Научные революции как перестройка оснований науки реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

34.Феномен научных революций. Научные революции как перестройка оснований науки.

Как показывают исследователи, научная революция может протекать двояко: 1) вызывать трансформацию специальной картины мира без изменения идеалов и норм исследования, и 2) осуществлять радикальные изменения и в картине мира, и в системе идеалов и норм науки.

Примерами первого типа могут быть революция в медицине, вызванная открытием В. Гарвея кругообращения крови (1628); революция в математике в связи с открытием дифференциального исчисления И. Ньютона и Г. Лейбница; кислородная теория Лавуазье; переход от механической картины мира к электромеханической в связи с открытием теории электромагнитного поля. Они не меняли познавательных установок классической физики, идеалов и норм исследования (признание жестко детерминированных связей процессов и явлений, исключение помех, связанных с приборами и средствами наблюдения, и т.д.).

Пример научной революции второго типа – открытия термодинамики и последовавшая в середине XX в. квантово-механическая революция, которая вела не только к переосмыслению научной картины мира, но и к полному парадигмальному сдвигу, меняющему также стандарты, идеалы и нормы исследования. Отвергалась субъектно-объектная оппозиция, изменялись способы описания и обоснования знания, признавались вероятностная природа изучаемых систем, нелинейность и бифуркационность развития. Выделяют четыре типа научных революций по следующим основаниям: 1) появление новых фундаментальных теоретических концепций; 2) разработка новых методов; 3) открытие новых объектов исследования; 4) формирование новых методологических программ.

Предпосылкой любой научной революции являются факты или та фундаментальная научная аномалия, которая не может быть объяснена имеющимися научными средствами и указывает на противоречия существующей теории. Когда аномалии, проблемы и ошибки накапливаются и становятся очевидными, развивается кризисная ситуация, которая и приводит к научной революции. В результате научной революции возникает новая объединяющая теория (или парадигма в терминологии Куна), обладающая объясняющей силой и устраняющая ранее имеющиеся противоречия.

Так было в случае перехода от аристотелевско-птолемеевой геоцентрической астрономии к коперниканской гелиоцентрической астрономии, к ньютоновской классической механике и эволюционной биологии.

Каждая научная революция открывает новые закономерности, которые не могут быть поняты в рамках прежних представлений.

Мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений и элементарных частиц, мир кристаллов и открытие других галактик – это принципиальные расширения границ человеческих знаний и представлений об универсуме.

Научная революция значительно меняет историческую перспективу исследований и влияет на структуру учебников и научных работ, затрагивает стиль мышления и может по своим последствиям выходить далеко за рамки своей области (так, открытие радиоактивности на рубеже XIX—XX вв. использовалось в философии и мировоззрении, медицине и генетике). Научные революции рассматриваются как некумулятивные эпизоды развития науки, во время которых старая парадигма замещается целиком или частично новой парадигмой, несовместимой со старой.

Симптомами научной революции кроме явных аномалий являются кризисные ситуации в объяснении и обосновании новых фактов, борьба старого знания и новой гипотезы, острейшие дискуссии. Научные сообщества, а также дисциплинарные и иерархические перегородки размыкаются. Научная революция — это не одномоментный акт, а длительный процесс, сопровождающийся радикальной перестройкой и переоценкой всех ранее имевшихся факторов. Изменяются не только стандарты и теории, но и средства исследования, открываются новые миры.

В период революций ученые открывают новое и получают новые результаты даже в тех случаях, когда используют обычные инструменты в областях, которые исследовали ранее. Однако существенным вкладом научной революции является именно появление новых методов, методик, приборов и средств познания.

Современные ученые обращают внимание на меж- и внут-ридисциплинарные механизмы научных революций. Междисциплинарные взаимодействия многих наук предусматривают анализ сложных системных объектов, выявляя такие системные эффекты, которые не могут быть обнаружены в рамках одной дисциплины (в настоящее время ярким примером таких междисциплинарных исследования является синергетика).

В случае междисциплинарных трансформаций картина мира, выработанная в лидирующей науке, транслируется во все другие научные дисциплины, принятые в лидирующей науке идеалы и нормы научного исследования обретают общенаучный статус.

Так было в период революции в химии, когда в нее были перенесены идеалы количественного описания из физики, а впоследствии и представления о силовых взаимодействиях между частицами атома, атомном строении вещества. Примером обратного воздействия могут быть развитые в химии представления о молекуле как соединении атомов, которые затем вошли в общую картину мира, стали междисциплинарными, оказав решающее воздействие на физику в период разработки молекулярно-кинетической теории теплоты.

Ссылки на источники в данном реферате оформлены принятым у химиков способом – цифры в квадратных скобках обозначают источник и страницу. Список источников приведен в конце реферата.

1. Концепция развития научного знания Т.С. Куна

И всё же явления, о существовании которых никто не подозревал, открываются одно за другим. Выдвигаются в корне новые теории. Эти события, по мнению Т. Куна, не являются событиями изолированными, а бывают достаточно длительными эпизодами с регулярно повторяющейся структурой [2, c. 84].

Аномалия не всегда порождает кризис. Она может быть устойчивой и осознанной. В качестве примера Т. Кун приводит расхождения между наблюдаемыми фактами и предсказаниями теории И. Ньютона относительно скорости звука и относительно движения Меркурия [2, c. 117].

В период кризиса старой парадигмы проявляется так называемая экстраординарная наука [2, c. 123]. Т. Кун отмечает несколько её особенностей. Некоторые ученые, сталкиваясь с аномалией, вначале пытаются выделить аномалию более точно, определить её структуру. Они ищут новые явления, природа которых не может быть удовлетворительно объяснена в рамках существующей теории. Вследствие этого кризис парадигмы усиливается. Поскольку ни один эксперимент немыслим без существования хоть какой-то теории, в кризисный период учёный старается создать теорию, которая может проложить путь к новой парадигме или может быть безболезненно отброшена. Поиски предположений, включая те, которые будут отброшены, являются эффективным способом для ослабления власти старых традиций над разумом и для создания основы новой традиции [2, c. 125].

Учёные, придерживающиеся существующей парадигмы, от нее легко не отказываются. Нередко они более склонны изобретать различные модификации и интерпретации существующих теорий, для того, чтобы устранить явное противоречие [2, c. 113].

Переход на новую парадигму для её первых сторонников основывается на не очень определенных соображениях, которые Т. Кун называет эстетическими и которые способны принять далеко не все члены сообщества (простота, ясность, привлекательность новой теории). Наконец, они более других склонны к риску, так как переход к новой, непроверенной теории, которая в будущем, возможно, будет отвергнута, – шаг в личном плане весьма рискованный.

Нетрудно сообразить, что обладающие такими этими качествами учёные являются менее, а не более авторитетными для научного сообщества. Однако большинство трудностей связано всё-таки с содержанием новой и старой парадигм, а не с личностью первых защитников.

Смена парадигмы – это всегда не только прибавление знаний, но и разрушение предшествующих знаний. Многие прежние теории, правила и т.п. оказываются ненужными. Это даёт сообществу, хорошо знающему достоинства теорий, сильные психологические предпосылки к сопротивлению.

В период конкурентной борьбы ни одна из двух соперничающих парадигм не может полностью решить все имеющиеся в данной науке проблемы. Поэтому одним из ключевых моментов в дискуссии является выделение наиболее существенных проблем. Сообщество выберет ту парадигму, которая решит проблемы, признанные важнейшими.

Итак, главной причиной длительной борьбы в научном сообществе Т. Кун считает взаимное непонимание участников дискуссии. Оно имеет три основных аспекта: 1) отсутствует согласие в перечне решаемых проблем; 2) участники дискуссии не имеют общих точек соприкосновения (находятся как бы в разных мирах); 3) переход от одного мира к другому не может быть постепенным.

Помимо этой главной причины есть ещё несколько обстоятельств, которые могут мешать ученым быстро принимать новую теорию. В спорах о преимуществах парадигм бывает важной ненаучная аргументация – персональная, философская или политическая. Так, например, о гипотезе всемирного тяготения говорилось в своё время как о возврате в средневековье. Спор о парадигмах во многом бывает не обсуждением уже проведенных исследований, а дискуссией о перспективах, направлениях будущих исследований. Это затрудняет возможность строго логичного решения. Учёные, как правило, не знают законов научной революции. Поэтому каждое поколение оказывается застигнутым ей внезапно. После каждой революции учебники переписываются на основе новой парадигмы, а новые поколения ученых не знают о революциях, происшедших в прошлом. Это затрудняет восприятие научных революций в будущем.

Массовый переход учёных на сторону новой парадигмы происходит тогда, когда в результате её применения будут достигнуты два очевидные результата. Во-первых, будут успешно решены те осознанные спорные проблемы (аномалии), ради которых появилась эта парадигма. Во-вторых, будут решены или появится перспектива решить большинство проблем, решаемых также и прежней парадигмой. Но даже и в этом случае останутся отдельные учёные или группы учёных, которые так и не перейдут на новые позиции. Многих ученых не переубедить за всю жизнь. Поэтому смена парадигм совпадает со сменой поколений.

Таким образом, научная революция обязательно сопровождается борьбой двух парадигм – интеллектуальным процессом, происходящим внутри научного сообщества, плохо формализуемым, неоднозначным, тонким, деликатным и т.д., однако приводящим в итоге к вполне однозначному результату. Двое ученых могут одновременно придерживаться разных точек зрения, но ни об одном из них нельзя сказать, что он ошибается. Оба взгляда научны.

Это значит, что при ближайшем рассмотрении кумулятивная нормальная наука квантуется на микрореволюции. Дисциплины или же проблемы, слишком мелкой для настоящей научной революции, не существует. Революции могут происходить в прикладных науках, в технике и технологии, в проектировании одной машины, быть связанными с единичными новыми фактами, новыми методами измерений и т.д. Они происходят согласно тем же закономерностям, что и большие революции, но в гораздо более узких сообществах.

2. Философские аспекты научных революций

Выработка методологических принципов, выражающих новые нормы научного познания, представляет собой не одноразовый акт, а довольно сложный процесс, в ходе которого развивается и конкретизируется исходное содержание методологических принципов. Первоначально они могут не выступать в качестве альтернативы традиционному способу исследования. Только по мере развития система этих принципов всё отчетливее предстаёт как оппозиция старому стилю мышления.

Утверждение в физике новой картины исследуемой реальности (конец XIX-начало XX века) сопровождалось дискуссиями философско-методологического характера. В ходе их осмысливались и обосновывались новые представления о пространстве и времени, новые методы формирования теории. В процессе этого анализа уточнялись и развивались философские предпосылки, которые обеспечивали перестройку классических идеалов и норм исследования существующей тогда электродинамической картины мира. В ходе этого они (философские предпосылки) превращались в философские основания релятивистской физики и во многом способствовали её интеграции в ткань современной культуры.

Таким образом, перестройка оснований науки представляет собой процесс, который начинается задолго до непосредственного преобразования норм исследования и научной картины мира. Это положение В.С. Стёпин формулирует на основании обстоятельного анализа появления теории относительности. В книге [3] он рассмотрел и проанализировал только это явление, т.е. один лишь фрагмент научной революции начала XX века.

Такой путь научных революций, как отмечает В.С. Стёпин, не описан с достаточной глубиной ни Т. Куном, ни другими западными исследователями философии науки. Между тем он является ключевым для понимания процессов возникновения и развития многих научных дисциплин.

В этом отношении характерным примером является перенос из физики в химию фундаментального принципа, согласно которому процессы преобразования молекул, изучаемые в химии, могут быть представлены как взаимодействия ядер и электронов, в результате чего химические системы можно описать как квантовые системы, характеризующиеся определенной ψ-функцией. Эта идея легла в основу нового направления – квантовой химии. Возникновение её знаменовало революцию в современной химической науке и появление в ней принципиально новых стратегий исследования.

3. Глобальные научные революции:

от классической к постнеклассической науке

В истории естествознания можно обнаружить четыре периода, когда преобразовывались все компоненты оснований естествознания. Первым периодом была революция XVII века, ознаменовавшая собой становление классического естествознания .

Мы видим реальность через систему понятий и поэтому часто отождествляем понятия с реальностью, абсолютизируем их. Между тем опыт развития науки свидетельствует, что даже наиболее фундаментальные понятия и представления науки никогда не могут быть окончательными.

Третья глобальная научная революция была связана с преобразованием этого стиля и становлением нового, неклассического естествознания . Она охватывает период с конца XIX до середины XX столетия. В эту эпоху происходят революционные перемены в различных областях знания: в физике (открытие делимости атома, становление релятивистской и квантовой теории), в космологии (концепция нестационарной Вселенной), в химии (квантовая химия), в биологии (становление генетики). Возникают кибернетика и теория систем, сыгравшие важнейшую роль в развитии современной научной картины мира.

В современную эпоху, в последнюю треть нашего столетия мы являемся свидетелями новых радикальных изменений в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука.

4. революции в Советской науке

Исходным положением В.А. Леглера служит то, что наука не может нормально развиваться и преуспевать без свободы, борьбы мнений и критики.

Автор отмечает, что во все периоды советской истории от 20-х годов до момента написания книги (1985 г.) взаимное непризнание советским и зарубежным научными сообществами научных парадигм другой стороны было распространенным и систематически повторяющимся явлением. Причем советская сторона рано или поздно переходила, как правило, на зарубежные позиции (в естественных науках).

Другой метод научно-идеологической полемики – обвинение адептов противостоящей научной теории и её самой в недостаточной практической направленности, в том, что практические выводы из нее мало полезны, вредны или пессимистичны.

Однако, идеологическое вмешательство государства, как отмечает В.А. Леглер, не имеет всеобщего характера и его нельзя считать исключительной причиной появления научных идеологий.

В традиционном случае (на Западе) структура научных сообществ децентрализована, во многом неформальна, основана на личных отношениях. Советская наука вследствие своей организационной структуры – явление несколько необычное (для мировой науки вообще). В СССР структура научного сообщества была весьма иерархична. Место каждого ученого в иерархии однозначно определялось взаимоотношениями руководства и подчиненных. Особенностью советской научной иерархии являлась очень высокая степень ее расслоения, включая материальное расслоение.

Можно проследить, какую форму принимает в организованной науке классическая научная революция (по Т. Куну) и ее отдельные компоненты.

По Т. Куну, решение научного сообщества есть высший судья, и права та парадигма, которая победила. Поэтому, как пишет В.А. Леглер, обвинять лидеров советского научного сообщества не в чем – они правы, потому что побеждали.

Многие локальные научные идеологии в СССР к середине 1980-х годов исчезли. Это происходило внезапно или постепенно, после периода нисходящего развития. Значит, что-то способно прекращать их существование. В.А. Леглер рассмотрел, как это происходит.

Получив перевес во внешней системе, научная оппозиция может, наконец, перевести сообщество на новую парадигму, т.е. завершить научную революцию.

Таким образом, научная революция в советской науке происходит по следующей схеме. Сначала за рубежом появляется и утверждается новая парадигма. Советские ученые борются с ней и для этого создают локальную научную идеологию. Среди них возникает научная оппозиция, действующая как представитель мировой науки. Не добившись цели внутри сообщества, она применяет принцип обхода и выигрывает дискуссию за пределами профессионального круга. Под давлением или угрозой давления сверху ученые оставляют научную идеологию и воссоединяются с мировой наукой [4, гл. 5].

В связи с суждениями Т. Куна о процессе развития нормальной науки и микрореволюциях и представлениями В.А. Леглера о локальных идеологиях можно думать, что советская нормальная наука должна сопровождаться появлением множества локальных микроидеологий, создаваемых микросообществами узких специалистов. Они, как пишет В.А. Леглер, действительно появлялись. Что произойдёт с ними в постсоветский период, покажет время.

В.А. Леглер подробно анализирует пример реликтовой локальной микроидеологии и микрореволюции в геологии (борьбу гипотез образования флиша – слоистех донных отложений) [4, гл. 6]. На этом примере ясно видны все черты больших научных революций: кризис исходной парадигмы, появление и победа за рубежом новой парадигмы, ответная локальная идеология в советском микросообществе, ее восходящее развитие, научная оппозиция, обход микросообщества, победа новой парадигмы в СССР. Революция произошла в узкой области, на фоне нормального (в куновском смысле) развития геологии в целом.

Итак, концепция Т. Куна о структуре научных революций является интересной и небесполезной схемой (моделью) того, каким образом и благодаря чему идёт замена научных теорий и систем взглядов (парадигм) новыми, радикально меняющими взгляд на мир теориями или способами научного мышления. Разумеется, и сама концепция Т. Куна обречена пройти этот путь парадигм и уступить более совершенным концепциям о механизмах развития науки. Как большинство других, правильно сформулированных концепций и гипотез, она поддается и должна быть подвергнута процедуре фальсификации (по терминологии К. Поппера) [1, с. 3-4; 29, с. 304-305], т.е. проверена на прочность. Можно считать, что проверка концепции Т. Куна началась уже с момента ее опубликования.

Если человечество сможет преодолеть кризис и выйти из тупика, в который его загнали инстинкты, неразумие, мораль прошлых веков, техносфера и безудержная психология потребительского общества, у него будет перспектива дождаться новых витков разума и крупнейших научных революций, не ориентированных исключительно на экстенсивное развитие техносферы.

Очевидно, что концепция плюралистической науки, не обязательно чреватой революциями, но, тем не менее, плодотворной, противоречит куновской концепции последовательной смены альтернативных парадигм.

Список использованной литературы

1. Кузнецов В. Понять науку в контексте культуры. Предисловие к сборнику [2].

3. Степин В.С. Теоретическое знание. – М.: Прогресс-Традиция, 2000. 744 с.

5. Леглер В.А. К истории дискуссии в современной теоретической геологии // Вопросы истории естествознания и техники. 1988, № 3.

6. Леглер В.А. Тектоника плит как научная революция. В сб.: Геологическая история территории СССР и тектоника плит. – М.: Наука, 1989.

7. Леглер В.А. Истина дороже? // Знание-Сила. 1989, № 4.

8. Леглер В.А. Наука, квазинаука, лженаука // Вопросы философии. 1993, № 2.

9. Леглер В.А. Идеология и квазинаука. В сб.: Наука и власть. – М.: Изд. Института Философии АН СССР, 1990.

10. Количественные аспекты роста организмов. – М.: Наука, 1975. 292 с.

11. Материалы по науковедению. – Киев: СОПС (Совет по изуч. производит. сил Украинской СССР АН УССР), 1969. Выпуск 3. 142 с.

12. Прайс Д. Малая наука, большая наука. В сб. Наука о науке. – М.: Прогресс, 1966. С. 281- 384.

13. Селье Г. На уровне целого организма. – М.: Наука, 1972. 122 с.

14. Поппер К. Нормальная наука и опасности, связанные с ней. В сб. [2]. С. 525-537.

15. Брунер Дж. Психология познания. – М.: Прогресс, 1977. 412 с.

16. Вернадский В.И. Размышления натуралиста. Научная мысль как планетное явление. Книга вторая. – М.: Наука, 1977. 191 с.

17. Философские вопросы современной физики. – М.: Изд. АН СССР, 1952. Цит. по [4].

18. Против реакционного менделизма-морганизма. – М.-Л.: Изд. АН СССР, 1950. Цит. по [4].

19. Медведев Ж.А. Биологическая наука и культ личности. – М., 1962. Цит. по [4].

20. Наука и религия. 1966, № 10, с. 63-69. Цит. по [4].

21. Кузнецова Н.И. Жестокий опыт истории: уроки "советизации" науки и высшего образования // Вестник Российской Академии наук, 2004, том 74, № 2, с. 160-166.

22. Литературная газета. 04. 01. 1978. Цит. по [4].

23. Иорданский В.Б. Хаос и гармония. – М.: Наука. Главная редакция восточной литературы, 1982. 344 с

24. Гуревич А.Я. Категории средневековой культуры. – М.: Искусство, 1972. 319 с.

25. Литературная газета, 17. 10. 1979. Цит. по [4].

26. Краткий справочник агитатора и политинформатора. – М.: Политиздат, 1977. Цит. по [4].

27. Керам К. Боги, гробницы, ученые. – М.: ИЛ, 1963. Цит. по [4].

28. Валери-Радо Р. Жизнь Пастера. – М.: Изд-во иностранной литературы, 1950. 424 с.

29. Тарнас Р. История западного мышления. Перевод с англ. Т.Р.Азеркович. М.: Крон-Пресс, 1995. 448 с.

30. Чепиков М.Г. Современная революция в биологии. Философский анализ. – М.: Политиздат, 1976. 135 с.

31. Воронцов Н.Н. Развитие эволюционных идей в биологии. – М.: КМК, 2004. 432 с.

32. Антонов А.С. Геномика и геносистематика // Генетика. 2002. Т. 38, № 6, с. 751 -757.

33. Миркин Б.М., Наумова Л.Г. Наука о растительности. – Уфа: Гилем, 1998. 413 с.

34. Миркин Б.М. Теоретические основы современной фитоценологии. – М.: Наука, 1985. 137 с.

35. Красилов В.А. Нерешенные проблемы теории эволюции. – Владивосток: ДВНЦ АН СССР, 1986. 138 с.

36. Вебер Макс. Наука как призвание и профессия. В кн.Самосознание европейской культуры ХХ века. – М.: Политиздат, 1991. С. 130 - 153.

38. Поршнев Б.Ф. О начале человеческой истории (проблемы палеопсихологии). – М.: Мысль, 1974. 488 с.

40. Рассел Бертран. Человеческое познание. Его сфера и границы. – Киев: НИКА-ЦЕНТР, Москва: Институт общегуманитарных исследований, 2001. 555 с.

42. Кара-Мурза С.Г. Советская наука и бюрократическая система: грани взаимодействия // Вопросы философии. 1989. № 4. С. 57 - 67.

43. От Эразма Роттердамского до Бертрана Рассела. – М.: Мысль, 1969. 304 с.

44. Писаржевский О.Н. В огне исканий. Штрихи творческого портрета Н.Н. Семенова. – М.: Советская Россия, 1965. 132 с.

45. Оппенгеймер Роберт. Летающая трапеция. Три кризиса в физике. – М.: Атомиздат, 1967. 79 с.

В своём реферате я рассмотрю хронологию всех общепризнанных научных революций, а также остановлюсь на особенностях каждой из них, стараясь обратить внимание на их предпосылки и те изменения в понимании картины мира, которые они за собой повлекли.

Содержание

Введение 3
1. Сущность революций 4
2. Научные революции 9
Заключение 14
Список литературы 15

Работа состоит из 1 файл

Научные революции.doc

Министерство Образования и Науки Российской Федерации

Московский Государственный Институт Электроники и Математики

по Социальной философии на тему:

Выполнил: студент группы ЭПБ-81

Преподаватель: Корень В.Л.

На сегодняшний день актуальность вопроса научной революции день ото дня набирает обороты. В историческом срезе наука переживает такой период, когда её проникновение в различные области знания набирает внушительные масштабы. Создаются междисциплинарные направления, призванные объединить, на первый взгляд, не связанные сферы знания с целью синтеза различных подходов в один и использования его для решения качественно новых задач. Всё это в той или иной степени можно расценивать как предпосылки назревающей новой научной революции.

В этой связи, в данном реферате мне хотелось бы рассмотреть сущность революций, их виды и особенности. Кроме того, своей задачей я вижу более подробно остановиться на научных революциях, осветить их основные механизмы осуществления, а также кратко затронуть концепцию научного знания по Томасу Куну.

В своём реферате я рассмотрю хронологию всех общепризнанных научных революций, а также остановлюсь на особенностях каждой из них, стараясь обратить внимание на их предпосылки и те изменения в понимании картины мира, которые они за собой повлекли.

Бесспорно, именно Исаак Ньютон сумел подвести итоги первой революции, отразив и собрав воедино всё её предпосылки и свойственные ей качественно новые идеи, а также разработав новые основополагающие принципы, что привело к преобразованию всех компонентов оснований науки. Коренные изменения нормативных структур исследования повлекли смену научных картин мира и типа научной рациональности, ознаменовав тем самым становление классического естествознания.

Помимо науки, также различают революцию в природе (геологическая), в обществе (промышленная, культурная, социальная, политическая и другие). Со времён первой Французской революции 1789 года это слово сначала во Франции, а затем и повсеместно приняло совсем иной смысл, нежели имело до этого. Революцией стал обозначаться полный и притом если не внезапный, то по крайней мере весьма быстрый, переворот во всем государственном и общественном строе страны, обыкновенно сопровождаемый вооруженной борьбой. Последнее, однако, не признается безусловно необходимым; так, переворот в Англии, совершившийся в 1688 г., признается всеми за революцию, хотя он не сопровождался кровопролитием.[3] В этой связи, революция в собственном смысле слова происходит всегда вследствие движения, охватившего широкие круги народа, и состоит в том, что политическая власть переходит из рук одного общественного класса в руки другого. Здесь революция — это так называемый государственный переворот, захват власти одним или несколькими лицами, влекущий за собой решительную перемену в правительственной системе и в общественных отношениях, хотя строго говоря такие социально-политические изменения революционного характера не несут.

Действительно, по мере своего развития наука может столкнуться с принципиально новыми типами объектов. Их исследование требует иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Подобные закономерности мы встречаем всякий раз, когда рассматриваем ту или иную научную революцию. В частности, упомянутая выше Коперниковская революция служит живым примером того, как одна картина мира — гелиоцентрическая — приходит на смену другой — геоцентрической и полностью её вытесняет, поскольку последняя более не вписывается в качественно новое видение реальности.

В качестве первого этапа революции, её начальной предпосылки следует выделить перестройку оснований науки, представляющую собой процесс, который начинается задолго до непосредственного преобразования норм исследования и научной картины мира.

Такая переработка старых представлений, или, точнее сказать, выработка новых представлений, выражающих новые нормы научного познания, с учётом старых представляет собой не одноразовый акт, а довольно сложный процесс, в ходе которого ситуация развивается от осознания потребности в новом способе познания до формирования идеи о содержании его основания. Можно сказать, что на этом этапе предпринимаются попытки разрешения некоторой проблемной ситуации в науке.

Второй этап научной революции нацелен на непосредственное развитие оснований нового способа познания и видения мира. В процессе этого этапа выдвигается идея и принципы фундаментальной теории, а также развивается и конкретизируется исходное содержание методологических принципов. Такие новые принципы первоначально могут вовсе не выступать в качестве альтернативы традиционному способу исследования, но лишь по мере развития система этих принципов всё отчетливее предстаёт как оппозиция старому стилю мышления. Результатом становится провозглашение необходимости критического отношения к принятым идеалам и нормам.

Третий этап научной революции — утверждение качественно нового способа познания. При этом старый, исходный способ познания превращается в подчиненный момент нового способа познания. В реальной практике научного познания на данном этапе осуществляются проверка, применение, подтверждение новой фундаментальной теории, уточнение ее соответствия предшествующему теоретическому знанию и данным нового эмпирического базиса, а также новым методологическим установкам познания.

Этапом утверждения оснований нового способа познания, превращения его в устойчивую стабильную целостность завершается период научной революции и начинается период эволюционного развития науки. В его процессе наука опирается на сложившийся в ходе научной революции новый способ познания (парадигму, фундаментальную теорию), основания которого принимаются учеными без существенной критики как новый и действенный инструмент познания.

В течение довольно длительного времени господствовало представление о том, что развитие науки происходит путем постепенного, непрерывного накопления все новых и новых научных истин. Подобная точка зрения не учитывала целостной картины развития науки, в которой на протяжении более длительных стадий происходит ревизия, или пересмотр, прежних ее понятий, принципов и концепций.

Содержание

Введение
Глава 1. Научные революции ХХ века
1.1. Основные характеристики научной революции
1.2. Предпосылки научной революции
Глава 2. Основные открытия научной революции первой половины ХХ века
Глава 3. Основные открытия в период НТР
3.1 Молекулярная биология
3.2 Атомная энергетика
3.3 Освоение космоса
3.4 Компьютерные технологии
Заключение
Список использованных источников

Введение

Раскрывая значение понятия научной революции внимание такой нюанс, что о коренных изменениях в науке можно говорить лишь в том случае, если эти изменения касаются не только принципов, методов и научных теорий, но и конкретной картины мира, как обобщенного выражения базовых элементов знания. Научная революция – это такой этап развития науки, когда подвергается серьезным изменениям, наряду с его научной картиной и методологией, также и исследовательская стратегия. Но в то же время научные революции не связаны с уничтожением прежнего знания и ранее накопленного и проверенного эмпирического материала. В действительности, новая картина мира отказывается только от тех прежних гипотез и теорий, которые оказались не в состоянии объяснить вновь открытые факты наблюдений и результаты опытов.

Поэтому научные революции в естествознании следует понимать как качественные изменения содержания его теорий, учений и научных дисциплин.

Согласно традиционным представлениям, революция в науке началась в Европе ближе к концу эпохи Возрождения и продолжалась вплоть до конца XVIII века, повлияв на такие интеллектуальные движения, как эпоха Просвещения. В истории можно выделить три научных революции: 1-я революция (аристотелевская) произошла в VI — IV вв. до н.э. в познании мира; в результате и появилась на свет наука; 2-я глобальная научная революция (ньютоновская) пришлась на XVI — XVIII вв. Её исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической; 3-я революция произошла на рубеже XIX — XX вв., начавшись в физике. Успехи физики оказали влияние на химию и другие науки; 4-я научная революция началась в середине ХХ веке и получила название НТР, т. е. научно-техническая революция. Наука развивает технику, а техника, в свою очередь, постоянно стимулирует прогресс науки.

Её итог — переход к новой квантово-релятивистской физической картине мира.[4, С. 29-36]

Целью же данной работы является анализ научных революций ХХ века.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

  1. Провести анализ литературы по данной тематике.
  2. Рассмотреть основные характеристики научной революции и предпосылки ее возникновения.
  3. Проанализировать основные открытия научной революции первой половины ХХ века и периода НТР.
  4. Сделать соответствующие выводы по данному исследованию.

Глава 1. Научные революции ХХ века

1.1 Основные характеристики научной революции

Революция в науке — период, когда открытия в таких областях науки, как физика, математика, астрономия, биология (включая анатомию), химия и др. коренным образом изменили взгляды на природу и общество.

Научная революция включает в себя не только получение принципиально новых представлений об окружающем мире благодаря научным открытиям, но и изменение представления учёных о том, как эти открытия нужно делать. Если в Средневековье преобладали отвлечённые логические рассуждения и философские аргументы, то в Новое время ключевым для новой науки стал эмпирический подход. Для нас сейчас он естественен, но признан он был только в XVII веке, а распространился лишь в XVIII веке.

В историческом развитии научного познания можно выделить несколько типов научных революций:

  1. Частная — микрореволюция, затрагивающая только одну область знания;
  2. Комплексная — революция, затрагивающая ряд областей знания;
  3. Глобальная — всеобщая революция, радикально меняющая основы науки.

При определении типа научной революции необходимо учитывать следующие моменты:

  1. Масштаб научной революции;
  2. Глубину переворота фундаментальных теорий и законов науки;
  3. Открытие новых фундаментальных законов, новой общей естественнонаучной теории;
  4. Формирование общей картины мира;
  5. Выработку нового типа мышления;
  6. Исторический период развития науки;
  7. Сопровождающие научную революцию социально-экономические преобразования.

Общими чертами научной революции являются:

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

  1. Универсальность, всеохватность: задействование всех отраслей и сфер человеческой деятельности;
  2. Чрезвычайное ускорение научно-технических преобразований: сокращение времени между открытием и внедрением в производство, постоянное устаревание и обновление;
  3. Повышение требований к уровню квалификации трудовых ресурсов: рост наукоёмкого производства;
  4. Военно-техническая революция: совершенствование видов вооружения и экипировки
  5. Характерной чертой научной революции XX века является прогресс в инфокоммуникациях, ведь именно прогресс в информационном поле является важнейшим фактором изменений социума, которые радикально меняют ключевые аспекты человеческой жизни.

Если обратиться к истории науки, то подлинно глобальными, фундаментальными можно назвать лишь две революции: революцию XVI — XVII вв. и научно революцию XX в.

1.2 Предпосылки научной революции

Революционное развитие науки связано с существенным преобразованием и реорганизацией ее концептуально-теоретического арсенала. В этот период происходит разрешение обострившихся противоречий между теорией и эмпирией, что приводит к возрастанию объема противоречий, который не может продолжаться бесконечно, даже с учетом использования новых модификаций. Теория утрачивает свой объяснительный и предсказательный потенциал. Наступает момент, когда она оказывается не в состоянии усваивать возрастающий поток новой информации.

Таким образом, предпосылками научной революции являются:

  1. Исчерпание потенциала систем теоретического знания, т.е. невозможность на их основе осуществлять успешное описание, объяснение и предвидение исследуемых явлений;
  2. Возрастающая сложность концептуального, логического и математического аппарата теоретической системы знаний за счет все более интенсивного использования гипотез и искусственных модификаций структуры и языка теории;
  3. Накопление эмпирических и теоретических аномалий, парадоксов и противоречий, которые не позволяют использовать традиционные для данной теории алгоритмы постановки и решения возникающих задач и проблем.

Но революция начинается лишь тогда, когда формируется новая креативная идея, выполняющая функции концептуального ядра будущей теории, парадигмы или научной картины мира. Это обеспечивает эволюционный рост знания до тех пор, пока базовые характеристики изучаемых объектов успешно усваиваются и видоизменяются в рамках существующей картины мира, а методы теоретического освоения объектов соответствуют тем методологическим нормативам, которые входят в структуру стиля научного мышления, доминирующего в данную эпоху.[2, С. 125-126]

Глава 2. Основные открытия научной революции первой половины ХХ

Начало XX в. — это время важнейших открытий в науке, которые расширили представления о природе и человеке, изменили сложившуюся до этого научную картину мира. Особенно значительными были открытия в физике, которые современники назвали переворотом, революцией в науке.[1, С. 9]

В самом начале XX века, в 1900 году М. Планк постулировал квантовый характер излучения и поглощения энергии электромагнитного поля, для объяснения свойств теплового излучения. Также он открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света и в 1905—1917 годах опубликовал ряд работ, среди которых были специальная (1905 год) и общая (1915 год) теории относительности. Они были посвящены противоречиям между результатами экспериментов и классической волновой теорией света, в частности фотоэффекту и способности вещества находиться в тепловом равновесии с электромагнитным излучением, понятию относительности и сути гравитации[6, С. 826].

В 1911 году знаменитый английский физик Эрнест Резерфорд предложил свою модель атома, которая получила название планетарной. В результате экспериментов, проводимых Э. Резерфордом и его учениками, было обнаружено, что в атомах существуют ядра — положительно заряженные микрочастицы, размер которых очень мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре.

Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. Разрешение этих противоречий выпало на долю известного датского физика Нильса Бора, предложившего свое представление об атоме. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В 1924 году произошло крупное событие в истории физики: французский ученый Луи де Бройль выдвинул идею о волновых свойствах материи, которая позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.

Совершались важные открытия и в медицине. Величайшее открытие в этой области сделал австрийский ученый К. Ландштейнер. Экспериментальные исследования 1900-1907 гг. позволили выявить группы крови человека, после чего появилась возможность избежать смертельных осложнений, связанных с переливанием несовместимой крови. В результате многочисленных опытов с кровью in vitro (в пробирках) и оценки возможных комбинаций К. Ландштейнер установил, что всех людей в зависимости от свойств крови можно разделить на три группы. Чуть позднее (1906) чешский ученый Ян Янский выделил четвертую группу крови и дал всем группам обозначения, существующие и в настоящее время.

Другое серьезное открытие — пенициллин. Эта молекула стала первым в мире антибиотиком и сохранила жизни миллионам людей во время войны. В 1928 году биолог Александр Флеминг в ходе эксперимента заметил, что обычная плесень уничтожает бактерии. В 1938 году двое ученых, продолжавших работу над свойствами пенициллина, сумели выделить его чистую форму, на основе которой вещество и производилось как лекарство.

Таким образом, достижения научной мысли начала XX века стали толчком для дальнейших открытий, произошедших в период, получивший название научно-техническая революция (НТР).[3, С. 253-257].

Глава 3. Основные открытия в период НТР

3.1 Молекулярная биология

Новые явления и процессы, имевшие место в развитии естествознания и техники в первой половине XX века, подготовили уникальное в истории общества событие, получившее наименование научно-технической революции (НТР). Научно-техническая революция — коренная перестройка технических основ материального производства, начавшаяся в середине XX в., на основе превращения науки в ведущий фактор производства, в результате которого происходит трансформация индустриального общества в постиндустриальное. Среди естественнонаучных направлений, в значительной степени определивших наступление НТР, были атомная физика и молекулярная биология. В середине века наряду с физикой лидируют науки, смежные с естествознанием, — космонавтика, кибернетика, а также химия.[3, С. 253].

Во второй половине ХХ в. в рамках биологии при переходе от клеточного уровня исследования к молекулярному были сделаны наиболее революционные открытия:

  1. В 1950-х гг. ученые Френсис Крик и Джеймс Уотсон открыли строение ДНК — основных строительных блоков, из которых состоят живые клетки, и выявили генетическую роль нуклеиновых кислот.
  2. Открытие молекулярно-генетических механизмов изменчивости — классическая рекомбинация генов, мутация генов, неклассическая (нереципрокная) рекомбинация генов.
  3. 1957 год — Открытие трехмерной структуры белка (Дж. Кендрю, М. Перуц).

В результате были заложены научные основы новой отрасли науки — генной инженерии, целью которой стало создание новых форм организмов, наделенных свойствами, ранее у них отсутствовавшими. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку. Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.[9, С. 69-71].

3.2 Атомная энергетика

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3.3 Освоение космоса

3.4 Компьютерные технологии

Основным стержнем научно-технической революции являлись компьютерные технологии, развитие которых приобрело невиданные темпы. Первый в истории американский компьютер ЭНИАК (1946 г.) состоял из 18 тыс. электронных ламп, потреблял 50 тыс. Вт энергии, занимал целую комнату и весил 30 тонн.

Заключение

В XX веке наука развивалась невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

К тому же, мощной мотивацией для развития науки и техники стали мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начали выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Существенно расширилась сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.

Если в конце XIX века научные открытия совершались в маленькой лаборатории профессора или в мастерской изобретателя, то в 20–30-е годы XX века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих сотни тысяч и миллионы долларов. С конца XIX века наука начинает себя окупать. Капитал, вложенный в научные разработки, начинает приносить прибыль. Она перестала быть частным делом и становится профессией огромного числа людей. С. ускорением роста количества научных открытий и объема научной информации, а также числа людей, занятых в науке, объемы научной деятельности выросли до невероятных размеров. В результате этого – феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.[5, С. 87-88]

Влияние научно-технического прогресса на общество проявляется не только в сфере материального производства и науки. Так, например, развитие военной техники, особенно средств стратегического назначения, определяет важные аспекты взаимоотношений государств, отображается на состоянии их экономики.

В XX веке наука изменила не только сферу производства, но и быт людей.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Создание новых машин, аппаратов, приборов, интенсивное развитие электроники, радиотехники, химической технологии, авиационной и космической техники, систем автоматического управления и регулирования, лазерной и вычислительной техники и т.д. сделало нашу жизнь намного проще, позволив избавиться от тяжелой рутинной работы.

Кино, радио, телевидение вызвали к жизни новые виды искусств, оказали воздействие на всю человеческую культуру, сделав ее достоянием широких масс. Появление технических средств обучения позволило повысить эффективность учебного процесса в средней и высшей школах, осуществить принципы программированного обучения.[8, C. 12]

Однако с появлением различной техники, человеку даже не приходится думать, что отражается на умственной и физической способности человека, порождается лень, невежество, безделье, общество деградирует. Также стремительное повышение роли науки и техники как фактора социальных преобразований привело к многочисленным глобальным проблемам, порождённым техногенной цивилизацией и поставивших под угрозу само существование человечества.

Читайте также: