гука для модели объёмного сжатия:

начальный объём жидкости, (при начальном давлении),

коэффициент объёмного (упругого) сжатия жидкости.

Считается, что коэффициент объёмного сжатия жидкости зависит с достаточно большой точностью только от свойств самой жидкости и не зависит от внешних условий. Коэффициент объёмного сжатия жидкости имеет размерность обратную размерности давления, т.е. м/н.

-адиабатический модуль упругости жидкости К, зависящий от термодинамического состояния жидкости (величина обратная коэффициенту объёмного сжатия жидкости):

Величина модуля упругости жидкости имеет размерность напряжения, т.е. н/м .

об упругих свойствах капельной жидкости можно судить по скорости распространения продольных волн в жидкой среде, которая равна скорости звука в покоящейся жидкости:

С упругими свойствами капельных жидкостей также связаны представления о сопротивлении жидкостей растяжению. Теоретически в чистых жидкостях могут быть достигнуты довольно значительные напряжения. Однако, в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газ) уменьшает величину сопротивления жидкости растяжению практически до 0. По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.

Об упругих свойствах газов можно судить исходя из классического уравнения Пуассона:

где: п - показатель адиабаты равный отношению теплоёмкости газа при постоянном давлении к величине теплоёмкости газа при постоянном объёме.

Для оценки упругих свойств движущегося газа пользуются не абсолютной величиной скорости звука сзв, а отношением скорости потока газа v к скорости звука в газе. Этот показатель носит название числа Маха;

Вязкость. При движении реальных (вязких) жидкостей в них возникают внутренние напряжения, обусловленные силами внутреннего трения жидкости. Природа этих сил довольно сложна; возникающие в жидкости напряжения связаны с процессом переноса импульса (вектора массовой скорости движения жидкости). При этом возникающие в жидкости напряжения обусловлены двумя факторами: напряжениями, возникающими при деформации сдвига и напряжениями, возникающими при деформации объёмного сжатия.

Наличие сил вязкостного трения в движущейся жидкости подтверждается простым и наглядным опытом. Если в цилиндрическую ёмкость, заполненную жидкостью опустить вращающийся цилиндр, то вскоре придёт в движение (начнёт вращаться вокруг своей оси в том же направлении, что и вращающийся цилиндр) и сама ёмкость с жидкостью. Этот факт свидетельствует о том, что вращательный момент от вращающегося цилиндра был передан через вязкую жидкость самой ёмкости, заполненной жидкостью.

Напряжения, возникающие при деформации сдвига согласно гипотезе Ньютона пропорциональны градиенту скорости в движущихся слоях жидкости, а сила трения между слоями движущейся жидкости будет пропорциональна площади поверхности движущихся слоев жидкости:

Где T - сила трения между слоями движущейся жидкости,

S - площадь поверхности слоев движущейся жидкости,

- касательные напряжения, возникающие в жидкости при деформации сдвига,

коэффициент динамической вязкости жидкости.

Величина коэффициента динамической вязкости жидкости при постоянной температуре и постоянном давлении зависит от внутренних (химических) свойств самой жидкости. Размерность коэффициента динамической вязкости в системе единиц СИ: н с/м 2, в системе СГС - д-с/см . Последняя размерность носит название пуаза (пз). Таким образом, \пз =1 д-с/см , а соотношение между единицами вязкости. 1да=0,1 н с/м 2.

Помимо коэффициента динамической вязкости жидкости широко используется коэффициент кинематической вязкости жидкости v, представляющий собой отношение коэффициента динамической вязкости к плотности жидкости:

В системе единиц СИ коэффициент кинематической вязкости измеряется в м /с, в системе единиц СГС единицей измерения коэффициента кинематической вязкости жидкости является стоке (cm), т.е. 1 cm = 1 см /с.

Коэффициент динамической вязкости чистой воды составляет 1-10~3 н-с/м (или 0,01 пз),коэффициент кинематической вязкости чистой воды составляет МО" м /с (или 0,01 cm). - -

Коэффициенты вязкости жидкостей варьируют в весьма широких пределах от 0,0003 доО,139н-с/л/2.

Вязкость жидкости в значительной степени зависит от температуры и давления. При увеличении температуры капельной жидкости коэффициенты её вязкости (как динамический, так и кинематический) резко снижается в десятки и сотни раз, что обусловлено увеличением внутренней энергии молекул жидкости по сравнению с энергией межмолекулярной связи в жидкости.

Зависимость вязкости капельной жидкости от температуры может быть выражена в виде экспоненциальной зависимости:

где: - вязкость капельной жидкости при стандартной температуре TQ - 20 °С,

- экспериментальный температурный коэффициент. Зависимость вязкости жидкости от давления в широком диапазоне давлений остаётся практически линейной:

где: - вязкость жидкости при атмосферном давлении, ар - экспериментальный

Газы обладают несравнимо более низкими коэффициентами вязкости от 0,0000084 до 0,0000192 н-с/м 2, и в отличие от капельных жидкостей вязкость газов увеличивается при увеличении температуры, т.к. с увеличением температуры газа возрастают скорости теплового движения молекул и, соответственно, увеличивается число соударений молекул газа, что делает газ более вязким. Зависимость вязкости газа от давления ничем не отличается от аналогичной зависимости для капельных жидкостей.

Измерение вязкости жидкостей осуществляется с помощью вискозиметров, работающих на принципе истечения жидкости через малое калиброванное отверстие; вязкость вычисляется по скорости истечения.

Кроме деформации сдвига внутреннее сопротивление в жидкости возникает и при объёмном сжатии жидкости, т.е. сжимаемая жидкость стремится восстановить состояние первоначального равновесия. Этот процесс, в некоторой степени, аналогичен проявлению сил сопротивления при деформации сдвига, хотя сам процесс и отличается по своей сути. По этой причине говорят, что в жидкости проявляется так называемая вторая вязкость £,

обусловленная деформацией объёмного сжатия жидкости.

Поверхностное натяжение. Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами.

В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости. На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными. В то же время силы взаимодействия между остальными молекулами жидкости, находящимися внутри объёма, ограниченного пограничным слоем эти силы взаимно уравновешены. Таким образом, остаются не уравновешенными силы взаимодействия между молекулами, находящимися лишь во внешнем (пограничном слое). Тогда в пограничном слое возникают напряжения, которые автоматически балансируют не сбалансированные силы притяжения. Такие напряжения называются поверхностным натяжением жидкости.

Этому напряжению будут соответствовать силы поверхностного натяжения. Под действием этих сил малые объёмы жидкости принимают сферическую форму (форму капли), соответствующей минимуму внутренней энергии; в трубках малого диаметра жидкость поднимается (или опускается) на некоторую высоту по отношению к уровню покоящейся жидкости. Последнее явление носит название капиллярности. Жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей. Высоту h подъёма (опускания) жидкости в капилляре с диаметром d можно определить из соотношения:

? где: А - постоянная зависящая от свойств жидкости.

Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.

Содержание

Введение…………………………………………………………………………………….3
1. Основные физические свойства жидкостей……………………………………………4
2 Основы статики и динамики жидкости………………………………………………..16
2.1. Равновесное состояние жидкости и действующие силы…………………………. 16
2.2. Условия действия поверхностных сил при равновесии жидкости………………..16
2.3. Гидростатическое давление в точке………………………………………………….17
Список использованной литературы……………………………………………………..18

Вложенные файлы: 1 файл

реферат.docx

Профиль: "Автомобильный сервис"

Выполнил студент 2 курса

1. Основные физические свойства жидкостей……………………………… ……………4

2 Основы статики и динамики жидкости………………………………………………..16

2.1. Равновесное состояние жидкости и действующие силы…………………………. 16

2.2. Условия действия поверхностных сил при равновесии жидкости……… ………..16

2.3. Гидростатическое давление в точке…………………………………… …………….17

Список использованной литературы…………………………………………………… ..18

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости — несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

1. Основные физические свойства жидкостей

Определение жидкости. Основные законы, используемые в механике жидкости, — те же, что и в механике твердых тел. Однако применение этих законов к задачам механики жидкости отличается некоторыми особенностями благодаря разнице между свойствами жидкостей и твердых тел. Поэтому изучение механики жидкости целесообразно начать c определения и оценки ее основных свойств.

Жидкости (в широком смысле слова) отличаются от твердых тел легкой подвижностью частиц. B то время как для изменения формы твердого тела к нему нужно приложить конечные, иногда очень большие, силы, изменение формы жидкости может происходить под действием даже самых малых сил. Так, жидкость течет под действием собственного веса, если для этого представляется возможность.

Жидкость, как и всякое физическое тело, имеет молекулярное строение, т. e. состоит из отдельных частиц — молекул, объем пустот между которыми во много раз превосходит объем самих молекул. Однако ввиду чрезвычайной малости не только самих молекул, но и расстояний между ними (по сравнению c объемами, рассматриваемыми при изучении равновесия и движения жидкости) в механике жидкости ее молекулярное строение не рассматривается; предполагается, что жидкость заполняет пространство сплошь, без образования каких бы то ни было пустот. Тем самым вместо самой жидкости изучается ее модель, обладающая свойством непрерывности (фиктивная сплошная среда — континуум). B этом состоит гипотеза o непрерывности или сплошности жидкой среды. Эта гипотеза упрощает исследование, так как позволяет рассматривать все механические характеристики жидкой среды (скорость, плотность, давление и т. д.) как функции координат точки в пространстве и во времени, причем в большинстве случаев эти функции предполагаются непрерывными и дифференцируемыми. Непрерывную модель жидкости можно применять до тех пор, пока в достаточно малых объемах жидкости содержится большое количество молекул.

Интересуясь, например вопросом, как велики в данной точке давление внутри жидкости или скорость ее движения, важно знать давление и скорость лишь в некотором весьма малом объеме, a не строго в данной геометрическом точке. Этот объем действительно может быть очень малым. Так, известно, что в 1∙10 -6 м 3 воздуха находится 2,7∙10 19 молекул.

Этот пример показывает, что, заменяя реальную жидкость ее моделью в виде непрерывной жидкой среды, мы действительно не делаем никакой ошибки до тех пор, пока не будем интересоваться движением молекул или состоянием жидкости внутри межмолекулярного пространства.

Жидкости c точки зрения механических свойств разделяются на два класса:

  • малосжимаемые (капельные);
  • сжимаемые (газообразные).

C позиций физики капельная жидкость значительно отличается от газа; c позиций механики жидкости различие между ними не так велико, и часто законы, справедливые для капельных жидкостей, могут быть приложены и к газам в случаях, когда сжимаемостью последних можно пренебречь (например, при расчeте вентиляционных каналов).

Капельные жидкости обладают вполне определенным объемом, величина которого практически не изменяется под действием сил. Газы же, занимая все предоставляемое им пространство, могут значительно изменять объем, сжимаясь и расширяясь под действием сил. Таким образом, капельные жидкости легко изменяют форму (в отличие от твердых тел), но с трудом изменяют объем (в отличие от газов), а газы легко изменяют как объем, так и форму.

Основные свойства жидкостей, существенные при рассмотрении задач механики жидкости, — плотность и вязкость. В некоторых случаях (при образовании капель, течении тонких струй, образовании капиллярных волн и др.) имеет значение также поверхностное натяжение жидкостей.

Единицы измерения. Прежде чем перейти к изучению основных свойств жидкости, остановимся на единицах измерения, принятых в гидравлике и аэродинамике.

За основу принята Международная система единиц измерении СИ (наряду со внесистемными единицами), однако в инженерной практике теплогазоснабжения и вентиляции используется также система МКГСС, положенная в основу технических нормативных документов (ГОСТ, СНиП и т. д.) и каталожных данных, a в ряде случаев система СGS.

Основными единицами системы СИ являются единицы длины (метр, м), массы (килограмм, кг), времени (секунда, с), термодинамической температуры (кельвин, K).

Производные единицы системы СИ, употребляемые в гидравлике и аэродинамике, приведены в табл. 1.1.

Молекулы в жидкостях находятся близко друг к другу, примерно на расстояниях равных размерам самих молекул. Это является причиной высокого молекулярного ван-дер-ваальсового давления, которое равно . Для воды, например, он равен около 11000 атм. Удельный объем жидкостей в тысячи раз меньше чем газов, следовательно, отношение в жидкостях в миллионы раз больше, чем в газах. Поэтому можно пренебречь внешним давлением, и уравнение Ван-дер-Ваальса примет вид



Опыт показывает, что коэффициент сжимаемости большинства жидкостей лежит в пределах от 10 -4 до 10 -5 .


Коэффициент сжимаемости жидкости зависит от давления. Он возрастает с повышением температуры. К этому результату можно прийти и опытным путем и исходя из уравнения Ван-дер-Ваальса. Поскольку это уравнение связывает температуру, объем и давление, то из него можно вычислить величину . При расчете необходимо учитывать, что постоянные a и b на самом деле зависят от температуры. Совокупность опытных данных позволила получить эмпирическую формулу для коэффициента сжимаемости жидкости:


где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V 2 ) при температуре T. Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления.

Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент c равен . Коэффициент сжимаемости воды равен , а ртути –.

Тепловое расширение жидкости

Тепловое расширение вещества характеризуется коэффициентом объемного расширения


,

т.е. относительным изменением объема V при изменении температуры T на 1 К.

Числовые значения коэффициента a сильно зависят от температуры и давления. Для различных жидкостей значения a при одинаковых температурах могут меняться весьма значительно. Так, например, для воды , для бензола , для жидкой углекислоты , глицерина и т.д. При повышении температуры a сильно возрастает. Так для жидкой углекислоты при повышении температуры от 0° до 20° коэффициент теплового расширения возрастает вдвое. Увеличение давления несколько снижает значение a.

Вода обладает аномальным тепловым расширением. В интервале от 0° до 3,98° коэффициент a отрицателен: при нагревании объем воды уменьшается и наибольшей плотности вода достигает при 3,98° C. При этой температуре a = 0.

Причиной этого явления является то, что молекулы воды имеют различный состав: не только H2 O, но 2H2 O и 3H2 O. Относительные количества этих молекул меняются с температурой и давлением.

Теплоемкость жидкостей

Внутренняя энергия жидкостей определяется не только кинетической энергией тепловых движений частиц, но и их потенциальной энергией взаимодействия. Поэтому закономерности, полученные для теплоемкостей идеальных газов из уравнений кинетической теории, не могут быть справедливы для жидкостей.

Опыт показывает, что теплоемкость жидкостей зависит от температуры, причем вид зависимости у разных жидкостей различный. У большинства из них теплоемкость с повышением температуры увеличивается, но есть и такие у которых, наоборот, - уменьшается. У некоторых жидкостей теплоемкость с повышением температуры сначала падает, а затем, пройдя через минимум, начинает расти. Такой ход теплоемкости наблюдается у воды. Жидкости с большим молекулярным весом обычно имеют большие значения теплоемкостей. Особенно это проявляется у органических жидкостей.

У жидкостей, как и газов, следует различать теплоемкость при постоянном объеме и при постоянном давлении. Разность молярных теплоемкостей равна Cp – CV равна работе расширения pdV ( p – молекулярное давление ) моля жидкости при его нагревании на один градус, поэтому численное значение этой разности зависит от значения коэффициента объемного теплового расширения жидкости. В отличие от идеальных газов значение Cp - CV у жидкостей не равно постоянной R, а может быть и больше и меньше в зависимости от значения коэффициента объемного расширения и от величины внутренних сил взаимодействия частиц жидкости, против которых совершается работа расширения (давление p в выражении pdV связано именно с этими силами).

Так, у жидкого аргона при 140 К теплоемкость , а и, следовательно . У воды же при температуре около 0° C теплоемкость , а , так что .


Таким образом, численные значения теплоемкостей жидкостей могут быть самыми разнообразными. Исключение составляют жидкие металлы, у которых молярная теплоемкость обычно близка к значению .

Явления переноса в жидкостях

В жидкостях, как и в газах, наблюдаются явления диффузии, теплопроводности и вязкости. Но механизм этих процессов в жидкостях иной, чем в газах.

В отличие от газов, в жидкостях отсутствует понятие длины свободного пробега. Это связано с тем, что в жидкостях среднее расстояние между молекулами такого же порядка, как и размеры самих молекул. Молекулы жидкости могут совершать лишь малые колебания в пределах, ограниченных межмолекулярными расстояниями.

Такие колебания молекул время от времени сменяются скачками на некоторое расстояние d, происходящими из-за получения молекулой в результате флуктуации избыточной энергии от соседних молекул. Колебания, сменяющиеся скачками, – и есть тепловые движения молекул жидкости.

Для явления диффузии в жидкости справедлив закон Фика. Он гласит:


,


где I – диффузионный поток в направлении оси X, D – коэффициент диффузии, а - градиент концентрации по оси X.

Обозначим время между скачками молекул через t, тогда величина - скорости молекулы. Это дает возможность сравнить со средней длинной свободного пробега, а - со средней скоростью молекул. Тогда по аналогии с идеальными газами коэффициент диффузии (точнее самодиффузии) жидкости равен:


.

Коэффициент самодиффузии сильно зависит от температуры, т.е. с повышением температуры он увеличивается.

Выражение коэффициента диффузии можно переписать в виде


,


где , причем n - частота вышеописанных колебаний, а w – энергия, необходимая для скачка молекулы, называемая энергией активации молекулы.

Численное значение коэффициента диффузии у жидкостей много меньше чем у газов. Например коэффициент диффузии NaCl в воде равен 1,1·10 -9 м 2 /с, в то время как для диффузии аргона в гелий он равен 7·10 -5 м 2 /с.

Внутреннее трение жидкостей возникает при движении жидкости из-за переноса импульса в направлении, перпендикулярном к направлению движения. Перенос импульса из одного слоя в другой осуществляется при скачках молекул, о которых говорилось выше.

Очевидно, что жидкость будет тем менее вязкой, чем меньше время t между скачками молекул, и значит, чем чаще происходят скачки. Исходя из этого, можно написать выражение для коэффициента вязкости, называемого уравнением Френкеля – Андраде:


.


Множитель C, входящий в это уравнение зависит от дальности скачка , частоты колебаний n и температуры. Однако температурный ход вязкости определяется множителем e w / kT . Как следует из этой формулы, с повышением температуры вязкость быстро уменьшается.

Теплопроводность

Теплопроводность в жидкостях имеет место при наличии градиента температуры. При этом энергия в жидкостях передается в процессе столкновения колеблющихся частиц. Частицы с более высокой энергией совершают колебания с большей амплитудой, и при столкновениях с другими частицами как бы раскачивают их, передавая им энергию. Такой механизм передачи энергии не обеспечивает ее быстрого переноса. Поэтому теплопроводность жидкостей очень мала.

Например, коэффициент теплопроводности этилового спирта составляет 1,76 Вт/м·К. Исключение составляют жидкие металлы, коэффициенты теплопроводности которых близки к значениям для твердых металлов. Это объясняется тем, что тепло в жидких металлах переносится не только вместе с передачей колебаний от одних частиц к другим, но и при помощи электронов, которые есть в металлах, но отсутствуют в других жидкостях.

Парообразование и кипение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.

Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.

Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.

С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей, должна быть плотность пара, чтобы конденсация могла сравняться с испарением.

Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.

По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.

Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.

В первую очередь стоит сказать что жидкости, это то с чем мы постоянно сталкиваемся в процессе нашей повседневной жизни (даже первое восприятие окружающего мира для детей сводится к тому, что все вокруг состоит из твердых тел и жидкостей). Мы встречаемся с одними видами жидкостей наблюдаем другие, но при этом каждого из нас иногда посещает мысль о том какими свойствами обладает та или иная жидкость, а зависит ли это от ее структуры или же происходит какое либо изменение в жидкостях под воздействием окружающей среды, а поменяется ли структура жидкости когда она будет находится под каким-то воздействием с которым она не встречалась при нормальных условиях. Да и вообще какие бывают разновидности жидкостей и какова их структура. На эти вопросы ищут ответы ученные в области физики при помощи изучения жидкостей разных видов путем проведения различных опытов, с целью выявления их физических и химических свойств.

Содержание работы

Введение…………………………………………………………………………….…3
Определение жидкости……………………………………………………………..…4
Основные свойства жидкости……………………………………………..……. 4
Гидростатика………………………………………………………………………. …6
Гидростатическое давление………………………………………………..……. 6
Основное уравнение гидростатики…………………………………………. …7
Понятие о пьезометрической высоте и вакууме………………………………. 8
Приборы для измерения давления……………………………………………….10
Основы гидродинамики………………………………………………………………11
Основные понятия о движении жидкости. Уравнение расхода (неразрывности)…………………………………………………………………. 11
Уравнение Бернулли……………………………………………………….……..12
Режимы движения жидкости…………………………………………………..…14
Гидравлические сопротивления……………………………………………………. 15
Общие сведения о гидравлических потерях…………………………………….15
Местные сопротивления……………………………………………………….…17
Гидропривод……………………………………………………………………..……20
Принцип действия гидропривода……………………………………………..…20
Основные элементы объемного гидропривода……………………………….…21
Насосы объемного гидропривода…………………………………………………….22
Общая характеристика насосов и их классификация………………………..….22
Основные параметры объемных насосов……………………………….………23
Объемные гидродвигатели и гидроаппаратура………………………………. …..24
Объемные гидродвигатели……………………………………………….………24
Гидроаппаратура………………………………………………………….………28
Заключение……………………………………………………………………………..
Список источников……

Содержимое работы - 1 файл

ФГБОУ ВПО ВСГУТУ

Кафедра: Биомедицинская техника, процессы и аппараты пищевых производств

На тему: Жидкость и ее основные физические свойства

3-го курса Павлов А.В.

  1. Введение………………………………………………………… ………………….…3
  2. Определение жидкости………………………………………………………… …..…4
    1. Основные свойства жидкости……………………………………………..……. ..4
    1. Гидростатическое давление………………………………………………..…… . 6
    2. Основное уравнение гидростатики………………………………………….. ..…7
    3. Понятие о пьезометрической высоте и вакууме………………………………. 8
    4. Приборы для измерения давления……………………………………………….10
    1. Основные понятия о движении жидкости. Уравнение расхода (неразрывности)……………………………………… …………………………. 11
    2. Уравнение Бернулли………………………………………………………. ……..12
    3. Режимы движения жидкости…………………………………………………..… 14
    1. Общие сведения о гидравлических потерях…………………………………….15
    2. Местные сопротивления…………………………………………… ………….…17
    1. Принцип действия гидропривода……………………………………………. .…20
    2. Основные элементы объемного гидропривода……………………………….…21
    1. Общая характеристика насосов и их классификация………………………..….22
    2. Основные параметры объемных насосов……………………………….………23
    1. Объемные гидродвигатели………………………………………… …….………24
    2. Гидроаппаратура……………………………………… ………………….………28

    В первую очередь стоит сказать что жидкости, это то с чем мы постоянно сталкиваемся в процессе нашей повседневной жизни (даже первое восприятие окружающего мира для детей сводится к тому, что все вокруг состоит из твердых тел и жидкостей). Мы встречаемся с одними видами жидкостей наблюдаем другие, но при этом каждого из нас иногда посещает мысль о том какими свойствами обладает та или иная жидкость, а зависит ли это от ее структуры или же происходит какое либо изменение в жидкостях под воздействием окружающей среды, а поменяется ли структура жидкости когда она будет находится под каким- то воздействием с которым она не встречалась при нормальных условиях. Да и вообще какие бывают разновидности жидкостей и какова их структура. На эти вопросы ищут ответы ученные в области физики при помощи изучения жидкостей разных видов путем проведения различных опытов, с целью выявления их физических и химических свойств.

    Жи́дкость — одно из агрегатных состояний вещества . Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

    Жидкое состояние обычно считают промежуточным между твёрдым телом и газом : газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

    Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

    Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

    Вещество в жидком состоянии существует в определённом интервале температур , ниже которого переходит в твердое состояние (происходит кристалли зация либо превращение в твердотельное аморфное состояние — стекло ), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления .

    Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы .) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

    Все жидкости принято делить на чистые жидкости и смеси . Некоторые смеси жидкостей имеют большое значение для жизни: кровь , морская вода и др. Жидкости могут выполнять функцию растворителей .

    В технической гидромеханике под жидкостью понимают физическое тело, обладающее: а) в отличие от твёрдого тела текучестью; и б) в отличие от газа весьма малой изменяемостью своего объёма. Иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова, удовлетворяющую условиям а) и б) называют капельной жидкостью .

    Жидкая частица — это часть жидкости, малая по сравнению с объёмом рассматриваемой жидкости, и в то же время содержащая макроскопически большое количество молекул жидкости.

    2. Определение жидкости

    Жидкость - физическое тело, обладающее свойством текучести, т.е. способностью неограниченно изменять свою форму под действием даже весьма малых сил, но в отличие от газов практически не изменяющее свой объем при изменении давления.

    В гидравлике рассматривают только капельные жидкости. К ним относятся вода, нефть, керосин, бензин, ртуть и др. Газообразные жидкости - воздух и другие газы - в обычном состоянии капель не образуют. Основной особенностью капельных жидкостей является то, что в большинстве случаев их рассматривают как несжимаемые.

    2.1. Основные свойства жидкости

    Рассмотрим основные физические свойства жидкости: плотность, удельный вес, температурное расширение и вязкость.

    1 Плотность - отношение массы жидкости m к занимаемому объему V :

    Единица плотности в системе СИ- .Плотность воды при температуре .

    где -вес жидкости в объеме V.

    Для воды при имеем .

    Между удельным весом и плотностью можно найти связь, если учесть что G=mg:

    1. Температурное расширение. Характеризируется температурным коэффициентом объемного расширения, представляющим собой относительное изменение объема жидкости при изменении температуры на :
    1. Вязкость-свойство жидкости оказывать сопротивление относительному движению (сдвигу) ее слоев. Это свойство проявляется в том, что в жидкости при ее движении между слоями возникают касательные напряжения. При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью (рис. 1.1). Скорость U уменьшается по мере уменьшения расстояния y от стенки.
    Согласно гипотезе И.Ньютона касательные напряжения , возникающие в движущейся жидкости, зависят от ее рода и характера и прямо пропор-циональны градиенту скорости
    Рисунок 1.1 – Профиль скоростей при течении вязкой жидкости

    где коэффициент динамической вязкости жидкости; -приращение скорости, соответствующее приращению координаты dy.

    Градиент скорости характеризует интенсивность сдвига жидкости в данной точке, коэффициент - вязкость капельных жидкостей и имеет размерность Нс/м 2 (Па∙с).

    На практике наиболее часто используется коэффициент кинематической вязкости

    Он измеряется в . Для воды при .

    3. Гидростатика

    3.1 Гидростатическое давление

    Гидростатика — это раздел гидравлики, в котором изучаются законы равновесия жидкости и применение этих законов для решения практических задач.

    На жидкость, находящуюся в состоянии равновесия (покоя), действуют две категории сил: поверхностные и массовые.

    Поверхностные силы - это силы, действующие на поверхности объемов жидкости, например, сила давления поршня, сила атмосферного давления. Массовыми являются силы, пропорциональные массе жидкости: силы тяжести, инерции. В результате действия внешних сил внутри жидкости возникает напряжение сжатия или гидростатическое давление. Итак, гидростатическим давлением р называется сжимающее напряжение, возникающее внутри покоящейся жидкости. Средним гидростатическим давлением называется отношение

    где F- сжимающая сила, Н; S- площадь площадки, .

    Гидростатическое давление, как и напряжение, измеряется в или в паскалях (Па):1 =1Па= = Кроме того, гидростатическое давление измеряется в , высотой столба жидкости, мм вод.ст. и мм рт. ст., в атмосферах физических ,а, и технических ,ат. На практике давление часто имеряют в технических атмосферах. Между единицами существует следующая связь: .

    Гидростатическое давление имеет такие свойства:

    а) гидростатическое давление направлено всегда по внутренней нормали (перпендикуляру) к площадке, на которую оно действует (рис 2.1);

    Рисунок 2.1 - Направление давления

    б) гидростатическое давление в любой точке жидкости по всем направлениям одинаково.

    3.2 Основное уравнение гидростатики

    Возьмем в жидкости произвольную точку с координатой Z и глубиной погружения h (рис 2.2).

    Гост

    ГОСТ

    Все тела, которые окружают человека, состоят из различных веществ и имеют различные свойства и характеристики. Все объекты материального мира построены по единым правилам. Они состоят из атомов, молекул и иных мелких образований на микроуровне. Все соединения не имеют общих показателей, так как они исчисляются миллионами. Поэтому и свойства у них также различны. Все вещества имеют четыре основных агрегатных состояния:

    • газообразное;
    • твердое;
    • в виде жидкости;
    • в виде плазмы.

    При рассмотрении жидкости необходимо понять, что они также обладают собственными свойствами, характеристиками, а также особенностями строения. При классификации различных жидкостей за основу взяты их основные свойства, структура и химическое строение. Также имеют принципиальное значение типы взаимодействия между различными частицами и их составляющими компонентами.

    Рисунок 1. Главные свойства жидкостей. Автор24 — интернет-биржа студенческих работ

    Выделяют ряд основных видов жидкостей. Среди них преобладают те, которые состоят из атомов, где основной сдерживающей силой является сила Ван-дер-Ваальса. Подобные жидкие газы можно разглядеть в метане, аргоне и некоторых других веществах. Подобные жидкости состоят из пары одинаковых атомов. Также выделяют вещества, которые состоят из связанных между собой ковалентных связей, а также те, где присутствуют элементы водородной связи. Также есть интересные варианты особенных структур жидкости. Они выражаются в виде:

    • жидких кристаллов;
    • неньютоновской жидкости.

    Физические свойства жидкости

    Рисунок 2. Физические свойства жидкостей. Автор24 — интернет-биржа студенческих работ

    Готовые работы на аналогичную тему

    Обычно выделяют физические свойства жидкости при рассмотрении характерных черт того или иного вещества. Они отличают их от определенного агрегатного состояния. В настоящее время выделяется достаточно большое количество основных характеристик. Они позволяют с большой степенью точности сделать описание рассматриваемых веществ.

    Среди таких физических свойств жидкости выделяют:

    • маленькая возможность изменения собственного объема при изменении температуры и давления;
    • обладание свойством текучести.

    Любая жидкость может легко менять свою форму и распределяться по определенному объему. Форма жидкости зависит от собственных характеристик и воздействия внешних факторов. Сила тяжести позволяет деформировать молекулы жидкости до определенного состояния. Их форма становится неопределенной. При помещении жидкости в такие условия, где силы притяжения ограничены или почти полностью отсутствуют, она примет совершенно новые определенные формы. Жидкости принимает форму идеального шара. Подобный эффект можно наблюдать на орбите Земли на борту Международной космической станции.

    При рассмотрении объема жидкости общие признаки соответствия свойств можно разглядеть и у газов. Газы и жидкости могут занимать весь объем пространства, где они находятся в определенное время. Он может быть ограничен лишь стенками сосуда или помещения.

    Вязкость

    Рисунок 3. Вязкость жидкости. Автор24 — интернет-биржа студенческих работ

    Одним из уникальных свойств жидкости является вязкость. При ее рассмотрении активно пользуются рядом основных параметров, которые заключаются в градиенте скорости движения и касательном напряжении. У этих величин есть линейная зависимость, которая отображается в ряде формул и основополагающих правилах. Вязкость подразумевает создание неограниченного движения вещества независимо от воздействия внешних факторов и сил.

    В пример можно привести свойство воды при вытекании из сосуда. Жидкость будет продолжать осуществлять этот процесс, несмотря на все приложенные внешние воздействия, которые мешают так или иначе это сделать. К таким воздействиям относят обычно силу трения, силу тяжести и иные факторы.

    Для неньютоновских жидкостей действуют иные параметры. Подобный тип жидкостей обладает большой степенью вязкости, поэтому оставляют за движением след. Этот показатель полностью зависит от приложенной температуры. При увеличении температуры вязкость некоторых веществ будет уменьшаться или увеличиваться. Эти действия зависят от химического строения жидкости.

    Теплоемкость и поверхностное натяжение

    Жидкости обладают способностями по поглощению веществами определенного количества тепла. Это им необходимо для того, чтобы повысить собственную температуру вещества. От веществ с разной степенью соединений и других показателей зависят способности по теплоемкости. Некоторые могут обладать более мощной теплоемкостью по сравнению с другими жидкостями. Одними из самых успешных теплоемких веществ является вода. Она накапливает в своих молекулах определенное количество тепла и сохраняет его некоторое время. Поэтому именно воду принято активно использовать в качестве элемента системы отопления, а также для приготовления пищи и иных нужд человека.

    Поверхностное натяжение достигается в тот момент, когда жидкость занимает определенный объем. Она снаружи может граничить с другой средой, например, воздухом или другим веществом. В месте соприкосновения этих веществ создается так называемое разделение фаз. Также это явление принято считать поверхностным натяжением. Молекулы жидкости стремятся в этом положении окружить себя такими же частицами и сжимают жидкость еще больше. Поэтому визуально поверхность жидкого тела словно натягивается. Такое же явление начинает возникать при отсутствии признаков иных внешних факторов, так как идеальной формой жидкости является шар.

    Текучесть и сжимаемость

    Для твердых и жидких тел выделяют ряд общих свойств. Одним из них стала текучесть. Для жидкостей она носит неограниченный характер. Оно возникает при воздействии внешних усилий к исследуемому объекту. В этом случае существует несколько вариантов развития событий. Жидкости в зависимости от степени и интенсивности воздействия может разделиться на два объекта или может начать перетекать. Новые части точно также заполнят объем сосуда, поскольку каждая из них не теряет первоначальных свойств.

    Также жидкости чутко реагируют на воздействие различной температуры. Самая большая метаморфоза происходит при изменении агрегатного состояния вещества. Это достигается в процессе нагрева, охлаждения или кипения.

    Сжимаемость характерна больше для газообразной жидкости. Они могут поддаваться сжатию при возникновении определенных условий. Одной из особенностей этого свойства является скорость всего процесса, а также его равномерность.

    Помимо этого, жидкости могут испаряться и вновь конденсироваться. При испарении процесс характеризуется постепенным переходом вещества из жидкого агрегатного состояния в твердое. Конденсация обозначает обратный процесс по отношению к испарению.

    Читайте также: