Определение массы земли реферат

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АМУРСКОЙ ОБЛАСТИ

Государственное профессиональное образовательное

автономное учреждение Амурской области

Выполнила: студентка 113 группы,

Семенова Александра Александровна

Проверил: Зинаков В.И.

Дата защиты: ____________________ Оценка: _________________________

Подпись преподавателя: __________

1. Изучение Земли из космоса …………………………………………..….стр.

2. Возникновение жизни на Земле ………………….……………………. стр.

3. Движутся ли материки Земли?……………………….………….………стр.

Список используемой литературы …………………………….…..стр.

Человека всегда интересовал вопрос о том, как устроен окружающий мир и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые – космологические – мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провел греческий ученый Эратосфен (276 – 194 до н.э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет.

Земля - это третья от Солнца планета Солнечной системы. Она обращается вокруг звезды по эллиптической орбите (очень близкой к круговой) со средней скоростью 29.765 км/с на среднем расстоянии 149.6 млн. км за период равный 365.24 суток. Земля имеет спутник - Луну, обращающуюся вокруг Солнца на среднем расстоянии 384400 км. Период вращения планеты вокруг своей оси 23 ч 56 мин 4.1 сек. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года. Форма Земли - геоид, приближенно - трехосный эллипсоид, сфероид. Средний радиус Земли составляет 6371.032 км, экваториальный - 6378.16 км, полярный - 6356.777 км. Площадь поверхности земного шара 510 млн. км 2 , объем - 1.083 * 10 12 км 2 , средняя плотность 5518 кг/м 3 . Масса Земли составляет 5976 * 10 21 кг. Земля обладает магнитным и тесно связанным с ним электрическим полями. Гравитационное поле Земли обуславливает её сферическую форму и существование атмосферы. По современным космогоническим представлениям, Земля образовалась примерно 4.7 млрд. лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества, Земля, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34.6%), кислород (29.5%), кремний (15.2%), магний (12.7%). Земная кора, мантия и внутренняя чаять ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура.

Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Большая часть Земли занята Мировым океаном (361.1 млн. км 2 ;70.8%), суша составляет 149.1 млн. км 2 (29.2%), и образует шесть материков и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомолунгма), горы занимают свыше 1/3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Средняя глубина мирового океана около 3800 м (наибольшая глубина 11020 м - Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн. км 3 , средняя соленость 35 г/л. Атмосфера Земли, общая масса которой 5.15 * 10 15 т, состоит из воздуха - смеси в основном азота (78.08%) и кислорода (20.95%), остальное - это водяные пары углекислый газ, а также инертный и другие газы. Максимальная температура поверхности суши 57 0 -58 0 C (в тропических пустынях Африки и Северной Америки), минимальная - около -90 0 C (в центральных районах Антарктиды). Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древних горных пород составляет свыше 3.5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий примерно 5/6 всего геологического летоисчисления (около 3 млрд. лет), и фанерозой, охватывающей последние 570 млн. лет. Около 3-3.5 млрд. лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы.

Совокупность всех населяющих ее живых организмов, так называемое живое вещество Земли, оказала значительное влияние на развитие атмосферы, гидросферы и осадочной оболочки. Новый фактор, оказывающий мощное влияние на биосферу - производственная деятельность человека, который появился на Земле менее 3 млн. лет назад. Высокий темп роста населения Земли (275 млн. чел в 1000 году, 1.6 млрд. чел в 1900 году и примерно 6.3 млрд. чел в 1995 году) и усиление влияния человеческого общества на природную среду выдвинули проблемы рационального использования всех природных ресурсов и охраны природы.

1. Изучение земли из космоса

2. Возникновение жизни на земле

Возникновению живого вещества на Земле (и, как можно судить по аналогии, на других планетах) предшествовала довольно длительная и сложная эволюция химического состава атмосферы, в конечном итоге приведшая к образованию ряда органических молекул. Эти молекулы впоследствии послужили как бы “кирпичиками” для образования живого вещества.

По современным данным планеты образуются из первичного газово-пылевого облака, химический состав которого аналогичен химическому составу Солнца и звёзд, первоначальная их атмосфера состояла в основном из простейших соединений водорода - наиболее распространённого элемента в космосе. Больше всего было молекул водорода, аммиака, воды и метана. Кроме того, первичная атмосфера должна была быть богата инертными газами - прежде всего гелием и неоном. В настоящее время благородных газов на Земле мало так как они в своё время диссипировали (улетучились) в межпланетное пространство, как и многие водородсодержащие соединения.

Однако, по-видимому, решающую роль в установлении состава земной атмосферы сыграл фотосинтез растений, при котором выделяется кислород. Не исключено, что некоторое, а может быть даже существенное, количество органических веществ было принесено на Землю при падениях метеоритов и, возможно, даже комет. Некоторые метеориты довольно богаты органическими соединениями. Подсчитано, что за 2 млрд. лет метеориты могли принести на Землю от 108 до 1012 тонн таких веществ. Также органические соединения могут в небольших количествах возникать в результате вулканической деятельности, ударов метеоритов, молний, из-за радиоактивного распада некоторых элементов. Имеются довольно надёжные геологические данные, указывающие на то, что уже 3.5 млрд. лет назад земная атмосфера была богата кислородом. С другой стороны возраст земной коры оценивается геологами в 4.5 млрд. лет. Жизнь должна была возникнуть на Земле до того, как атмосфера стала богата кислородом, так как последний в основном является продуктом жизнедеятельности растений. Согласно недавней оценке американского специалиста по планетной астрономии Сагана, жизнь на Земле возникла 4.0-4.4 млрд. лет назад. Механизм усложнения строения органических веществ и появление у них свойств, присущих живому веществу, в настоящее время ещё недостаточно изучен, хотя в последнее время наблюдаются большие успехи в этой области биологии. Но уже сейчас ясно, что подобные процессы длятся в течение миллиардов лет. Любая сколь угодно сложная комбинация аминокислот и других органических соединений - это ещё не живой организм.

Можно, конечно, предположить, что при каких-то исключительных обстоятельствах где-то на Земле возникла некая “праДНК”, которая и послужила началом всему живому. Вряд ли, однако, это так, если гипотетическая “праДНК” была вполне подобна современной. Дело в том, что современная ДНК сама по себе совершенно беспомощна. Она может функционировать только при наличии белков-ферментов. Думать, что чисто случайно, путём “перетряхивания” отдельных белков - многоатомных молекул, могла возникнуть такая сложнейшая машина, как “праДНК” и нужный для её функционирования комплекс белков-ферментов - это значит верить в чудеса. Однако можно предположить, что молекулы ДНК и РНК произошли от более примитивной молекулы. Для образовавшихся на планете первых примитивных живых организмов высокие дозы радиации могут представлять смертельную опасность, так как мутации будут происходить так быстро, что естественный отбор не поспеет за ними. Заслуживает внимания ещё такой вопрос: почему жизнь на Земле не возникает из неживого вещества в наше время? Объяснить это можно только тем, что ранее возникшая жизнь не даст возможность новому зарождению жизни. Микроорганизмы и вирусы буквально съедят уже первые ростки новой жизни. Нельзя полностью исключать и возможность того, что жизнь на Земле возникла случайно.

Существует ещё одно обстоятельство, на которое, может быть, стоит обратить внимание. Хорошо известно, что все “живые” белки состоят из 22 аминокислот, между тем, как всего аминокислот известно свыше 100. Не совсем понятно, чем эти кислоты отличаются от остальных своих “собратьев”. Нет ли какой-нибудь глубокой связи между происхождением жизни и этим удивительным явлением? Если жизнь на Земле возникла случайно, значит, жизнь во Вселенной редчайшее (хотя, конечно, ни в коем случае не единичное) явление. Для данной планеты (как, например, наша Земля) возникновение особой формы высокоорганизованной материи, которую мы называем “жизнью”, является случайностью. Но в огромных просторах Вселенной возникающая таким образом жизнь должна представлять собой закономерное явление. Надо ещё раз отметить, что центральная проблема возникновения жизни на Земле - объяснение качественного скачка от “неживого” к “живому” - всё ещё далека от ясности. Недаром один из основоположников современной молекулярной биологии профессор Крик на Бюраканском симпозиуме по проблеме внеземных цивилизаций в сентябре 1971 года сказал: “Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни - чудо, но это свидетельствует только о нашем незнании”.

3. Движутся ли материки Земли?

Прежде чем подробно рассмотреть те движения нашей планеты, которые имеют непосредственное отношение к её недрам, представим общую картину очень сложно движущейся Земли. Некоторые из этих движений быстры и заметны, другие, наоборот, почти неощутимо медленны. Их совокупность демонстрирует на примере Земли ту вечную изменчивость, которая свойственна всему мирозданию и является общим свойством материи. Главной силой, определяющей все эти движения, служит гравитация – притяжение Земли другими телами космоса. Известно немало доказательств вращения Земли. Так, например, если с высокой башни бросить камень, то при падении он расколется к востоку, т.е. в том же направлении, в котором вращается Земля.

Все движения в природе в той или иной степени неравномерны. Например, второе движение Земли вокруг Солнца. Оно совершается по эллипсу. Когда Земля проходит через перигелий – ближайшую к Солнцу точку своей орбиты, нас отделяет от Солнца почти 147 млн. км. Через полгода расстояние от Земли до Солнца становится близким к 152 млн. км. Скорость движения Земли всё время меняется. Вблизи Солнца она увеличивается, с удалением от него – уменьшается. В среднем же Земля летит по своей орбите в 36 раз быстрее пули – 30 километров в секунду. Но эта скорость кажется огромной лишь по земным мерам расстояний. Если бы мы смогли откуда-то из вне с большого расстояния следить за орбитальным движениям земного шара, он показался бы нам более медлительным, чем черепаха: за один час земной шар проходит путь, в девять раз превышающий его диаметр между тем как черепаха за один час покрывает расстояние, равное нескольким десяткам её поперечников. Земной шар часто сравнивают с волчком. Такое сравнение имеет более глубокий смысл, чем иногда кажется. Если раскрутить волчок, а потом слегка толкнуть его ось – она начнёт описывать конус, причём со скоростью, значительно меньшей скорости вращения волчка. Это движение называется прецессией. Оно свойственно и земному шару, являясь его третьим движением. Луна вызывает ещё одно, гораздо менее значительное, четвёртое движение Земли. Из-за воздействия Луны на различные точки земного эллипсоида земная ось описывает маленький конус с периодом в 18.6 года. Благодаря этому движению, называемому нутацией небесный полюс вычерчивает на фоне звёздного неба крошечный эллипс, у которого наибольший диаметр близок к 18 секундам дуги, а наименьший – около 14 секунд. Во всех учебников географии подчёркивается, что наклон оси Земли к плоскости её орбиты всегда остаётся неизменным.

Наконец, сама Земля весьма чутко реагирует на притяжение всех других планет Солнечной системы. Их общее воздействие отклоняет Землю с её простого эллиптического пути вокруг Солнца и вызывает все те неправильности в орбитальном движении Земли, которые астрономы называют возмущениями.

Мы познакомились с современным состоянием нашей планеты. Будущее нашей планеты, да и всей планетной системы, если не произойдёт ничего непредвиденного, кажется ясным. Вероятность того, что установившийся порядок движения планет будет нарушен какой-нибудь странствующей звездой, невелика, даже в течение нескольких миллиардов лет. В ближайшем будущем не приходится ожидать сильных изменений в потоке энергии Солнца. Вероятно, могут повториться ледниковые периоды. Человек способен изменить климат, но при этом может совершить ошибку. Континенты в последующие эпохи будут подниматься и опускаться, но мы надеемся, что процессы будут происходить медленно. Время от времени возможны падения массивных метеоритов. Но в основном планета Земля будет сохранять свой современный вид.

Как ученые измерили массу Земли и других планет?

Планета – объект большой, его на весы не поставишь. Как же ученым удалось узнать массу Земли? Как измеряется масса далеких космических объектов?

Занимательная физика

Существует 2 способа определения массы Земли: с помощью барометра и математических вычислений, или анализа частиц нейтрино.

Барометр и законы Ньютона

Метод, применяемый с XVIII века. Для расчета используются второй закон Ньютона (F=mg) и закон всемирного тяготения (F=G*m*M/R^2).

F – это сила земного притяжения барометра, G – коэффициент гравитационной постоянной, R – радиус планеты, m – вес прибора, M – вес планеты.

Отдельно масса Земли вычисляется по формуле: M = g*R^2/G, где g – это ускорение свободного падения.

Ускорение свободного падения узнали, сбросив барометр с высокой башни и измерив время, которое он пролетел до столкновения с землей. Выяснилось, что за каждую последующую секунду барометр преодолевал почти 9.8 метров. Таким образом, g = 9.8 м/с².

Как ученые измерили массу Земли и других планет?

Фотография Земли, сделанная 29 июля 2015 года с борта космического аппарата Deep Space Climate Observatory

Радиус Земли был известен еще с Античности. Столь сенсационное открытие сделал греческий математик Эратосфен в III веке до н.э.

Ученый подождал день летнего солнцестояния. В это время светило находится в самой высокой точке на небе и в 12 часов отбрасывает наименьшую тень в году.

Математик присмотрелся к обелиску, стоящему неподалеку, измерил отбрасываемую им тень, измерил сам обелиск, высчитал все углы, а потом сделал то же самое в соседнем городе. Расчеты дали ему окружность земли в 38.5 тысяч километров. Современные ученые пересчитали окружность подобным методом и высчитали 40 000 км.

Планета идеальным шаром не является, а потому ее радиус оказался 6371 км.

Труднее всего было найти коэффициент гравитационной постоянной. Для этого исследователи взяли однотонный свинцовый шар и посмотрели, с какой силой он притягивал барометр.

G = 6,67430(15)*10ˆ(-11) Н·м²·кг²

Подставив все эти цифры в уравнение, ученые высчитали, что Земля весит шесть септиллионов кг или 6^24 кг.

Это мельчайшие субатомные частицы, которые испускает Солнце. Они проходят планету насквозь.

Как ученые измерили массу Земли и других планет?

Испанские физики поставили лабораторию на Южном полюсе, дождались момента, когда Солнце окажется на Северном полюсе и выловили нейтрино с обратной стороны.

Эксперимент кажется фантастичным, однако измерив скорость частиц, прошедших сквозь Землю, физики нашли плотность планеты и, соответственно, массу.

Как измеряются далекие планеты?

Масса далеких планет вычисляется примерно. Основами для вычислений становятся орбиты планет, орбиты их спутников и гравитационные возмущения между ними.

Масса звезд вычисляется по степени их яркости. Считается, чем ярче небесное тело, тем оно массивнее. По светимости звезды определяется её химический состав, а значит примерная плотность и вес.

Не все знают , что о форме и размерах Земли люди имели достаточно реальные представления еще до начала нашей эры . Так , древнегреческий философ Аристотель ( 384 — 322 до н. э. ) полагал , что Земля имеет шарообразную форму , а в качестве доказательства приводил округлость формы земной тени во время лунных затмений , поскольку только шар при освещении с любой стороны всегда дает круглую тень .

Эратосфен , живший в Александрии ( город на севере Египта , основан Александром Македонским в гг. до н. э. ) выбрал , около 230 г. до Р . X. , для своего градусного измерения дугу александрийского меридиана , предположив , что на нем же лежит Ассуан ( Ассуан , — 24° 8 ’ 6 " ш. и 30° 34 ’ 39 " д. , последний из городов , встречаемых в Египте со стороны Нубии ) . Светилом для измерения высот служило Солнце . Эратосфен узнал , что в Ассуане , во время летнего солнцестояния , в полдень , можно видеть изображение Солнца в глубоких колодцах , т. е. , что Солнце достигает там в это время зенита , и высота его равна стало быть 90°. В Александрии , по наблюдениям тени гномона ( гномон — древнейший астрономический инструмент , состоящий из вертикального стержня на горизонтальной площадке . По длине и направлению тени стержня можно определять высоту и азимут Солнца ) , в то же самое время , Солнце оказывалось удаленным от зенита на одну пятидесятую часть окружности или на 7°12’ , так что для разности широт этих городов получилась непосредственно величина 7°12’ . С другой стороны , из рассказов купцов , сопровождавших свои караваны , Эратосфен узнал , что путь между Ассуаном и Александрией лежит почти в направлении полуденной тени , т. е. по меридиану , и, судя по времени , необходимому на весь переход , и по скорости движения караванов , расстояние между названными городами равно 5000 стадиям ( 800 км) . Если 7°12 ’ соответствуют 5000 стадиям ( 800 км) , то длина окружности или 360° выходит равна 250 000 стадий ( 40 000 км) , а радиус Земли = 39 789 стадий ( 6 366 км) .


По новейшим определениям разность широт Александрии и Ассуана равна 7°7’ , и оба города не лежат на одном меридиане , ( Ассуан почти на 3° восточнее Александрии) , там не менее астрономическая часть работы Эратосфена для своего времени была почти безупречна . К несчастью истинная длина египетской стадии была не известна . Разные ученые исследователи определяют ее от 158 до 185 метров , и потому о точности этого первого градусного измерения в настоящее время нельзя составить себе верного представления . Во всяком случае , как упомянуто выше , основание способа Эратосфена совершенно верно и применяется до сих пор .

В связи с этим непонятно , как полтора тысячелетия ( ! ) спустя Христофор Колумб настолько ошибся с оценкой размеров Земли , что принял Американский континент за часть Индии!

После уничтожения александрийской библиотеки , в смутные годы первых веков нашей эры , всякие научные работы прервались , и новая попытка градусного измерения сделана лишь в 827 году арабами , которые , достигнув политического могущества , в лице своих калифов с любовью покровительствовали развитию точных наук . Калиф Альмамум , сын Гарун – , приказал своим астрономам Калид – и –Изп измерить дугу меридиана в равнине Синджар , лежащей к западу от реки Тигра и нынешнего города Мосула. В избранной исходной точке , около 35° северной широты , арабские ученые разделились на две парии и направились одна на север , другая па юг, производя измерения арабскими локтями . Эти измерения продолжались до тех пор , пока каждая пария не прошла по меридиану 1° , что определялось имевшимися тогда угломерными инструментами по высотам звезд . Одна пария получила для градуса меридиана величину 56, а другая 56⅔ мили по 4 000 локтей . Второе число было признано точнее первого и принято за величину градуса меридиана .

Покуда длина арабского локтя была неизвестна , нельзя было составить себе понятие о точности измерения арабов; известно было лишь , что арабский локоть имел 27 дюймов , а каждый дюйм равнялся шести положенным в ряд ячменным зернам . Но недавно , на нильском острове Рода , под Каиром , на колонне из тесанного камня , найдены черты , означающие арабские локти , подразделенные на дюймы . Оказалось , что арабский локоть равен приблизительно 49⅓ сантиметрам , так что длина арабской мили выходит около 1973 метров или 926.3 саженей . От перемножения этого числа на 56⅔ получается для длины градуса , под широтой 35° , 104.8 версты ( 111.088 км) , что весьма близко к современным определениям .

В средние века сведенья греков и арабов о шарообразности Земли и ее величине были забыты , и только в начале XVI века , после эпохи великих морских путешествий , произведена новая попытка определения размеров Земли . Именно , французский ученый и врач короля Франциска , Фернель ( 1497 — 1558) , в 1528 году , измерил дугу меридиана вблизи Парижа . Угловые высоты Солнца он определял при помощи треугольника с диоптрами , одна сторона которого была разделена на части , соответствующая минутам дуги , линейное же расстояние Фернель получил счетом оборотов колеса своей повозки . Длина градуса меридиана под широтою Парижа получилась равною 56 746 тоазам или около 51838 саженей ( 110.41 км) .

Итак , в первом приближении форма и размеры нашей планеты известны очень давно . А можно ли, находясь на ее поверхности , доказать , что она вращается? Оказывается , можно , и даже несколькими способами .

Вращение Земли

В 1672 году француз Рише случайно заметил , что у экватора маятниковые часы идут медленнее , чем в Париже . Объяснение этому факту нашел английский физик , астроном и математик Исаак Ньютон ( 1643 — 1727) . Вращение Земли должно приводить к появлению центробежной силы , направленной перпендикулярно оси вращения ( не поверхности! ) в сторону , противоположную этой оси . То есть в средних широтах центробежная сила меньше по величине ( поскольку расстояние до оси вращения меньше ) и направлена под углом к горизонту , а на экваторе она достигает наибольшей величины , что и приводит к уменьшению силы тяжести g на экваторе и, вследствии этого , замедлению ( увеличению периода Т) колебаний маятника длиной l, поскольку T = 2p(l/g)1/2 .

В 1851 году французский физик Жан Фуко ( 1819 — 1868 ) продемонстрировал на опыте , что плоскость качания маятника со временем поворачивается , что объясняется суточным вращением Земли вокруг своей оси . Позже этот опыт повторяли в разных городах , в том числе и в Ленинграде , в Исаакиевском соборе . Очевидно , что эффект поворота плоскости качания маятника зависит от широты места проведения опыта , наиболее выражен на земных полюсах и отсутствует на экваторе . Тот же Жан Фуко изобрел гироскоп , и его свойство сохранять направление оси вращения также доказывало суточное вращение Земли ( ось гироскопа при любом положении за сутки опишет окружность вокруг проекции на небо земной оси , а почему — будет объяснено в главе про экваториальную систему координат) .

Другим свидетельством земного вращения является действие поворотного , или кориолисова ускорения на движущиеся воздушные и водные массы . Этот эффект проявляется как отклонение от меридианального направления ветров и океанских течений , а также в подмывании одного из берегов реками , текущими в направлении север — юг. Суть явления очень проста . Если , например , река течет с юга на север , то ее воды по инерции стремятся сохранить ту линейную скорость вращения ( перпендикулярную направлению течения) , которую они имели южнее , т. е. отклониться к востоку ( Земля вращается с запада на восток) . А в результате будет размываться восточный берег .

И еще одно доказательство вращения Земли — отклонение падающих тела от направления отвесной линии . Объяснение точно такое же: линейная скорость вращения тем больше , чем выше над поверхностью тело , а при падении эта скорость сохраняется , и за время полета точка , прямо над которой сначала находилось падающее тело , сместится на восток на меньшее расстояние , чем само тело в момент приземления , т. е. тело упадет восточнее .

Более точная форма Земли

Зная период вращения ( 24 часа ) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек , и при R = 6378 км получается v0 ~ 460 м/c ( на широте j эта скорость составит v = v0*cos(j)) . На тело массой m будет действовать центробежная сила Fц = m*w2*R и сила тяжести по закону всемирного тяготения Fg= G*M*m/R2 , где М — масса Земли , R — ее радиус . Отношение Fц к Fg для шарообразной Земли составит:

Fц / Fg= w2*R3/(G*M ) ( 2)

Если подставить сюда реальные значения М и R, то получим Fц / Fg= 3.45× , то есть на экваторе любое тело должно весить примерно на 0.3 % меньше , чем на полюсах . На самом деле это различие не превышает 0.55% .

Теперь самое время вспомнить , что форма Земли отличается от шара . Еще Ньютон теоретически доказал , что если пробурить до центра Земли два сообщающихся канала — один от Северного полюса , другой — от экватора , и заполнить их водой , то вода установилась бы на разных уровнях. В полярном колодце на воду действует только сила тяготения , а в экваториальном — еще и центробежная сила . Для того , чтобы оба столба воды оказывали на центр Земли одинаковое давление ( т. е. имели равный вес) , уровень воды в экваториальном колодце должен быть выше . По подсчетам Ньютона , эта разница должна составлять 1/230 долю от среднего радиуса Земли .

Такой расчет не так уж и сложен . Нужно прировнять вес каждого элементарного объема вещества на полюсе и на экваторе . То есть для равновесия на любом расстоянии r от центра Земли будет справедливо соотношение:

m*gп(r)=m*gэ(r) — m*w2*r ( 3)

Зависимость ускорения свободного падения от радиуса в полярном и экваториальном колодцах одинакова: gп(r) = gэ(r) = GM/r2 , где М — масса , заключенная внутри радиуса r : M(r) = r*4*p*r3/3 , где r — плотность вещества , заполняющего колодцы . Если все это подставить в уравнение равновесия ( 3) , сократить на m и проинтегрировать по всему радису Земли ( левую часть — от 0 до полярного радиуса Rп, правую — от 0 до экваториального радиуса Rэ) , то в результате получится соотношение:

Подставив в (4) среднюю плотность Земли 5.52 г/см 3 (она состоит в основном не из воды ) и экваториальный радиус Rэ=6378140 м, получим Rп ~ 6356130 м, то есть полярный радиус должен быть меньше экваториального примерно на 22 км, а отношение f = ()/Rэ= 1/289.8 . Величина f называется сжатием Земли и в действительности равна 1/298.257 . Таким образом , вышеприведенный теоретический расчет хорошо согласуется с реальной формой земной поверхности . Даже несмотря на то, что мы не учитывали зависимость плотности от радиуса , а взяли усредненную плотность .

Таким образом , еще Ньютон показал , что Земля должна быть сплюснута у полюсов . То же самое следовало и из наблюдений быстровращающихся планет–гигантов — Юпитера и Сатурна . Однако проверить это на практике в отношении Земли было совсем не просто . Только в следующем веке было организовано несколько экспедиций специально для того , чтобы измерить длины двух дуг меридиана , по 1° каждая , одна как можно ближе к экватору , другая — к полюсу. В конце концов выяснилось , что дуга в 1° в экваториальных широтах ( измерения 1735 — 1743 гг. в Перу ) действительно короче , чем в полярных ( гг. в Лапландии) , что и является прямым доказательством сжатия Земли к полюсам . Здесь следует пояснить , что измерения дают не радиус Земли ( т. е. расстояние от поверхности до центра) , а радиус кривизны поверхности , т. е. радиус окружности , которая на данном участке ближе всего соответствует дуге меридиана . Поскольку меридианы у полюсов изогнуты слабее , чем у экватора , то в первом случае и радиусы их кривизны больше .

Кстати , результатом этих экспедиций стало также принятие новой единицы длины , которую определили как 1/40 000 000 часть от полной длины Парижского меридиана . Эта единица получила название метр , и поэтому неудивительно , что длина земного экватора так близка к круглому числу 40 000 км. Принятие новой единицы длины стало началом введения метрической системы мер и весов , а сам метр был выполнен в виде массивного стержня из сплава платины с иридием , переданного на вечное хранение в парижский архив . Последующие исследования показали , что принятая длина метра немного занижена по отношению к сорокамиллионной доли от окружности Земли , но менять стандарт сочли неразумным , так как каждое новое измерение вносило бы новые поправки , да и разные меридианы несколько отличаются по длине , так как фигура Земли не совпадает с эллипсоидом вращения. В настоящее время величина метра закреплена более точно и надежно , а до знака ее можно выразить как 1650763.73 длины волны излучения в вакууме оранжевой спектральной линии 86Kr .

Раз уж речь зашла о единицах длины , то стоит рассказать еще об одной . Поскольку полная длина меридиана принята за 40 000 км , то 1° от этой длины составит в среднем 1/360 его часть , что равно 111.111 км, а 1 ’ — 1.852 км. Последняя единица называется морской милей . Ее удобство для навигации , особенно в прошлые века , определяется тем , что широту местности вычисляют по высоте светил ( например , Солнца в момент его наибольшей высоты ) над горизонтом , а изменение высоты светила на 1 ’ ( за счет движения на север или на юг) как раз и соответствует перемещению наблюдателя на 1 морскую милю вдоль меридиана .

Осталось только упомянуть , что при еще более точном рассмотрении форма Земли отличается от эллипсоида вращения , и в масштабах меньше километра имеет весьма сложную форму поверхности , которая получила названия геоида . Между прочим , под поверхностью Земли в данном случае подразумевается не реальный рельеф поверхности со всеми горами , холмами и низинами , а усредненный уровень воды в океанах , который с помощью нивелирования удается продолжить и под сушей ( высота над уровнем моря) . Эта поверхность является уровневой , т. е. она всюду перпендикулярна к направлению силы тяжести и отличается от эллипсоида вращения не больше , чем на несколько сотен метров , а если за фигуру Земли принять трехосный эллипсоид ( экватор можно представить как эллипс с разностью полуосей около 200 м) , то отличие геоида от него не превысит 100 м. Это отличие вызвано неравномерным распределением масс как на поверхности Земли ( континенты и океаны) , так и внутри нее — вследствии их влияния на величину и направление силы тяжести . Изучение фигуры геоида — одна из задач геодезии и гравиметрии .

Масса Земли

Массу Земли с достаточной точностью измерил в 1797 году Генри Кавендиш . Для этого он использовал крутильные весы со свинцовыми шариками на концах . Приближая к этим шарикам с разных сторон два больших свинцовых шара и зная их массы , по углу закрутки весов Кавендиш измерил , во сколько раз сила притяжение маленького шара к большому отличается от силы притяжения Земли. В итоге масса Земли получилась 6×1021 тонн , что близко к значению , принятому в настоящее время .

Теперь снова вспомним закон всемирного тяготения . Ускорение , сообщаемое тяготение Земли любому телу на ее поверхности , называется ускорением силы тяжести . Оно направлено примерно к центру Земли и по величине приближенно равна:

где G — гравитационная постоянная , M — масса Земли , r — ее радиус . Если бы Земля не вращалась и имела форму шара со сферически–симметричным распределением масс внутри себя , то выражение ( 5) было бы точным . Однако на самом деле эти три условия не выполняются .

Направление силы тяжести для эллипсоидальной формы Земли немного отличается от направления на геометрический центр эллипсоида , совпадая с ним на экваторе и полюсах , и достигая максимальной величины отклонения ( 5’.7 ) на широтах +–45°. В то же время на экваторе величина силы притяжения эллипсоидальности Земли на f/2 меньше , чем на полюсе , то есть примерно на 1/600 долю .

Кроме того , в ускорение силы тяжести входит центробежное ускорение , возникающее от суточного вращения Земли . Оно направлено перпендикулярно оси вращения , по радиусу r образованного параллелью круга и лежит в его плоскости . Центробежное ускорение равно w2*r , где w = 2*p/Т — угловая скорость вращения с периодом Т, причем для Земли нужно взять продолжительность звездных суток Т = 86146 с. На экваторе центробежное ускорение максимально: w2*r = 3.39 см/с2 , что составляет 1/288 долю от гравитационного ускорения силы тяжести , равного на экваторе 983.42 см/с2 . На экваторе центробежная сила прямо противоположна силе притяжения и поэтому вычитается из последней , что дает полное ускорение свободного падения g = 980.03 см/с2 . На полюсах центробежная сила отсутствует и не дает боковой составляющей .

В промежуточных широтах центробежная сила пропорциональна радиусу параллели r = r*cos(ja) , где r — текущее расстояние до центра Земли ( радиус–вектор) , а ja — геоцентрическая широта . Отличие ja от обычной географической широты j составляет j — ja = 11’.6*sin(2*j) . Поэтому центробежное ускорение w2*r = w2*r*cos(ja) можно разложить на вертикальную составляющую w2*r*cos(ja)*cos(j) и горизонтальную w2*r*cos(ja)*sin(j) , направленную по меридиану к экватору . Если пренебречь небольшим различием между ja и j, то горизонтальная составляющая центробежного ускорения w2*r*cos(j)*sin(j) будет максимальной на широте +–45° , достигая значения 1.7 см/с2 , что в угловой мере соответствует отклонению отвеса на 5.’9 к югу . Вертикальная составляющая центробежного ускорения w2*r*cos(j) (если пренебречь различием между направлением отвесной линии и направлением на центр Земли ) на экваторе даст w2*r , на широтах +–45° — 0.5*w2*r и нуль — на полюсах . Таким образом , на экваторе ускорение силы тяжести уменьшено на f за счет центробежной силы и на f/2 за счет уменьшения силы притяжения. В сумме эти два эффекта приводят к тому , что на экваторе ускорение силы тяжести на f/2+f = 1.5*f ~ 1/200 меньше , чем на полюсах .

Точную зависимость ускорения силы тяжести от высоты вывел в 1743 г. французский математик А. Клеро:

g = g0*(1+b*sin2(j)) , b = ( g0 — gp)/g0 (6)

где g0 — ускорение силы тяжести на экваторе , gp — на полюсе , а коэффициент b = 2.5*q — f (здесь q — отношение центробежного ускорения к ускорению силы тяжести на экваторе w2*r/g0 , f — сжатие Земли). В современных числовых значениях формула Клеро выглядит так:

g = 978.03*(1+0.00529*sin2(j) ) ( 7)

Измерение ускорения силю тяжести в разных местах позволяет определить числовое значение b, а через него — сжатие Земли f, которое оказалось в хорошем согласии с измерениями дуг меридианов . Ускорение силы тяжести можно измерить несколькими способами , из них самый простой — по периоду качания маятника известной длины l:

T = 2*p*(l/g)1/2 , откуда g = 4*p2*l/T2 (8)

Измерением и изучением распределения ускорения силы тяжести по поверхности Земли занимается специальный раздел астрономии — гравиметрия . Это распределение позволяет не только получить величину сжатия Земли , но и найти отклонения фигуры геоида от точного эллипсоида и, кроме того , получить важные сведения о внутреннем строении Земли .

Из величины ускорения силы тяжести легко получить массу и среднюю плотность Земли . Например , на широте 45° по формуле Клеро ( 7) g = 980.62 см/с2 . Вертикальная составляющая центробежного ускорения на этой широте составит 0.5*w2*r = 1.7 см/с2 . Отсюда ускорение силы притяжения на широте 45° получится 982.32 см/с2 . Подставив эту величину и средний радиус Земли r = 6.370×108 см в фомулу Ньютона ( 5) , получим массу Земли М = 5.98×1027 г. Среднюю плотность Земли можно вычислить , если разделить массу М на объем Земли , что даст 5.52 г/см3 .

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –


Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Тела солнечной системы, расположенные по убыванию массы

Самой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

Эту статью могут комментировать только участники сообщества.
Вы можете вступить в сообщество одним кликом по кнопке справа.

Для определения массы Земли потребовался длинный исторический путь. Чтобы определить массу Земли необходимо знать её размеры. Размеры Земли впервые определил грек Эратосфен из Кирены (276 - 196 г. до н.э.). Он заметил, что во время летнего солнцестояния 21 июня палка, воткнутая в землю близ города Сиены (Египет), не даёт тени.

Но в Александрии, находящейся в 800 км от Сиены, она отбрасывала тень. Солнечные лучи падали под углом 7 градусов. Подкрепив эти факты расчётами, Эратосфен получил цифру окружности Земли - 40.000 км. Тогда же греки Аристарх Самосский (310 - 230 г. до н.э.) и Гиппарх из Никеи (190 - 120 г. до н.э.) определили размер Луны и расстояние до неё. Они сравнивали при затмении размеры тени Земли и Луны с их реальными размерами. Расстояние до Луны вышло 384.395 км, а Луна получалась в 4 раза меньше Земли. Тогда же определили расстояние до Солнца.

Однако результат был 8 млн.км. Следующие 1800 лет ничего не делалось в этом направлении, так как господствовала геоцентрическая система Птолемея. Это продолжалось до 1543 г., когда Николай Коперник (1473 - 1543 г.) предложил гелиоцентрическую модель Солнечной системы. Теория Коперника одержала верх потому, что как модель оказалась проще. Иоганн Кеплер (1571 - 1630 г.) сразу заметил простую математическую связь между периодом обращения планет и их средними расстояниями до Солнца.

Так в 1609 г. родились три закона Кеплера. С их помощью были определены относительные расстояния и схема Солнечной системы. Но её масштабы оставались неразгаданными. И, наконец, на помощь пришло простейшее изобретение - параллакс. Тогда повторно определили расстояние до Луны, а затем до планет и Солнца. В 1683 г. Ньютон на основании анализа законов Кеплера теоретически связал зависимость гравитационного взаимодействия между телами с расстоянием между этими телами.

В те времена ещё не существовало буквенных обозначений физических величин. Кроме того, все расчёты производились через пропорциональность другим величинам. Например, средняя плотность Земли 5,48 плотностей воды. Или, масса Луны в 81 раз меньше массы Земли. В астрономии это применяется до сих пор. В 1798 г. Кавендиш произвёл эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Мичеллом. До некоторого времени гравитационная постоянная была не нужна и Кавендиш, как и все другие, о ней ничего не знал. Впервые упоминание о гравитационной постоянной у французского физика Пуассона в "Трактате о механике" (1809 г.).

Численное значение гравитационной постоянной было вычислено много позже на основе значения средней плотности Земли, но это был не Кавендиш. Кто впервые рассчитал численное значение гравитационной постоянной, историкам неизвестно. В конце концов много позже эксперимент по определению гравитационной постоянной (коэффициента пропорциональности, он же единичная сила) всё же был поставлен. Этим экспериментом был подтверждён закон Ньютона и определён коэффициент G = 6,67.10-11 H в формуле Ньютона .

До этого момента всё было известно, кроме массы Земли.

Как рассчитали массу Земли?

Взяли две формулы и .

Недолго думая, предположили, что сила F в этих формулах одна и та же и приравняли их друг к другу. Из двух формул получилась одна формула . По этой формуле и вычислили массу Земли.

Она оказалась .

Однако давайте разберёмся, а так ли оно на самом деле и не ошибочен ли этот расчёт?

1. Сила притяжения в формуле неизвестна, так как не известна масса Земли Мз. А масса Земли Мз по этой формуле представлена точкой и не учитывает размеры Земли.

2. Сила, вызывающая ускорение свободного падения , учитывает размеры Земли, которая реально не является точкой. Она экспериментально определена g = 9,81 м/с2. Поэтому эти силы разные. Формула Ньютона не учитывает размеры взаимодействующих объектов. Формула приближённая. Предполагается, что масса каждого тела представляет собой точку. Эта формула для больших расстояний. Поэтому при использовании формулы Ньютона на расстояниях соизмеримых с размерами тел будет ошибка.

Рассмотрим действие второй формулы .

Вы подбросили тело с массой эталона mэ. Оно достигло максимальной высоты и стало падать на Землю. Но Земля протяжённый объект и взаимозатенённость от эфира тела mэ с Землёй не прямая линия. Тело с массой эталона mэ будет притягиваться всеми элементами массы Земли. Большинство их находится под углом к линии падения. Природа сама просуммирует проекции сил (помножив cosαi) каждого взаимодействия на ось Земли. В результате мы получим суммарную силу притяжения от всех элементов массы Земли к телу с массой эталона mэ.

Она будет .

В этой формуле всё экспериментально известно. В первой формуле природа сама суммировала проекции сил притяжения на ось Земли. Во второй формуле это необходимо сделать нам самим.

При расчёте массы Земли надо каждую силу взаимодействия между mэ и каждым элементом массы Земли поделить на cosαi. Произведя расчёты получается, что масса Земли на 13% больше. Таким образом, при расчёте массы Земли был нарушен принцип суперпозиции - принцип сложения векторных величин. У кого хватило ума, чтобы пренебречь принципом суперпозиции.

Все объекты Вселенной рассчитаны относительно ошибочной массы Земли. Придётся всё пересчитывать.

Читайте также: