Научная картина мира функции науки реферат

Обновлено: 02.07.2024

Принято считать, что научная картина мира является фунда¬ментальным основанием науки. Научная картина мира – это широкая панорама знаний о природе и человечестве, включающая в себя наиболее важные теории, гипотезы и факты, претендующая на то, чтобы быть ядром мировоззрения. Она включает систему научных обобщений, возвышающихся над конкретными про¬блемами отдельных дисциплин, и предстает как обобщающий этап интеграции научных достижений в единую, непротиворе¬чивую систему.

Содержимое работы - 1 файл

Научная картина мира.doc

НАУЧНАЯ КАРТИНА МИРА И ЕЕ ФУНКЦИИ

Принято считать, что научная картина мира является фундаментальным основанием науки. Научная картина мираэто широкая панорама знаний о природе и человечестве, включающая в себя наиболее важные теории, гипотезы и факты, претендующая на то, чтобы быть ядром мировоззрения. Она включает систему научных обобщений, возвышающихся над конкретными проблемами отдельных дисциплин, и предстает как обобщающий этап интеграции научных достижений в единую, непротиворечивую систему. В целостной научной картине мира должны быть объединены данные наук о неживой природе, органическом мире, человеческом обществе и общественных отношениях. Базис научной картины мира составляют совокупность основополагающих принципов многих научных дисциплин. Она предстает как строгая система, обобщающая результаты различных ветвей научного познания, и только в этом значении имеет право на существование. Поэтому в научной картине мира равноправное место занимают достижения не только естественных и технических наук, но и социально-гуманитарных.

Структура научной картины мира включает следующие компоненты: (а) центральное теоретическое ядро, обладающее относительной устойчивостью; (б) фундаментальные допущения, условно принимаемые за неопровержимые; (в) частные теоретические модели, которые постоянно достраиваются. Когда речь идет о физической реальности, то к сверхустойчивым элементам картины мира относят принцип сохранения энергии, принцип постоянного роста энтропии, фундаментальные физические константы, характеризующие основные свойства универсума: пространство, время, вещество, поле. Для социального знания всегда значимы были отношения производства, распределения, обмена и потребления.

Научная картина мира выполняет следующие функции:

1) интегративную, обеспечивающую синтез базовых научных знаний. Наш современник физик А. Фридман был убежден, что как бы ничтожна ни была сумма людских знаний, всегда находились мудрецы, пытающиеся на основании ничтожных данных воссоздать картину мира. С этим связана системность научного мировоззрения. На протяжении истории философии формировалась идея развития и взаимосвязи природных процессов и общества. Гегель в философии природы подчеркивал диалектическую взаимосвязь и переход от механических явлений к химическим, далее к органической жизни и к практике. Его философия духа подразделялась на учение о субъективном духе (антропология, феноменология, психология), объективном духе (социально-историческая жизнь человека), абсолютном духе (философия как наука наук). Родоначальник позитивизма Огюст Конт выделял два основных условия, необходимых при построении, научной картины мира: (а) расположение наук, при котором каждая из них опирается на предыдущую и подготавливает последующую, (б) расположение наук сообразно ходу их действительного развития – от начальной (математико-астрономической) к конечной (биолого-социологической) через промежуточную (физико-химическую). Конечной целью всякой теоретической системы выступает человечество;

В случае столкновения сложившейся картины мира с контрпримерами для сохранности центрального теоретического ядра образуется ряд дополнительных гипотез, которые видоизменяются с учетом появившихся контрпримеров. Таким образом, научная картина мира обладает определенным иммунитетом, направленным на сохранение имеющегося концептуального основания. В ее рамках происходит кумулятивное (собирательное) накопление знания;

Можно выделить следующие исторические формы научной картины мира: классическую, неклассическую и постнеклассическую.

Классическая картина мира формируется начиная с научных идей Галилея и Ньютона и в дальнейшем получает название механистической. Она господствовала вплоть до середины XIX века. Объяснительным эталоном в этой картине мира считалась однозначная причинно-следственная зависимость. Классическая картина мира осуществляла описание объектов, как если бы они относились только к области механики и существовали изолированно. Основным условием познания было требование элиминации всего того, что относилось к субъекту познания, к возмущающим факторам и помехам. Предполагалось, что все состояния мира могли быть просчитаны и предсказаны.

Под влиянием развития термодинамики, оспаривающей универсальность законов классической механики, на смену классической картине мира пришла неклассическая. С развитием термодинамики выяснилось, что жидкости и газы нельзя представить как чисто механические системы, а потому в неклассической картине мира возникает более гибкая схема детерминации, учитывается роль случая. Развитие системы мыслится направленно, но при этом признается, что ее состояния в каждый момент времени не детерминированы. Отрицая детерминированность на уровне индивидов, неклассическая картина мира признавала ее на уровне системы в целом.

Постнеклассическая картина мира сформировалась под влиянием научных достижений бельгийской школы И. Пригожина в области изучения нелинейных самоорганизующихся систем, что привело к открытию принципов синергетики В синергетической научной картине мира доминирует идея многовариантного и необратимого становления, а мир предстает как поле сосуществующих возможностей.

Синергетика обнаружила эффект нарушения принципа когерентности и возникновение ситуации, когда малым, локальным, второстепенным причинам соответствуют глобальные по размаху и энергетической емкости следствия. Это делает будущее принципиально неопределенным и открытым для новообразований. В перспективе эволюционирования таких систем допустимы многочисленные комбинации последующего развития, а в критических точках направленных изменений возможен эффект ответвлений. В результате в современной постнеклассической картине мира неопределенность рассматривается как атрибутивная характеристика бытия.

Важной особенностью постнеклассической стадии эволюции научной картины мира является применение постаналитического способа мышления, сочленяющего сразу три сферы анализа: исторический, критико-рефлексивный и теоретический. Постаналитизм выражает претензию на некий синтез дисциплинарного и гуманитарного словарей, на укоренение эпистемологии в социальной теории, предполагает учет взаимоотношений научных и вненаучных факторов. Постнеклассическая научная картина мира составляет основу современного рационального мировоззрения.

1) Картина мира как онтология научного знания. Одна из важнейших функций картины мира в науке состоит в том, что она устанавливает связь между научным знанием и тем реальным бытием, которое служит предметом его исследования. Именно поэтому она осуществляет онтологическую функцию в науке. Эта функция состоит в том, что научная картина мира формирует представления об объектах, фундаментальных понятиях и принципах, на которые опираются различные понятия и теории науки. Последние связываются с исследуемым реальным миром не прямо и непосредственно, а опосредованно через картину мира соответству

Содержание

Картина мира как онтология научного знания
Научная картина мира как исследовательская программа
Картина мира как систематизация научного знания

Вложенные файлы: 1 файл

Функции научной картины мира.doc

  1. Картина мира как онтология научного знания
  2. Научная картина мира как исследовательская программа
  3. Картина мира как систематизация научного знания

В любой картине мира конкретной науки рассматриваются, прежде всего, те фундаментальные объекты, из которых построены все другие объекты ее теорий, а также указан характер взаимодействия фундаментальных объектов. В механической картине мира, как мы видели, такими объектами являются неделимые корпускулы, или материальные точки, а характер их взаимодействия определяется мгновенно действующей силой на расстоянии. Электромагнитная картина опирается на существование электромагнитного поля, в котором взаимодействие объектов происходит через близкодействие элементов поля за конечное время. Заменившая ее квантово-релятивистская картина отказалась и от представления о неделимости атомов, и от существования мирового эфира, и от абсолютности пространства-времени.

Опыт развитых наук вместе с тем показывает, что их научная картина мира в существенной степени изменялась, прежде всего, именно в результате перехода к изучению новых, более сложных явлений и процессов. Только благодаря этому ученые вынуждены были пересматривать свои прежние абстракции и идеализации. Если для изучения простых систем механики вполне достаточно было представлять их в форме структуры материальных точек, то переход к исследованию сложно организованных систем потребовал пересмотра подобных идеализации. Вместо материальной точки стали рассматриваться атомы и элементарные частицы, непрерывность действия дополнена квантами, детерминистические предсказания — вероятностными и т.д.

2) Картина мира как систематизация научного знания.

Научные картины, создаваемые отдельными науками, так же как картины естествознания и мира в целом, ставят своей целью систематизацию знаний разной степени общности. Процесс систематизации и синтеза знаний предполагает поиск таких общих понятий и принципов, с точки зрения которых становится возможным понять место и роль конкретных закономерностей в общей системе научного знания. Поэтому картина природы, создаваемая отдельной наукой или естествознанием в целом, представляют собой систему знаний различной степени общности и глубины, которая возникает в результате их синтеза. При этом научная картина мира отдельной науки, например физики, будет частью или фрагментом общей естественнонаучной картины природы. Поскольку же последняя составляет часть реального мира, то естественнонаучная картина мира будет составлять часть общей картины мира в целом.

Если отдельные научные теории формулируют свои основные понятия и законы, чтобы объяснить и предсказать конкретные факты изучаемой области, то картины отдельных научных дисциплин стремятся выделить их основные онтологические понятия и фундаментальные принципы. Опираясь на них, картина мира помогает понять роль и место отдельных теоретических понятий и закономерностей в общей системе научного знания. Именно в этом отношении она играет систематизирующую роль в познании, и благодаря этому же приобретает эвристический и прогностический характер. Действительно, в рамках узких границ отдельной научной теории или даже конкретной научной дисциплины трудно уловить общие тенденции развития достаточно широкой области явлений, а тем более природы и общества в целом. Обобщение и синтез знания в научной картине мира дают возможность понять, в каком направлении происходит такое развитие, какие наиболее важные проблемы выдвигаются перед конкретной наукой. Дальнейший этап систематизации и обобщения научного знания происходит в процессе создания естественнонаучной и социально-гуманитарной картин мира. Наконец, свое завершение этот процесс находит при построении общенаучной картины мира, в результате которого происходит формирование целостного взгляда на мир природы, место и роль в ней общества и человечества.

3) Научная картина мира как исследовательская программа.

Процесс обобщения и систематизации знания, который происходит при формировании научных картин мира, предполагает исследование самых различных форм такой систематизации. Между тем под влиянием господствовавшей в последние полвека неопозитивистской философии науки основной формой системного знания в науке признавалась только теория. После критики неопозитивистской философии науки многие западные ученые обратили внимание на роль культурно-исторических и мировоззренческих факторов на развитие науки. Среди них особенного внимания заслуживает обсуждение таких форм развития научного знания, как анализ исторических традиций и особенно выдвижение исследовательских программ. Они интересны тем, что ориентируют историков и философов науки на изучение тенденций и традиций в истории развития науки (концепция Л. Лаудана) и общих исследовательских программ (концепция И. Лакатоса). Хотя эти концепции преодолевают ограниченность неопозитивистской философии, однако не подчеркивают, во-первых, роль онтологических представлений науки вообще и научной картины мира в частности, во-вторых, не обращают внимания на значение междисциплинарных исследований в обобщении и систематизации научного знания, в-третьих, забывают о преемственности в развитии этого знания.

Рассмотрение научной картины мира в контексте исследовательской программы предполагает, прежде всего, ясное представление о ней как специфической форме научного знания, в которой формулируются исходные онтологические понятия и принципы, на которые опираются соответствующие абстракции конкретных научных теорий. Отчетливое понимание онтологического характера научной картины мира позволяет установить четкое различие между ее основными понятиями и принципами, с одной стороны, и абстрактными понятиями и законами конкретных теорий, с другой. Первые — шире по охвату изучаемой действительности и конкретнее по содержанию, вторые — уже по объему и беднее, абстрактнее по содержанию. Этим объясняется тот факт, что научная картина продолжает существовать при замене одних конкретных теорий другими. Поэтому преемственность знаний в науке выступает в виде сохранения связи между исторически преходящими и вновь возникающими научными картинами мира.

Сам процесс формирования отдельной научной картины мира происходит в результате обобщения и синтеза исходных понятий и законов отдельных ее теорий в ходе исторического развития конкретной научной дисциплины. Возникновение более общей картины мира, например естествознания, предполагает междисциплинарный анализ идей и принципов различных дисциплин, изучающих природу. Еще более обширный и глубокий анализ приводит к формированию общей научной картины мира. Таким образом, научные картины различного уровня общности и глубины можно рассматривать как результат осуществления соответствующей исследовательской программы. В общем смысле само развитие науки можно рассматривать как реализацию некоторой исследовательской программы.

Понятие и структура научной картины мира, ее отличие от ненаучных картин мира. Функциональность и взаимосвязь общей научной и естественнонаучной картин мира. Корпускулярно–волновой дуализм, свойства микрообъектов и доказательство гипотезы де Бройля.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 17.12.2009
Размер файла 37,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Научная картина мира, понятие, структура, функции.

Корпускулярно - волновой дуализм. Его сущность

Содержание

1. Введение

2. Научная картина мира, понятие, структура, функции

2.1 Понятие и структура научной картины мира

2.2 Современная научная картина мира и ее отличие от ненаучных картин мира

2.3 Взаимосвязь общей научной и естественнонаучной картин мира

2.4 Функциональность научной картины мира

3. Корпускулярно - волновой дуализм. Его сущность

3.1 Необычные свойства микрообъектов. Гипотеза де Бройля

3.2 Доказательство гипотезы де Бройля, сущность явления

4. Список литературы

Введение

Представления о свойствах и закономерностях окружающей нас природы возникают на основе тех знаний, которые в каждый исторический период дают конкретные науки, изучающие определенные области явлений и процессов природы. Поскольку природа есть нечто единое целое, постольку и знания о ней должны иметь целостный характер, т.е. представлять собой определенную систему. Такую общую совокупность научных знаний о природе издавна называют учением о природе или естествознанием.

Раньше в естествознание входили все сравнительно немногочисленные знания, которые были известны о природе, но уже с эпохи Возрождения возникают и обособляются отдельные его отрасли и дисциплины, т.е. начинается процесс дифференциации естественнонаучного знания. Ясно, что не все знания являются одинаково важными для понимания природы.

С течением времени ученые открывают различные явления и устанавливают закономерности этих явлений, с последующим выводом теории и доказательством ее на практике опытным путем. В данной работе в третьем разделе мы рассмотрим одно из таких явлений отрытых сначала гипотетически французским ученым де Бройлем, а в последующем подтвержденное опытным путем американскими физиками К. Дэвиссоном и Л. Джермером.. Речь пойдет о корпускулярно-волновом дуализме микрообъектов.

2. Научная картина мира

2.1 Понятие и структура научной картины мира

Научная картина мира -- это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов, методологических установок или - особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий.

Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции -- определенные способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

В структуре научной картины мира можно выделить два главных компонента -- понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.).

Чувственно-образный компонент научной картины мира -- это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.).

2.2 Современная научная картина мира и ее отличие от ненаучных картин мира.

Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение, что в современной научной картине мира лидирующее положение занимает биология. Это выражается в усилении влияния, которое оказывает биологическое знание на содержание научной картины мира. Идеи биологии постепенно приобретают универсальный характер и становятся фундаментальными принципами других наук. В частности, в современной науке такой универсальной идеей является идея развития, проникновение которой в космологию, физику, химию, антропологию, социологию и т.д. привело к существенному изменению взглядов человека на мир.

Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной доказанной и обоснованной фундаментальной научной теории. Вместе с тем научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки их истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий.

2.3 Взаимосвязь общей научной и естественнонаучной картин мира

Важнейшие концепции естествознания служат основой научных представлений об общей картине природы, поскольку в них формулируются фундаментальные понятия, принципы и законы естествознания в каждую историческую эпоху его развития. Именно они составляют научную основу картины природы в целом и поэтому в значительной степени определяют научный климат эпохи. В теснейшем взаимодействии с развитием наук о природе, начиная с XVII в., развивалась математика, которая создала для тогдашнего естествознания такие мощные математические методы, как дифференциальное и интегральное исчисления, а также дальнейшие их ответвления.

Основой картины природы и мира в целом служили мировоззренческие и философские идеи о строении мироздания, законы его изменения и развития. Человек всегда стремился понять окружающий его мир и свое место в нем. Поэтому уже на ранних этапах цивилизации возникают мифологические и религиозные представления о мире, которые со временем вытесняются научными взглядами на него.

Однако без учета результатов исследования экономических, социальных и гуманитарных наук наши знания о мире в целом будут заведомо неполными и ограниченными. Человек не только природное существо, он теснейшими узами связан с обществом, в котором протекает вся его деятельность. Фундаментальные понятия и принципы жизнедеятельности общества составляют вторую, дополнительную часть целостной научной картины мира. Поэтому следует различать естественнонаучную картину природы, которая составляет первую часть общей картины мира и формируется из результатов исследований и достижений наук о природе. Общая же научная картина мира представляет собой синтез фундаментальных понятий, принципов и закономерностей естествознания и обществознания.

2.4 Преимущество и функциональность научной картины мира

Разумеется, без творческой деятельности ученого, его воображения и интуиции, невозможно создание картины мира, но в окончательном виде эта картина не должна содержать каких-либо ссылок на индивидуальные особенности исследователя. Именно поэтому есть возможность ее использования учеными разных народов и культур.

Картина мира у любого человека слишком индивидуальна, поскольку она основана на собственном опыте, личных впечатлениях и ощущениях. Наука стремится найти объективные, не зависящие от индивидуального субъекта закономерности природы. Поэтому в науке приходится абстрагироваться от личных ощущений и представлений и построить такую систему знаний о природе, с которой мог бы согласиться каждый исследователь. Ясно, что не всякая система знаний представляет собой картину природы. Для этого необходимо, во-первых, чтобы эта система отображала наиболее фундаментальные свойства и закономерности природы; во-вторых, все такие свойства должны рассматриваться в рамках единой, целостной картины, так как никакой отдельный фундаментальный закон естествознания не составляет еще картины природы; в-третьих, естественнонаучная картина мира должна быть такой общей теоретической моделью окружающей природы, которая допускает дополнения, исправления и уточнения в связи с развитием научных представлений о мире; в-четвертых, научную картину мира следует постоянно соотносить и сверять как с самой природой, так и с изменением фундаментальных знаний о ней.

В процессе эволюции и прогресса научного познания происходит смена старых понятий новыми понятиями, менее общих теорий более общими и фундаментальными теориями. А это со временем неизбежно приводит к смене научных картин мира, но при этом продолжает действовать принцип преемственности, общий для развития всего научного знания. Старая картина мира не отбрасывается целиком, а продолжает сохранять свое значение, уточняются только границы ее применимости. Электромагнитная картина мира не отвергла механистическую картину мира, а уточнила область ее применения. Аналогично этому квантово-релятивистская картина не отбросила электромагнитную картину, а указала пределы ее применимости.

По мере развития науки и практики в научную картину мира будут вноситься изменения, исправления и улучшения, но эта картина никогда не обретет характера абсолютной истины.

3. Корпускулярно - волновой дуализм. Его сущность

В природе микрообъекты имеют необычные свойства, которые проявляются посредством экспериментов. Так учеными было установлено, что микрообъекты в одних опытах обнаруживают себя как материальные частицы, или корпускулы, в других -- как волны.

Новый радикальный шаг в развитии физики был связан именно с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества -- электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительнее оказалось обнаружение существования у микрочастиц волновых свойств.

Первым гипотезу о наличии волновых свойств у микрочастиц материи высказал в 1924 г. известный французский ученый Л. де Бройль. По-видимому, он руководствовался при этом интуитивной идеей о симметрии между веществом и полем и особенно новыми взглядами на свет, элементарные объекты которого -- фотоны -- обладают одновременно волновыми и корпускулярными свойствами. Несмотря на коренное различие между веществом и полем, такая глубокая аналогия оказалась верной и послужила исходной точкой для разработки новой квантовой физики.

Гипотеза де Бройля состояла в следующем:

Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы:

где -- длина волны,

р -- импульс частицы, равный произведению ее массы на скорость: р =mv,

h -- постоянная Планка.

3.2 Доказательство гипотезы де Бройля, сущность явления

Экспериментально эта гипотеза была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля. Как мы уже знаем, явление дифракции свидетельствует о типично волновом характере явления. Впоследствии такая же дифракционная картина была обнаружена у протонов, нейтронов и других элементарных частиц при прохождении ими через дифракционную решетку.

Таким образом, было установлено, что как фотоны, т.е. кванты света, так и вещественные частицы, такие, как электрон, протон, нейтрон и другие, обладают не только корпускулярными, но и волновыми свойствами. Это принципиально новое явление, названное впоследствии дуализмом волны и частицы, совершенно не укладывалось в рамки классической физики. Действительно, раньше считали, что объекты ее изучения могли обладать либо корпускулярными, либо волновыми свойствами. В отличие от этого микрообъекты, имеющие квантовый характер, обладают одновременно как корпускулярными, так и волновыми свойствами. Например, в одних экспериментальных условиях электрон обнаруживает типично корпускулярные свойства, а в других -- волновые свойства, так что его можно было назвать как частицей, так и волной. Тот факт, что поток электронов представляет собой поток мельчайших частиц вещества, знали и раньше, но то, что этот поток обнаруживает волновые свойства, образуя типичные явления интерференции и дифракции, подобно волнам света, звука или жидкости, оказалось полной неожиданностью для физиков.

Для лучшего понимания всех дальнейших вопросов проделаем такой мысленный эксперимент. Пусть мы имеем устройство, которое дает поток электронов, например электронную пушку. Поставим перед ней тонкую металлическую пластинку с двумя булавочными отверстиями, через которые могут пролетать электроны. Прохождение электронов через эти отверстия регистрируется специальным прибором, например счетчиком Гейгера или электронным множителем, подсоединенным к динамику. Если подсчитать количество электронов, прошедших отдельно через первое отверстие, когда второе закрыто, и через второе, когда первое закрыто, а потом через оба открытых отверстия, то окажется, что сумма вероятностей прохождения электронов, когда открыто отдельно одно из отверстий, а потом другое, не будет равна вероятности их прохождения при двух открытых отверстиях:

где Р -- вероятность прохождения электронов при двух открытых отверстиях,

Р1 -- вероятность прохождения электронов при открытии первого отверстия,

Р2 -- вероятность при открытии второго отверстия.

Это неравенство свидетельствует о наличии интерференции при прохождении электронов через оба отверстия. Интересно отметить, что если на прошедшие за экраном электроны воздействовать светом, то интерференция исчезнет. Следовательно, фотоны, из которых состоит свет, влияют на характер движения электронов и изменяют его. Здесь перед нами совершенно новое явление, заключающееся в том, что всякая попытка наблюдения микрообъектов сопровождается изменением характера их движения. Поэтому любое наблюдение микрообъектов с помощью приборов и измерительных средств исследователя в мире мельчайших частиц материи сопровождается изменением их состояния. Конечно, влияние средств наблюдения на наблюдаемые объекты было известно ученым и в классической физике. Но оно никак не учитывалось в классических теориях. В квантовой же физике этим влиянием уже нельзя было пренебречь. Именно это обстоятельство вызывает обычно возражение со стороны тех, кто не видит различия между микро- и макрообъектами. В макромире, в котором мы живем, мы не замечаем влияния приборов наблюдения и измерения на макротела, которые изучаем, поскольку практически такое влияние чрезвычайно мало и поэтому им можно пренебречь. В этом мире как приборы и инструменты, так и сами изучаемые тела характеризуются тем же порядком величин. Совершенно иначе обстоит дело в микромире, где макроприбор не может не влиять на микрообъекты.

Другое принципиальное отличие микрообъектов от макрообъектов заключается в наличии у первых корпускулярно-волновых свойств, но наличие таких взаимоисключающих, противоречивых свойств у макрообъектов целиком отвергается сторонниками классической физики. Хотя классическая физика и признает обособленное существование корпускулярных свойств у вещества и волновых свойств у поля, но отрицает существование объектов, обладающих одновременно такими свойствами. Корпускулярные свойства она приписывает только веществу, а волновые -- исключительно физическим полям (акустическим, гидродинамическим, оптическим или электромагнитным).

Список литературы

Подобные документы

Понятие "научная картина мира". Физика как ведущая дисциплина в классической научной картине мира. Историческая смена физических картин мира. Современная картина мира. Главный предмет синергетики. Исторические формы проблемы происхождения жизни.

контрольная работа [24,6 K], добавлен 04.02.2010

Научное знание - основа современной естественнонаучной и гуманитарной разновидностей культуры. Взаимосвязь естественно-научной и гуманитарной культур. Корпускулярно-волновой дуализм. Строение Земли.

контрольная работа [232,7 K], добавлен 25.08.2007

Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

контрольная работа [21,9 K], добавлен 18.08.2009

Естественнонаучная картина мира как целостная система представлений об общих принципах и законах устройства мироздания. Эволюция естественнонаучной картины мира в истории человечества. Предпосылки, влияющие на развитие новых научных представлений.

реферат [21,5 K], добавлен 17.04.2011

Научная картина мира в системе теоретического и эмпирического знания: понятие, функции, принципиальные особенности. Принципы универсального эволюционизма: системный, эволюционный, термодинамический подход. Обоснование универсального эволюционизма.

курсовая работа [51,4 K], добавлен 14.11.2007

Понятие картины мира, ее сущность и особенности, история изучения. Сущность принципа глобального эволюционизма, его влияние на изменение представлений о картине мира в XIX веке. Синергетика как теория самоорганизации, ее роль в современном представлении.

контрольная работа [21,5 K], добавлен 09.02.2009

История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Содержание
1. Введение
2. Научная картина мира, понятие, структура, функции
2.1 Понятие и структура научной картины мира
2.2 Современная научная картина мира и ее отличие от ненаучных картин мира
2.3 Взаимосвязь общей научной и естественнонаучной картин мира
2.4 Функциональность научной картины мира
3. Корпускулярно – волновой дуализм. Его сущность
3.1 Необычные свойства микрообъектов. Гипотеза де Бройля
3.2 Доказательство гипотезы де Бройля, сущность явления
4. Список литературы

2. Научная картина мира
2.1 Понятие и структура научной картины мира
Научная картина мира — это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов, методологических установок или - особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий.
Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определенные способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.
В структуре научной картины мира можно выделить два главных компонента — понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.).
Чувственно-образный компонент научной картины мира — это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.).
2.2 Современная научная картина мира и ее отличие от ненаучных картин мира.
Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение, что в современной научной картине мира лидирующее положение занимает биология. Это выражается в усилении влияния, которое оказывает биологическое знание на содержание научной картины мира. Идеи биологии постепенно приобретают универсальный характер и становятся фундаментальными принципами других наук. В частности, в современной науке такой универсальной идеей является идея развития, проникновение которой в космологию, физику, химию, антропологию, социологию и т.д. привело к существенному изменению взглядов человека на мир.
Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной доказанной и обоснованной фундаментальной научной теории. Вместе с тем научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки их истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий.

2.3 Взаимосвязь общей научной и естественнонаучной картин мира
Важнейшие концепции естествознания служат основой научных представлений об общей картине природы, поскольку в них формулируются фундаментальные понятия, принципы и законы естествознания в каждую историческую эпоху его развития. Именно они составляют научную основу картины природы в целом и поэтому в значительной степени определяют научный климат эпохи. В теснейшем взаимодействии с развитием наук о природе, начиная с XVII в., развивалась математика, которая создала для тогдашнего естествознания такие мощные математические методы, как дифференциальное и интегральное исчисления, а также дальнейшие их ответвления.
Основой картины природы и мира в целом служили мировоззренческие и философские идеи о строении мироздания, законы его изменения и развития. Человек всегда стремился понять окружающий его мир и свое место в нем. Поэтому уже на ранних этапах цивилизации возникают мифологические и религиозные представления о мире, которые со временем вытесняются научными взглядами на него.
Однако без учета результатов исследования экономических, социальных и гуманитарных наук наши знания о мире в целом будут заведомо неполными и ограниченными. Человек не только природное существо, он теснейшими узами связан с обществом, в котором протекает вся его деятельность. Фундаментальные понятия и принципы жизнедеятельности общества составляют вторую, дополнительную часть целостной научной картины мира. Поэтому следует различать естественнонаучную картину природы, которая составляет первую часть общей картины мира и формируется из результатов исследований и достижений наук о природе. Общая же научная картина мира представляет собой синтез фундаментальных понятий, принципов и закономерностей естествознания и обществознания.

3. Корпускулярно – волновой дуализм. Его сущность
3.1 Необычные свойства микрообъектов. Гипотеза де Бройля
В природе микрообъекты имеют необычные свойства, которые проявляются посредством экспериментов. Так учеными было установлено, что микрообъекты в одних опытах обнаруживают себя как материальные частицы, или корпускулы, в других — как волны.
Новый радикальный шаг в развитии физики был связан именно с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества — электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительнее оказалось обнаружение существования у микрочастиц волновых свойств.
Первым гипотезу о наличии волновых свойств у микрочастиц материи высказал в 1924 г. известный французский ученый Л. де Бройль. По-видимому, он руководствовался при этом интуитивной идеей о симметрии между веществом и полем и особенно новыми взглядами на свет, элементарные объекты которого — фотоны — обладают одновременно волновыми и корпускулярными свойствами. Несмотря на коренное различие между веществом и полем, такая глубокая аналогия оказалась верной и послужила исходной точкой для разработки новой квантовой физики.
Гипотеза де Бройля состояла в следующем:
Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы:

где — длина волны,
р — импульс частицы, равный произведению ее массы на скорость: р =mv,
h — постоянная Планка.
3.2 Доказательство гипотезы де Бройля, сущность явления
Экспериментально эта гипотеза была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля. Как мы уже знаем, явление дифракции свидетельствует о типично волновом характере явления. Впоследствии такая же дифракционная картина была обнаружена у протонов, нейтронов и других элементарных частиц при прохождении ими через дифракционную решетку.
Таким образом, было установлено, что как фотоны, т.е. кванты света, так и вещественные частицы, такие, как электрон, протон, нейтрон и другие, обладают не только корпускулярными, но и волновыми свойствами. Это принципиально новое явление, названное впоследствии дуализмом волны и частицы, совершенно не укладывалось в рамки классической физики. Действительно, раньше считали, что объекты ее изучения могли обладать либо корпускулярными, либо волновыми свойствами. В отличие от этого микрообъекты, имеющие квантовый характер, обладают одновременно как корпускулярными, так и волновыми свойствами. Например, в одних экспериментальных условиях электрон обнаруживает типично корпускулярные свойства, а в других — волновые свойства, так что его можно было назвать как частицей, так и волной. Тот факт, что поток электронов представляет собой поток мельчайших частиц вещества, знали и раньше, но то, что этот поток обнаруживает волновые свойства, образуя типичные явления интерференции и дифракции, подобно волнам света, звука или жидкости, оказалось полной неожиданностью для физиков.
Для лучшего понимания всех дальнейших вопросов проделаем такой мысленный эксперимент. Пусть мы имеем устройство, которое дает поток электронов, например электронную пушку. Поставим перед ней тонкую металлическую пластинку с двумя булавочными отверстиями, через которые могут пролетать электроны. Прохождение электронов через эти отверстия регистрируется специальным прибором, например счетчиком Гейгера или электронным множителем, подсоединенным к динамику. Если подсчитать количество электронов, прошедших отдельно через первое отверстие, когда второе закрыто, и через второе, когда первое закрыто, а потом через оба открытых отверстия, то окажется, что сумма вероятностей прохождения электронов, когда открыто отдельно одно из отверстий, а потом другое, не будет равна вероятности их прохождения при двух открытых отверстиях:

где Р — вероятность прохождения электронов при двух открытых отверстиях,
Р1 — вероятность прохождения электронов при открытии первого отверстия,
Р2 — вероятность при открытии второго отверстия.
Это неравенство свидетельствует о наличии интерференции при прохождении электронов через оба отверстия. Интересно отметить, что если на прошедшие за экраном электроны воздействовать светом, то интерференция исчезнет. Следовательно, фотоны, из которых состоит свет, влияют на характер движения электронов и изменяют его. Здесь перед нами совершенно новое явление, заключающееся в том, что всякая попытка наблюдения микрообъектов сопровождается изменением характера их движения. Поэтому любое наблюдение микрообъектов с помощью приборов и измерительных средств исследователя в мире мельчайших частиц материи сопровождается изменением их состояния. Конечно, влияние средств наблюдения на наблюдаемые объекты было известно ученым и в классической физике. Но оно никак не учитывалось в классических теориях. В квантовой же физике этим влиянием уже нельзя было пренебречь. Именно это обстоятельство вызывает обычно возражение со стороны тех, кто не видит различия между микро- и макрообъектами. В макромире, в котором мы живем, мы не замечаем влияния приборов наблюдения и измерения на макротела, которые изучаем, поскольку практически такое влияние чрезвычайно мало и поэтому им можно пренебречь. В этом мире как приборы и инструменты, так и сами изучаемые тела характеризуются тем же порядком величин. Совершенно иначе обстоит дело в микромире, где макроприбор не может не влиять на микрообъекты.
Другое принципиальное отличие микрообъектов от макрообъектов заключается в наличии у первых корпускулярно-волновых свойств, но наличие таких взаимоисключающих, противоречивых свойств у макрообъектов целиком отвергается сторонниками классической физики. Хотя классическая физика и признает обособленное существование корпускулярных свойств у вещества и волновых свойств у поля, но отрицает существование объектов, обладающих одновременно такими свойствами. Корпускулярные свойства она приписывает только веществу, а волновые — исключительно физическим полям (акустическим, гидродинамическим, оптическим или электромагнитным).

Читайте также: