Надежность деталей машин реферат

Обновлено: 01.07.2024

К деталям машин и механизмов предъявляют следующие основные требования: работоспособности; надежности; технологичности и экономичности.

Работоспособность - состояние деталей, при котором они способны нормально выполнять заданные функции с параметрами, установленными нормативно-технической документацией (техническими условиями, стандартами и т. п.).

Надежность изделия - свойство выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам в условиях использования, технического обслуживания, ремонта, хранения и транспортирования.

Надежность является общей проблемой для всех отраслей машиностроения и приборостроения. Любая современная машина или прибор, какими бы высокими характеристиками они ни обладали, будут обесценены при ненадежной работе.

Надежность изделия зависит от необходимой наработки, которая может исчисляться в часах работы станка, налета самолета и т. д., в километрах пробега автомобиля, гектарах обработанной земли для сельскохозяйственной машины и т. д.

В области надежности широко используются следующие основные термины - долговечность, ремонтнопригодность, срок службы, гарантийная наработка (см. глоссарий).

Таким образом, надежность зависит от всех этапов создания и эксплуатации изделий. Ошибки проектирования, погрешности в производстве, упаковке, транспортировке и эксплуатации изделия сказываются на его надежности.

Технологичность. Технологичными называют изделия, требующие минимальных затрат средств, времени и труда в производстве, эксплуатации и ремонте.

Экономичность. При оценке экономичности учитывают затраты на проектирование, изготовление, эксплуатацию и ремонт.

Экономичность изделий достигается за счет снижения материалоемкости, энергоемкости и трудоемкости производства, за счет максимального коэффициента полезного действия в эксплуатации при высокой надежности; высокой специализацией производства и т. д.

Выполнение указанных требований обеспечивается при разработке деталей и совершенствования машин в процессе эксплуатации.

Виды повреждений деталей машин

Наблюдения за износом и повреждениями деталей машин в эксплуатации позволяют выделить пять основных видов разрушения материалов деталей, которые имеют свои подвиды:

1) деформация (всей детали или ее элемента, остаточная деформация поверхности детали, контактные усталостные повреждения) и изломы (хрупкий излом, вязкий излом, усталостный излом);

2) механический износ (истирание металлических пар, абразивный износ, питтингование);

3) эрозионно-кавитационные повреждения (жидкостная эрозия, кавитация, газовая эрозия);

4) коррозионные повреждения (атмосферная коррозия, коррозия в электролитах, газовая коррозия);

5) коррозионно-механические повреждения (коррозионная усталость, коррозионное растрескивание, коррозия при трении).

Рассмотрим характерные черты основных разновидностей разрушения материала деталей машин.

Деформация и изломы возникают при чрезмерном увеличении напряжений в материале детали, превосходящих предел текучести или предел прочности. Остаточная деформация приводит к изменению размеров и конфигурации детали либо к аварийному разделению детали на части (излом) с полной утратой работоспособности.

Изломом называют полное разрушение материала детали, приводящее к ее расчленению (при растяжении, сжатии, изгибе, кручении или сложном напряженном состоянии). Изломы разделяют по характеру нагружения (статический, усталостный) и по особенностям строения (хрупкий, вязкий).

Механический износ проявляется в результате взаимодействия трущихся пар. В зависимости от природы трущихся тел и условий их взаимодействия различают износ при истирании металлических пар при трении качения или скольжения и абразивный износ.

Коррозия. Обязательным условием для возникновения коррозии металла является наличие контакта между деталью и коррозионной средой. По характеру коррозионных сред коррозия металлов разделяется на атмосферную, газовую и коррозию в электролитах.

Коррозионно-механические повреждения возникают при одновременном действии коррозии и механических факторов (деформаций, напряжений, истирания). В зависимости от условий механических воздействий различают повреждения металла при коррозионной усталости, коррозионном растрескивании, а также при трении.

Кавитационно-эрозионные повреждения образуются при взаимодействии с жидкостью или газом, которые с большой скоростью омывают металлическую поверхность. Различают газовую эрозию, жидкостную эрозию и кавитацию.

При высоких температурах наблюдается явление ползучести, которое заключается в том, что металл медленно и непрерывно пластически деформируется под действием постоянных нагрузок. Величина напряжения, вызывающего разрушения при повышенной температуре, зависит от длительности приложения нагрузки. Прочность материала при высокой температуре характеризуется длительной прочностью, определяемой напряжением, вызывающим разрушение при данной длительности нагружения и данной температуре.

Примеры нарушения нормальной работоспособности деталей машин приведены в табл. 1.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

НАДЕЖНОСТЬ МАШИН И ОБОРУДОВАНИЯ

Надежность  свойство продукции

Надежность – это свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам, условиям использования, технического обслуживания, ремонта и транспортирования.

Под объектом понимается техническое устройство, комплектующие изделия, материалы, топливо и т.д. Естественно, что надежность – свойство, присущее машинам и оборудованию.

Надежность – сложное свойство, включающее , в свою очередь, такие свойства, как безотказность, долговечность, ремонтопригодность и сохраняемость.

Под безотказностью понимается свойство объекта непрерывно сохранять работоспособность в течение определенного времени или определенной наработки.

Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность – свойство объекта, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказа, повреждений и устранению их последствий путем проведения ремонтов и технического обслуживания.

Под сохраняемостью понимается свойство объекта непрерывно сохранять исправное состояние в течение и после хранения и (или) транспортирования.

Для различных объектов и условий их эксплуатации эти свойства могут иметь различную значимость. Например, тормозные устройства, сигнализаторы аварийной ситуации и другие технические средства должны обладать долговечностью, легковые и грузовые автомобили – долговечностью и ремонтопригодностью, лаки , краски – сохраняемостью.

Рассмотрим глубже приведенные определения свойств. Начнем с того, что безотказность и долговечность отражают две стороны события – отказ: первая – то, что он не произойдет в течение заданного времени, вторая – время, в течение которого он не произойдет. Поскольку отказ является случайным событием, то оба эти свойства характеризуются случайными величинами.

Всякое изделие с наработкой в большей или меньшей степени утрачивает безотказность. Вместе с тем есть изделия, продолжительность эксплуатации которых по разным причинам ограничена, в некоторых случаях изделия используются один раз. В случаях, когда продолжительность эксплуатации ограничена, безотказность его становится важнейшей составляющей надежности.

В тех случаях, когда продолжительность эксплуатации изделия неограниченна или очень велика и к тому же последствия отказов не связаны со значительным ущербом, на первый план в комплексе свойств, составляющих надежность, выходит долговечность.

Оценка долговечности изделия во многом зависит от того, является ли оно невосстанавливаемым или восстанавливаемым. На первый взгляд, невосстанавливаемое изделие в случае отказа становится непригодным дли дальнейшего использования. В действительности это не так. Во-первых, наряду с полным отказом, т.е. полной потерей работоспособности изделия, существуют частичные отказы, возникновение которых приводит к снижению эффективности использования изделия по прямому назначению. Во-вторых, одно и то же изделие в зависимости от условий или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым.

Для восстанавливаемых изделий существенное значение приобретает ремонтопригодность.

Ремонтопригодность можно рассматривать как технологичность ремонтного производства, в котором часть деталей, узлов и агрегатов изготавливается заново, часть ранее эксплуатировавшихся деталей, узлов и агрегатов подвергается восстановительным технологическим операциям. Таким образом, пригодность изделия к восстановлению представляет то, чем в первую очередь характеризуется ремонтопригодность.

Другой отличительной особенностью ремонтопригодности от технологичности является различие условий, в которых осуществляется ремонт и основное производство. Текущий ремонт проводится в условиях, близких условиям эксплуатации и ограниченных возможностях для устранения причин, снижающих работоспособность изделия.

Количественную характеристику свойств продукции, составляющих ее качество, называют показателями качества продукции. Надежность – сложное свойство, составляющее качество. Поэтому количественные характеристики свойств, составляющих надежность, принято называть показателями надежности объекта. Аналогичным образом по количеству свойств, которые характеризуют тот или иной показатель надежности, называют: единичным показателем надежности – количественную характеристику только одного свойства надежности объекта; комплексным показателем надежности – двух или более свойств надежности.

Свойства, составляющие надежность, характеризуются значительной степенью изменчивости. Невозможно точно указать, например, момент времени в который произойдет поломка той или иной детали машины. Отказы происходят в случайные моменты времени. Поэтому количественна оценка безотказности, долговечности, ремонтопригодности, сохраняемости различных изделий связана со случайными величинами, подчиняющимися вероятностным законам. При рассмотрении показателей надежности как единичных, так и комплексных руководствуются законами теории вероятностей и математической статистики, применяемыми в этих науках понятиями.

Показатели безотказности. Вероятностью безотказной работы в пределах заданной наработки называется вероятность того, что в пределах заданной наработки не произойдет отказ. Иногда этот показатель кратко называют вероятностью безотказной работы, что, строго говоря, лишено смысла.

Рассмотрим следующую ситуацию. Эксплуатируется невосстанавливаемое техническое устройство, т.е. такое, которое после первого отказа заменяется таким же новым. В этом случае плотность распределения наработки устройства до первого отказа (t) будет определяться как плотность распределения до отказа вообще f(t) (т.е. не обязательно первого), деленная на вероятность безотказной работы устройства при рассматриваемой наработке.

Например, перегорание нити накаливания электрических ламп происходит в результате многих случайных причин и, в частности, при мгновенных повышениях напряжения в сети, различного рода механических воздействиях и т.п. Указанные явления происходят в случайные моменты времени с определенной вероятностью (в случае конечного интервала времени) или плотностью вероятности (в случае бесконечно малого интервала времени). Это суть вероятность или плотность вероятности того, что отказ произойдет в заданном интервале независимо от того, были ли до этого отказы или нет. Такие вероятность или плотность вероятности равны произведению условной вероятности отказа при условии, что при заданной наработке лампочка работала безотказно (иначе бы она перегорела), и вероятности безотказной работы лампочки при заданной наработке:

Аналогичным образом автомобильная шина на каждом километре пробега х, х + х с вероятностью f(х) может получить неустранимые повреждения. Условная вероятность того, что в интервале пробега х, х + х шина получит неустранимые повреждения при условии безотказной работы при пробеге х километров равна

Функция (t) [(х) – в зависимости от размерности наработки] характеризует интенсивность отказов невосстанавливаемого технического устройства в интервале наработки t, t + t. Поэтому условную вероятность (в случае дискретной наработки) или условную плотность вероятности (в случае непрерывной наработки) отказа невосстанавливаемого технического устройства, определенную для рассматриваемой наработки при условии безотказной работы до момента отказа, называют интенсивностью отказа.

Рассмотрим важный и распространенный случай геометрического распределения (в случае дискретной наработки) и экспоненциального распределения (в случае непрерывной наработки).

Известно, что наработка до отказа Х имеет геометрическое распределение, если

P(X =k) = q k p, k = 0, 1, 2, … ,

где р – вероятность отказа в одном испытании; q = (1 – р) – вероятность того, что отказ в данном испытании не произошел. Испытанием, например, может быть один размен монеты в автомате, срабатывание реле и т.п. Вероятность того, что отказ произойдет в одном из испытаний (j = 1, 2, … , k) равна

при геометрическом распределении наработки до отказа не зависит от числа испытаний, предшествующих отказу. Вместе с тем, известно, что математическое ожидание и дисперсия этого числа в случае геометрического распределения соответственно равны

Е(Х) = q/p и D(X) = q/p 2

и, стало быть, в рассматриваемом случае интенсивность отказов является обратной величиной по отношению к математическому ожиданию числа испытаний, предшествующих отказу в интервале 0, .

Интенсивность отказов можно рассматривать как меру старения, износа устройства. Отсюда факт нулевой интенсивности отказов имеет простой физический смысл: устройство практически не стареет. В этом случае математическое ожидание числа испытаний, предшествующих отказу, должно быть бесконечно, а вероятность отказа в одном испытании равна нулю. Поскольку это не так, то нетрудно заметить, что нестареющее устройство может работать в случайным образом меняющихся условиях, например, при мгновенных вскоках напряжения электрического тока, наличии на дорогах острых предметов, способных нанести неисправимые повреждения автомобильным шинам, наличии очень твердых включений в металле, приводящих к поломке режущего инструмента и т.п.

Аналогом геометрического распределения для непрерывных случайных величин является экспоненциальное распределение. Выше мы рассматривали наработку до отказа Х = 0, 1, 2, … как число испытаний. Вместо единичного интервала можно рассматривать интервал Х и тогда величина Х будет принимать значения 0, Х, 2Х и т.д. Вероятность того, что в интервале (Х, Х + Х) произойдет отказ обозначим Х и будем рассматривать случаи, при которых вероятность более одного отказа в интервале Х практически равна нулю. В этом случае можно записать

а вероятность того, что за время t произойдет отказ

т.е., в случае экспоненциального распределения времени безотказной работы технического устройства интенсивность его отказов не зависит от времени.

Математическое ожидание и дисперсия экспоненциального распределения соответственно равны

Работа состоит из 1 файл

Надежность Основные понятия реферат.doc

В теории надежности, как правило, предполагается внезапный отказ, который характеризуется скачкообразным изменением значений одного или нескольких параметров объекта. На практике приходится анализировать и другие отказы, к примеру, ресурсный отказ, в результате которого объект приобретает предельное состояние, или эксплуатационный отказ, возникающий по причине, связанной с нарушением установленных правил или условий эксплуатации.

Основными показателями надежности являются:

вероятность безотказной работы,

средняя наработка на отказ,

среднее время восстановления.

Основными показателями технической эффективности любой системы являются производительность и надежность. Проблема надежности включает вопросы поддержания физического (технического) состояния аппаратных и программных средств и обеспечения их работоспособности. Моменты появления отказов и сбоев, время поиска и устранения неисправностей, моменты появления ошибок в программах и продолжительность их поиска зависят от очень многих факторов и поэтому непредсказуемы, т.е. случайны. Неисправность может случиться через год, а может – через час. Поэтому невозможно предсказать точное время таких событий, а можно только прогнозировать их с большей или меньшей вероятностью.

Надежность и эффективность - взаимосвязанные понятия. Чем выше надежность, тем выше и эффективность системы, но до определенного уровня, так как дальнейшее повышение надежности сопряжено с существенными экономическими затратами.

Резервирование — метод повышения характеристик надёжности технических устройств или поддержания их на требуемом уровне посредством введения аппаратной избыточности за счет включения запасных (резервных) элементов и связей, дополнительных по сравнению с минимально необходимым для выполнения заданных функций в данных условиях работы.

Резервирование широко применяется на опасных производственных объектах, во многих случаях его необходимость диктуется требования мипромышленной безопасности или государственных правил и стандартов. Некоторые технические устройства изначально в своей конструкциипредусматривают резервирование, например предохранительные клапаны непрямого действия — импульсные предохранительные устройства. Также резервирование широко используется в военной технике.

Элементы минимизированной структуры устройства, обеспечивающей его работоспособность, называются основными элементами; резервными элементами называются элементы, предназначенные для обеспечения работоспособности устройства в случае отказа основных элементов. Резервирование в технологических системах классифицируют по ряду признаков, основные из которых — уровень резервирования, кратность резервирования, состояние резервных элементов до момента включения их в работу, возможность совместной работы основных и резервных элементов с общей нагрузкой, способ соединения основных и резервных элементов. В резервированом изделии отказ наступает тогда, когда выйдут из строя основное устройство (элемент) и все резервные устройства (элементы). Группа элементов считается резервированной, если отказ одного или нескольких её элементов не нарушает нормальной работы схемы (системы), а оставшиеся исправные элементы выполняют ту же заданную функцию. Такое резервирование называется функциональным резервированием.

Анализ резервированных систем показывает, что интенсивность отказов резервированной системы быстро возрастает с течением времени, хотя интенсивность отказов нерезервированной системы от времени не зависит, из чего следует что наступает такой момент времени, после которого использование резервированной системы себя не оправдывает. Поэтому, если не учитывать особенности профилактики систем, то резервирование выгодно применять для систем кратковременого использования, а для критически важных систем и систем длительного использования использовать другие методы повышения надёжности. Методы резервирования, эффективные для цифровых систем непрерывного типа, могут оказаться малопригодными для систем с устройствами аналогового типа, для которых вследствие отсутствия взаимного влияния основного и резервного канала предпочтительна схема резервирования замещением. Таким образом, существующее разнообразие систем обуславливает затруднения построения общих конструктивных подходов и единых требований по надёжности.

Общее резервирование системы

При общем резервировании резервируется вся система в целом. Общее резервирование, в зависимости от способа включения резервных устройств можно разделить на постоянное резервирование и резервирование замещением, при котором резервные изделия замещают основные только после отказа. При общем постоянном резервировании резервные устройства подключены к основному в течение всего времени работы и находятся в одинаковом с ним режиме работы.

При резервировании замещением резервное устройство включается в работу системы при помощи автоматических устройств либо человеком-оператором вручную. При автоматическом включении требуется чрезвычайно высокая надёжность переключающих элементов. При большом количестве и невысокой надёжности этих дополнительных элементов, входящих в резервированную систему, её надёжность может понизиться по сравнению с надёжностью нерезервируемой системы. Кроме того, существует кратковременный перерыв, на время переключения на резервные устройства. При ручной замене отказавших элементов возрастает время переключения, но надежность человека-оператора, производящего переключение, может быть принята в расчётах за единицу.

При использовании нагруженного резерва запасные резервные элементы находятся в том же режиме работы, что и основные элементы (независимо от того, участвуют они в работе схемы или нет) и если при этом основной и резервный элемент идентичны, то интенсивности их отказов совпадают и надёжность основного и резервного устройств одинакова, и поэтому, если не учитывать надёжность автоматических переключающих устройств, характеристики надёжности рассчитываются по тем же формулам, что и для общего постоянного резервирования.

При использовании ненагруженного резерва, запасные резервные элементы до момента их включения в работу системы полностью отключены. В этом случае резервные устройства имеют самую высокую надёжность по сравнению с основными элементами, поэтому общее резервирование замещением с использованием ненагруженного резерва обеспечивают наилучшие показатели надёжности для случая общего резервирования.

При раздельном способе резервирования, вводится индивидуальный резерв для каждой части неизбыточной системы. Раздельное резервирование бывает общим и замещением. При раздельном замещении отказ системы может произойти только тогда, когда отказ дважды подряд произойдёт в одном и том же устройстве (m=1), что маловероятно. Для оценки надёжности при раздельном резервировании используется сложный, специфический математический аппарат. В целом, математический анализ показывает, что наиболее высокие показатели надёжности можно получить в случае построения систем с использованием раздельного резервирования замещением ненагруженным резервом.

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

Надежность автомобиля — это свойство автомобиля выполнять заданные функции, сохраняя значения установленных эксплу­атационных показателей в пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования.

Надежность является комплексным свойством, которое в зависимости от назначения автомобиля и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как для автомобиля, так и для его агрегатов (систем, узлов и деталей), направленным на выполнение автомобилем рабочих функций с установленными показателями в течение ресурса до капитального ремонта.

Надежность автомобиля

Надежность автомобиля не остается постоянной в течение всего срока его службы. По мере изнашивания деталей, механизмов и агрегатов надежность уменьшается, так как вероятность выхода из строя деталей увеличивается. Новые автомобили всегда более надежны по сравнению с автомобилями, имеющими большой пробег или прошедшими капитальный ремонт. Следовательно, заданная степень надежности автомобиля рассматривается в связи с опреде­ленным пробегом. Надежность зависит также и от того, в каких условиях работает автомобиль.

Современная наука и техника в области автомобилестроения позволяют обеспечивать ресурс основных агрегатов, в том числе двигателя до капитального ремонта и более, намного увеличивать наработку на отказ других агрегатов и механизмов. Повышение надежности автомобилей, обеспечение удобного доступа к обслужи­ваемым агрегатам и узлам, их совершенствование для облегчения обслуживания и ремонта, уменьшение количества точек смазки, увеличение периодичности технического обслуживания позволяют сократить простои автомобилей в техническом обслуживании и ремонте и тем самым повысить их производительность.

Автомобиль, как правило, рассчитывается на длительную работу. Разностойкость сопряжений агрегатов автомобиля требует периоди­ческих остановок для его обслуживания и замены наименее стойких деталей. Поэтому необходимо стремиться к тому, чтобы эти остановки были реже и требовали минимальных трудовых и матери­альных затрат. Следовательно, надежность должна содержать не только вероятность безотказной работы в течение заданного времени, но и показатели, характеризующие выполнение работ по техниче­скому обслуживанию и ремонту в кратчайшие сроки с минимальными трудовыми и материальными затратами.

Уменьшить объем работ по техническому обслуживанию и ремонту и их трудоемкость можно либо за счет увеличения долго­вечности деталей, либо за счет приспособления конструкции автомобиля и его агрегатов к быстрой замене износившихся сопря­жений и узлов, т. е. за счет улучшения ремонтопригодности, либо за счет одновременного улучшения показателей долговечности и ремонтопригодности.

Долговечность деталей, узлов и агрегатов и ремонтопригодность конструкции автомобиля — это два мощных рычага, с помощью которых можно повысить его надежность на стадии проектирования и в процессе модернизации.

Проблема надежности обеспечивается на четырех основных этапах:

  • определение исходных требований к качеству новой модели с учетом уровня современной техники, имеющихся аналогов, конъюнктуры рынка и интересов потребителей
  • проектирование, т. е. разработка конструкторской документации, выполнение комплекс­ных стендовых и дорожных испытаний
  • производство
  • работа с потребителями (сбор информации о всех отказах и неисправностях, возникающих в процессе эксплуатации, упрощение и снижение трудоемкости технического обслуживания и ремонтных работ, обеспечение запасными частями)

При конструировании автомобилей должно соблюдаться правило, чем меньше ожидаемая долговечность той или иной детали сопряжения, тем большей ремонтопригодностью должна обладать конструкция автомобиля. Поэтому надежность автомобиля — кате­гория не только техническая, но и экономическая. Она должна отражать затраты общественно необходимого труда на создание автомобиля и поддержание его в работоспособном состоянии в процессе эксплуатации. Надежность зависит прежде всего от уровня технического оснащения завода-изготовителя, заводов — пocпоставщиков сырья, качества материалов, полуфабрикатов и готовых деталей. Решение сложных проблем надежности современных автомобилей невозможно без глубокого теоретического изучения физико-химических процессов, вызывающих износ и поломку деталей, и разработки на этой базе соответствующих практических рекомендации по конструированию, производству и эксплуатации автомобилей.

Принятые на серийное производство автомобили в течение всего времени нахождения их на производстве подвергаются заводами-изготовителями конструктивному улучшению с целью повышения качества и эксплуатационных показателей. Качество изготовления автомобиля определяется техническим и технологическим уровнями производства, квалификацией персонала, применяемыми материалами и уровнем организационно-управленческого регулирования производства. В условиях серийного и массового производства из­готовить бездефектные автомобили практически невозможно, потому что всегда имеются случайные факторы, которые являются причиной появления дефектов. Такими факторами могут быть погрешности технологического оборудования, инструмента, приспособлений, режимов обработки, материалов (например, неоднородность структу­ры), настройки измерительных средств. Таким образом, дефекты и неисправности новых автомобилей — объективная закономерность их производства. Проведение же сплошного контроля качества автомобилей, сходящих с конвейера заводов, практически невозможно и экономически нецелесообразно. Поэтому для определения показателей надежности необходимо осуществлять систематическое наблюдение за работой автомобилей в различных условиях эксплуа­тации в течение всего гарантийного и межремонтного пробегов. В этих целях, а также для отработки обоснованных нормативов по техническому обслуживанию и ремонту автомобилей, наиболее по­лноотвечающих условиям эксплуатации в различных географиче­ских и климатических зонах страны, организуется опытная эксплуатация автомобилей.

Термины надежности

Для того чтобы дать оценку надежности автомобиля, необходимо правильно классифицировать термины надежности.

Исправность — это состояние автомобиля, при котором он соответствует всем тех­ническим требованиям, установленным нормативно-технической до­кументацией как в отношении основных параметров, характери­зующих нормальное выполнение заданных функций, так ив отношении второстепенных параметров, характеризующих внешний вид, удобство эксплуатации и т. д.

Неисправность — это состояние автомобиля, при котором он в данный момент времени не удовлетворяет хотя бы одному из тре­бований, установленных нормативно-технической документацией.

Работоспособность — это состояние автомобиля, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативно-технической документацией.

Значит, между работоспособностью и исправностью существует очень важное различие: исправность предполагает, что выполняются все требования, относящиеся как к основным, так и к второстепенным параметрам, установленным нормативно-технической документацией. Работоспособность характеризует только требования, относящиеся к основным параметрам. Требования, относящиеся к второстепенным параметрам, могут не выполняться. Так, например, автомобиль остается работоспособным, когда у него повреждены лакокрасочные или антикоррозионные покрытия, сгорела лампочка освещения щитка приборов и т.д.

Отказ и его виды

Остановка автомобиля из-за возникших технических неисправ­ностей или работа с недопустимыми отклонениями от заданных рабочих характеристик называется отказом.

Отказ автомобиля можно также определить как полную или частичную утрату им работоспособности.

Полный отказ — это отказ, лишающий автомобиль подвижности.

Частичный отказ — это снижение эксплуатационных качества автомобиля.

Неисправности, устраняемые водителем в пути с помощью ин­дивидуального комплекта ЗИП и за время проведения ежедневного технического обслуживания, и неисправности, не влияющие на ра­ботоспособность автомобиля, в отказы не включаются.

В зависимости от причины появления отказы подразделяются на заводские и эксплуатационные.

Заводские отказы — это отказы, появившиеся по вине завода — изготовителя автомобиля. Они подразделяются на конструктивные и производственные.

Эксплуатационные отказы — это отказы, обусловленные нарушением правил эксплуатации и внешними воздействиями, не свойст­венными нормальной эксплуатации. Эксплуатационные отказы и неисправности при оценке надежности автомобиля не учитываются.

Отказы и неисправности, учитываемые при оценке надежности автомобиля, могут значительно отличаться по степени влияния на его работоспособность и сложности их устранения. Поэтому необходимо их классифицировать и по этим признакам.

  • лишающие автомобиль подвижности
  • снижающие эксплуатационные качества
  • не влияющие на работоспособность автомобиля

К группе лишающих автомобиль подвижности относятся отказы, без устранения которых дальнейшее его использование невозможно (отсутствие подачи топлива, поломка буксирного крюка тягача и др.) или недопустимо (отсутствие давления в системе смазки двигателя, отказ тормозов и т. п.).

Неисправности этой группы являются полными отказами автомобиля. Их появление вызывает необходимость восстанавливать автомобиль на месте выхода из строя или буксировать в автотранс­портное предприятие.

К группе отказов, снижающих эксплуатационные качества, относятся отказы и неисправности, ухудшающие такие показатели, как время подготовки к движению, средняя скорость движения, грузоподъемность, проходимость, расход ГСМ и т. д., но допускающие использование автомобиля по назначению в течение некоторого времени.

К группе неисправностей, не влияющих на работоспособность, относятся неисправности, не ухудшающие основные характеристики автомобиля, не создающие неудобства при его эксплуатации и ус­транение которых может быть отложено до очередного номерного технического обслуживания (незначительные подтекания смазочного материала через уплотнения, трещины элементов облицовки, от­слоение лакокрасочных покрытий и т. п.).

Отказы как случайные события могут быть независимыми и зависимыми. Независимый отказ — это отказ, который не приводит к отказу других элементов автомобиля. Отказ, проявившийся в результате отказа других элементов, называется зависимым. Отказ может быть внезапным, если повреждения агрегатов автомобиля наступают мгновенно, и постепенным, в результате длительного, постепенного изменения параметров элементов (усталость металла, изнашивание поверхности и пр.).

Характеристики надежности

Чтобы оценить качество продукции, выпускаемой автомобильной промышленностью, применительно к конкретным условиям эксплу­атации, необходимо изучать надежность автомобилей после их обкатки.

Сравнение надежности новых и капитально отремонтированных автомобилей, работающих в одинаковых условиях, может дать объективную оценку качества ремонта.

Количественные характеристики надежности одномарочных ав­томобилей, полученные различными автотранспортными предприя­тиями, но работающих в одинаковых условиях, являются достаточно точными характеристиками уровня технической эксплуатации автомобилей в конкретном автотранспортном предприятии.

Анализ характеристик надежности автомобилей позволяет выя­вить узкие места в организации и технологии технического обслу­живания и ремонта. Эти данные могут быть использованы для обоснованных заявок на запасные части и материалы.

Для характеристики надежности автомобиля в зависимости от конструктивно-технологических и эксплуатационных факторов принимают систему критериев, позволяющих оценивать надежность всего автомобиля или отдельных его элементов в числовых пока­зателях. Только в этом случае можно сравнивать надежность различных марок и моделей автомобилей и вести работу по повышению их надежности.

Для обеспечения надежности автомобилей необходимо, чтобы показатели надежности задавались в техническом задании на про­ектирование и контролировались при разработке конструкции, из­готовлении и эксплуатации. Следовательно, для каждого типа автомобилей в зависимости от условий их эксплуатации должны уста­навливаться некоторая совокупность показателей надежности, значения и методы их количественной оценки.

Надежность автомобиля характеризуется четырьмя свойствами:

  • безотказностью
  • ремонтопригодностью
  • долговечностью
  • сохраняемостью

Безотказность — свойство автомобиля непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки.

Количественно оно оценивается вероятностью безотказной работы, средней наработкой до отказа, интенсивностью отказов, средней наработкой на отказ и параметром потока отказов.

Ремонтопригодность — свойство автомобиля, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений и поддержанию и восстанов­лению работоспособного состояния путем проведения технического обслуживания и ремонтов.

Количественно оно оценивается средним временем восстановле­ния, средней удельной трудоемкостью технического обслуживания и текущего ремонта, вероятностью восстановления работоспособности в заданное коэффициентом готовности, коэффициентом технического использования время и коэффициентом сложности отказов.

При сравнительной оценке различных типов автомобилей необходимо иметь в виду, что время их простоя в связи с проведением технического обслуживания или ремонта зависит от уровня орга­низации этих работ, их технического оснащения, квалификации персонала и ряда других факторов эксплуатационного характера.

Долговечность — свойство автомобиля сохранять работоспособ­ное состояние до наступления предельного состояния при установ­ленной системе технического обслуживания и ремонта.

Безотказность и долговечность — свойства автомобиля сохранять работоспособное состояние. Но безотказность — свойство автомобиля непрерывно сохранять работоспособное состояние, а долговеч­ность — свойство автомобиля длительно сохранять работоспособное состояние с необходимыми перерывами для технического обслужи­вания и ремонта.

Определение долговечности автомобилей, агрегатов, деталей должно осуществляться на стадии проектирования одновременно с оп­ределением эксплуатационных затрат на их техническое содержание.

Количественно долговечность оценивается средним ресурсом автомобиля до капитального ремонта, средней наработкой на отказ автомобиля за пробег до капитального ремонта, средней наработкой до капитального ремонта основного агрегата, гамма-процентным ресурсом.

Каждая новая модель автомобиля должна быть более совершенной по сравнению с предыдущей и соответствовать лучшим мировым образцам. Совершенство в данном случае определяется снижением суммарных удельных затрат на изготовление и техническое содер­жание, а также структурой этих затрат, т. е. возможным снижением доли затрат в эксплуатации. Одновременно определяются показатели долговечности, которые имеют, как правило, тенденцию к увеличению.

Долговечность автомобилей повышается в результате совершен­ствования их конструкции, технологии изготовления и улучшения организации технической эксплуатации.

Сохраняемость — свойство автомобиля сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и транспортирования.

Основным показателем сохраняемости автомобилей должна быть вероятность сохранения безотказности. Этот показатель характеризует готовность автомобилей к немедленному выполнению транс­портной работы после определенного срока хранения.

Показателем сохраняемости является также средний срок сохра­няемости автомобилей при длительном хранении.

Перечисленные свойства отражают потенциальные возможности конструкции автомобиля. Они формируются при проектировании и производстве, являются внутренними причинами, от которых зависит степень надежности автомобиля.

Читайте также: