Молекулярные основы наследственности реферат

Обновлено: 02.07.2024

Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной информации, а также определяют синтез нужных белков в клетке и его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные (неразветвленные) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов.

Вложенные файлы: 1 файл

ГОУСПОНО.docx

СПЕЦИАЛЬНОСТЬ: СЕСТРИНСКОЕ ДЕЛО

ЦМК общепрофессиональных дисциплин и психологии

Рожденкина Любовь Олеговна

Софьина Юлия Алексеевна

Преподаватель: Вяжевич Людмила Петровна

Химическое строение и генетическая роль нуклеиновых кислот

Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной информации, а также определяют синтез нужных белков в клетке и его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные (неразветвленные) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеин овой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех. Одними из первых исследований по изучению химического строения нуклеиновых кислот были работы, проводившиеся на биологическом факультете МГУ под руководством А. Н. Белозерского, в результате которых был накоплен обширный материал по определению нуклеотидного состава дезоксирибо. Способность к самовоспроизведению и — удивительное изобретение природы. Нуклеиновые служат для самовоспроизведения биосистем, в результате чего с высокой точностью живые организмы воссоздают себе подобных в процессе размножения. Все многообразие живых организмов определяется наследственной или генетической информацией, заложенной в нуклеиновых кислотах. В особенностях химического строения нуклеиновых кислот заложеныпотенциальная возможность самокопирования и, следовательно, способность кпередаче наследственных признаков от одного поколения организмов к другому, дочернему поколению. В истории химии белка обращает внимание прежде всего беспрецедентная продолжительность поиска решения структурной задачи Только наустановление химического типа белковых молекул потребовалось с момента выделения первого белкового препарата (1728 г) более двухсот лет. На достижение тех же целей, касающихся жиров, углеводов и нуклеиновых кислот, затрачено значительно меньше времени и сил Химические типы первых двухбыли установлены в 80-90-е годы XIX в Хотя принцип построения молекулнуклеиновых кислот стал известен практически одновременно с белками, выделены они были только в 1859 г (Ф Мишер), а обратили на себя серьезное внимание лишь в 30-е годы XX в (П Левин) Целенаправленное изучение химического строения нуклеиновых кислот как молекулярной первоосновы генетического материала началось после исследования О Эвери в 1944 г и завершилось классическими работами Э Чаргаффа уже в 1961 г, когда был окончательно установлен химический тип молекул ДНК. Исследование химического строения нуклеиновых кислот, начатое Ф. Мишером, далее было продолжено К. А. Косселем (1879 г.), который обнаружил внуклеиновых кислотах азотсодержащие гетероциклические основания. Первым выделенным гетероциклическим основанием, присутствующим внуклеиновых кислотах, был гуанин (ранее выделенный из перуанского гуано —помета птиц, ценного азотистого удобрения). Впоследствии из нуклеиновых кислот были выделены тимин (из клеток тимуса быка), цитозин (от греч. ytos — клетка) и аденин (от греч. aden — железа). В результате проведенныхисследований русский химик Ф. Левен установил, что в состав нуклеиновых кислот входят азотсодержащие гетероциклические основания (производные пурина и пиримидина), фосфорная кислота и углеводный компонент — рибоза или дезоксирибоза. Таким образом, по своему химическому строению нуклеиновые кислоты являются по-лирибонуклеотидами (РНК) и полидезоксирибо-нуклеотидами (ДНК). Соединение нуклеотидных остатков в молекулах РНК и ДНК осуществляется одним и тем же путем сложноэфирными мостиками, образуемыми между параминуклеотидов остатками фосфорной кислоты. Последние связаны всегда с 3-муглеродным атомом рибозы (или дезоксирибозы) одного нуклеотидного остатка и с 5-м углеродным.

Белки- строение и функции. Биосинтез белка.

Белки -это полимеры, состоящие из мономеров - аминокислот. В состав белков входит до 20 различных аминокислот. Соединения из нескольких аминокислот называют пептидами. В зависимости от их количества Е белке бывают дипептиды, три тетра пента- или полипептиды (от 6-10 до 300-500 аминокислот). Молекулярная масса белков колеблется от 5000

ДО нескольких миллионов. Белки отличаются друг от друга не только составом и числом аминокислот, но и последовательностью чередования их в полипептидной цепи. Организация белковых молекул: 1) первичная структура - это полипептидная цепь, т.е. аминокислоты, соединенные ковалентными пептидными связями в виде цепи; 2) вторичная структура•- белковая нить закручена в виде спирали, поддерживаемая водородными связями; 3) третичная структура - спираль далее свертывается, образуя

глобулу (клубок) или фибриллу (лучок нитей), специфичную для каждого белка, поддерживается водородными и бисульфитными связями; 4) четвертичная cтруктypa - состоит из нескольких глобул; например, гемоглобин, состоит из 4-х глобул. Функции белка разнообразны: 1) каталитическая: белки-ферменты ускоряют биохимические реакции организма; 2) строительная: белки участвуют в образовании всех клеточных мембран и органоидов;

3) двигательная: белки обеспечивают сокращение мышц, мерцание ресничек, белки-гистоны, сокращаясь, образуют хромосомы из хроматина; 4) защитная: антитела гамма-гло6улины - распознают чужеродные для организма вещества и способствуют их уничтожению; 5) транспортная: белки переносят различные соединения (гемоглобин - кислород, белки плазмы -гормоны, лекарства и т.д.); 6) регуляторная: белки участвуют в регуляции обмена веществ (гормоны роста, гормон-инсулин, половые гормоны, адреналин и др.); 7) энергетическая - при распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Энергии.

Биосинтез белка проходит в рибосоме, к которой подходит и-РНК, прикрепляется в функциональной зоне рибосомы. Одновременно в рибосоме помещается 2 триплета и-РНК.

В цитоплазме клетки всегда имеется не менее 20 различных видов аминокислот и соответствующих им т-РНК. С ПОМОЩЬЮ специфических ферментов аминокислоты узнаются, активируются и при соединяются к т-РНК, которая переносит их к месту синтеза белка в рибосому. В рибосоме (в и-РНК) находится кодон, а у т-РНК есть антикодон, комплементарный строго определенному триплету и-РНК.

Если в рибосоме на и-РНК будет триплет АУГ, то к нему подойдет т-РНК с комплементарным антикодоном УАЦ; если ГГГ - то т-РНК С антикодоном ЦЦЦ. Каждому антикодону соответствует своя аминокислота.

Аминокислоты проталкиваются в функциональную зону рибосомы одна за другой соответственно кодону и прикрепляются друг к другу пептидной связью. Эта реакция осуществляется в большой субъединице рибосомы.

Одной молекулы белка длится всего 3-4 секунды. Каждый этап синтеза белка катализируется соответствующим ферментом и снабжается энергией за счет расщепления АТФ.

После окончания синтеза белка и образования первичной структуры белка в рибосомах формируется в эндоплазматической сети вторичная, третичная, а иногда и четвертичная структура белка и он становится способным выполнять свои функции.

Сходство и различие организмов определяется набором белков. Каждый вид имеет только ему присущий набор белков, Т.е. они являются основой видовой специфичности, а также обуславливают индивидуальность организмов. На Земле нет двух людей, у которых все белки были бы одинаковыми (за исключением монозиготных близнецов). ДНК ядра каждой клетки несет в себе информацию о форме клеток, белках-ферментах, гормонах, практически все признаки клеток и организма определяются белками. Таким образом, в ДНК заключена вся информация о структуре и деятельности клеток, органов и организма. Эта информация называется наследственной. Небелковые молекулы синтезируются в два этапа: сначала образуется специфический белок-фермент, а затем с его помощью образуются углеводы, липиды, витамины.

Функции нуклеиновых кислот

Нуклеиновые кислоты выполняют важнейшие биологические функции в организме. В ДНК хранится наследственная информация о свойствах клеток и всего организма, различные виды РНК принимают участие в реализации наследственной информации через синтез белка. Принцип реализации наследственной информации от ДНК через РНК к белку экспрессинг. Расшифровка генетической информации, заключенной в молекуле ДНК, осуществляется в соответствии с центральной молекулярно-генетической догмой.

Строение:
ДНК имеют первичную, вторичную и третичную структуры.

Первичная струтура - полинуклеотидная цепь, состоящая из расположенных друг за другом нуклеотидов, связанных между собой эфирными связями. Каждый нуклеотид состоит из остатка фосфорной кислоты, углевода дезоксирибозы и одного из 4-х озотистых оснований (аденина, гуанина, цитозина или тимина) .
вторичная структура ДНК - две комплиментарные и антипараллельные полинуклеотидные цепи, связанные через соответствующие азотистые основания водородными связями :
аденин - тимин,
гуанин-цитозин
Третичная структура ДНК - двойная спираль диаметром 2 нм, длиной шага 3,4 нм и 10 парами нуклеотидов в каждом витке.
б) Функция ДНК:
1) хранение наследственной информации, записанной с помощью генетического кода

РНК:
а) строение:
РНК в отличие от ДНК имеют меньший молекулярный вес, они одноцепочечны (кроме нек вирусов) , содержат углевод рибозу, остаток фосфорной кислоты, одно из 4-х азотитстых оснований (урацил (вместо тимина) , аденин, гуанин, цитозин) , связи между которыми
урацил-аденин
гуанин-цитозин

РНК бывают 3 видов:
иРНК (информационные РНК)
рРНК (рибосомные РНК) и тРНК (транспортные РНК)
основная функция - участие в образовании белка

Сохранение информации от поколения к поколению.

При размножении любых форм жизни происходит увеличение числа молекул ДНК. Из одной клетки, образовавшейся в результате слияния гамет, получаются тысячи, миллионы клеток тела. Каждая исходная молекула ДНК дает начало огромному числу новых молекул ДНК с сохранением в неизменном виде всех особенностей, присущих ДНК. Это происходит в процессе репликации, при котором информация, закодированная в последовательности оснований молекулы родительской ДНК, передаётся с максимальной точностью дочерней ДНК.

Репликация – единственно возможный способ увеличения числа молекул ДНК, на который указывает сама структура этих молекул. С помощью фермента ДНК-полимеразы цепи родительской ДНК расплетаются, и каждая из них служит матрицей, определяющей последовательность оснований в новой, дочерней цепи ДНК. Затем к каждой цепочке достраиваются по принципу комплементарности нуклеотиды (А-Т, Г-Ц), образуя две двухцепочные молекулы ДНК. Репликация имеет полуконсервативный характер – в каждой вновь образуемой молекуле ДНК одна нить происходит от родительской молекулы, а вторая синтезируется заново.

Процесс репликации нуклеиновых кислот целиком зависит от работы ряда ферментов. Установлено, что в этом процессе участвуют минимум четыре группы ферментов: ДНК-полимеразы, РНК-полимеразы, эндонуклеазы и ДНК-лигазы.

Ферменты, осуществляющие синтез ДНК, называются ДНК-полимеразами. Впервые ДНК-полимераза I была получена в очищенном виде А. Корнбергом из Е.Coli в 1958 г. В клетках содержится три различные формы ДНК-полимераз, все они обладают синтезирующей активностью и способны удлинять цепи ДНК. Репликацию ДНК осуществляет ДНК-полимераза α, исправление повреждённых участков ДНК осуществляют ДНК-полимеразы I, II.

РНК-полимераза – фермент, осуществляющий транскрипцию РНК.

Эндонуклеазы – ферменты, разрезающие двухнитевую молекулу ДНК в местах, соответствующих последовательностям из 4 – 12 нуклеотидов.

ДНК-лигазы – ферменты, контролирующие образование фосфодиэфирной связи между 3′- и 5′-концами фрагментов ДНК.

Репликация ДНК начинается с разрыва в одной из двух цепей ДНК под действием эндонуклеазы. Затем к этому месту присоединяется ДНК-полимераза и начинается непрерывный синтез нового олигонуклеотида на одной из двух родительских цепей в направлении от 5′ атома углерода сахара к 3′ атому. Из второй цепи родительской ДНК идёт прерывный синтез, сопровождающийся образованием фрагментов ДНК, также в направлении 5′ -3′ с последующим объединением фрагментов ДНК при участии ДНК-лигаз в единую полинуклеотидную молекулу.

Ген представляет собой последовательность нуклеотидов ДНК размером от нескольких сотен до миллиона пар нуклеотидов, в которых закодирована генетическая информация о первичной структуре белка (число и последовательность аминокислот). Для регулярного правильного считывания информации в гене должны присутствовать: кодон инициации, множество смысловых кодонов и кодон терминации. Три подряд расположенных нуклеотида представляют собой кодон, который и определяет, какая аминокислота будет располагаться в данной позиции в белке. Например, в молекуле ДНК последовательность оснований ТАС является кодоном для аминокислоты метионина, а последовательность ТТТ кодирует фенилаланин. В молекуле иРНК вместо тимина (Т) присутствует основание урацил (У). Таблица генетического кода во всех руководствах представлена именно символами иРНК. Из 64 возможных кодонов смысловыми являются 61, а три триплета - УАА, УАГ, УГА - не кодируют аминокислоты и поэтому были названы бессмысленными, однако на самом деле они представляют собой знаки терминации трансляции.

Для прокариот характерна относительно простая структура генов. Так, структурный ген бактерии, фага или вируса, как правило, контролирует одну ферментативную реакцию. Специфичным для прокариот является оперонная система организации нескольких генов. Гены одного оперона (участка генетического материала, состоящего из 1, 2 и более сцепленных структурных генов, которые кодируют белки (ферменты), осуществляющие последовательные этапы биосинтеза какого-либо метаболита; в оперон эукариот входит, как правило, 1 структурный ген; оперон содержит регуляторные элементы) расположены в кольцевой хромосоме бактерии рядом и контролируют ферменты, осуществляющие последовательные или близкие реакции синтеза (лактозный, гистидиновый и др. опероны).

Первая работа по наследственности и изменчивости датируется XVII в. Это работа Р. Камерариуса о дифференциации пола у растений. В 50-х годах XVIII в. уже проводятся исследования по гибридизации растений (Дж. Кельрейтер).

Толчком к развитию науки о наследственности и изменчивости послужили работы Ч. Дарвина.

В 1865 г. чешский естествоиспытатель Г. Мендель по результатам своих опытов с различными сортами гороха разработал методы генетического анализа и сформулировал основные законы генетики. Его учение о наследственных факторах послужило основой для создания теории гена. Результаты и значимость опытов Г. Менделя были осмыслены и оценены в 1900 г., после того как независимо друг от друга Г. де Фриз, К. Корренс и Э. Чермак вторично открыли законы Г. Менделя о наследовании признаков.

В 1911 г. Т. Морган с сотрудниками экспериментально доказали связь наследственных единиц (генов) с хромосомами и сформулировали хромосомную теорию наследственности.

В 1925-1927 гг. рядом отечественных (Г.А. Надсон, Г.С. Филиппов, И.А. Раппопорт) и зарубежных (Г. Меллер, Л. Стадлер) исследователей была экспериментально доказана изменчивость генов (мутации) под воздействием факторов окружающей среды (рентгеновские лучи). Опыты на дрожжах и на растениях заложили основы радиационной генетики и учения об искусственном мутагенезе.

С.С. Четвериков с сотрудниками (1926-1929 гг.), объединив положения менделизма и эволюционной теории Ч. Дарвина, проведя многочисленные исследования частот генов в популяциях, стали основоположниками популяционной и эволюционной генетики. Дальнейшему развитию этих направлений способствовали исследования С. Райта, Р. Фишера, Дж. Холдейна и школ отечественных исследователей Ф.Г. Добржанского, Д.Д. Ромашова, Н.П. Дубинина, Н.В. Тимофеева-Ресовского. Результаты работ этих авторов позволили сформулировать основные положения современной синтетической теории эволюции.

Важным этапом в развитии молекулярной генетики явилось предположение Н.К. Кольцова (1928 г.) о матричной теории ауторепродукции хромосом, о связи наследственных единиц - генов с конкретным химическим веществом (белковыми радикалами).

Неоценимый вклад в развитие мировой и отечественной генетики внес академик Н.И. Вавилов. Им сформулирован закон гомологичных рядов в наследственной изменчивости, показано единство генетики и селекции (1920-1943 гг.), собран самый большой генофонд культурных растений мира (свыше 250 тыс. экземпляров), хранящихся во Всесоюзном институте растениеводства (Санкт-Петербург).

Ф. Гриффите (1928 г.), О. Эйвери, С.Мак-Леод и М. Мак-Карти (1944 г.) в опытах на микроорганизмах показали, что веществом наследственности является не белок, как считали ранее, а ДНК. Проникновение в генетику методов химии и физики определило становление и развитие молекулярной генетики.

Гениальная работа Дж. Уотсона, Ф. Крика и М. Уилкинса (1953 г.) по расшифровке структуры "нити жизни" – молекулы ДНК – позволила раскрыть тайну генетического кода, механизмы биосинтеза полипептидов в клетке и передачи генетической информации.

В настоящее время генетика тесно связана с цитологией, эмбриологией, тератологией, микробиологией, иммунологией, биохимией, биофизикой, радиобиологией, медициной, систематикой, селекцией, эволюционным учением. Она изучает и анализирует закономерности наследственности и изменчивости на молекулярном, клеточном, организменном и популяционном уровнях.

Начало развития медицинской генетики относится к 30-м годам XX в. и связано с работами ленинградского невропатолога академика С.Н. Давиденкова и сотрудников первого в мире Медико-генетического института, созданного в Москве профессором С.Г. Левитом. Именно С.Н. Давиденков заложил основы медико-генетического консультирования на примере нервно-психических заболеваний и показал генетическую гетерогенность многих форм наследственной патологии. Высокую оценку на международном уровне получили генетические исследования сотрудников Медико-генетического института по проблемам наследования сахарного диабета и мультифакториальной патологии (язвенной и гипертонической болезней и др.). В 50-е годы благодаря новому поколению генетиков (Н.П. Дубинин, Н.В. Тимофеев-Ресовский, И.А. Раппопорт; В.П. Эфроимсон, А.А. Прокофьева-Бельговская, Н.П. Бочков) медицинская генетика получила стимул для дальнейшего развития.

Широкому внедрению методов медицинской генетики в практику здравоохранения способствовал созданный в Москве (1969 г.) по инициативе академика Н.П. Бочкова Институт медицинской генетики Академии медицинских наук СССР.

Начало развития медицинской генетики в Беларуси связано с именем члена-корреспондента Академии медицинских наук СССР, профессора Ю.В. Гулькевича. Под его руководством были выполнены первые работы по изучению этиологии врожденных пороков развития и роли в их происхождении наследственных факторов. По инициативе Ю.В. Гулькевича в 1967 г. в Минском медицинском институте была открыта проблемная лаборатория тератологии и медицинской генетики. Дальнейшее интенсивное развитие медицинской генетики в Беларуси и в создании медико-генетической службы республики происходило под руководством и члена-корреспондента Академии медицинских наук СССР, ныне члена-корреспондента Национальной академии наук Беларуси и Академии медицинских наук Российской Федерации, профессора Г.И. Лазюка. В 1967 г. он возглавил лабораторию тератологии и медицинской генетики, ставшую школой научных медико-генетических кадров республики. В этой лаборатории подготовлены кадры для медико-генетических консультаций г. Минска и областных городов, организованных в 1970-1979 гг. На базе лаборатории создан Минский филиал Института медицинской генетики Академии медицинских наук СССР (1983 г.), который в 1989 г. был реорганизован в НИИ наследственных и врожденных заболеваний Министерства здравоохранения Беларуси.

Крупнейшими специалистами в области наследственных и врожденных заболеваний в нашей республике являются Е.Г. Ильина, И.А. Кириллова, Г.И. Кравцова, В.П. Кулаженко, М.К. Недзьведь, ТТ. Сорокина, И.Н. Усов, Г.Л. Цукерман, Е.Д. Черствой.

Тема 1

Цитологические основы наследственности

1.1 Основные виды наследственности

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Наследственность – это способность организмов повторять в поколениях сходные признаки и обеспечивать специфический характер индивидуального развития. Благодаря наследственности сохраняются однородность и единство вида. Основные виды наследственности можно представить в виде таблицы (табл. 1).

Изменчивость - это способность организмов приобретать различия в признаках друг от друга и от своих родителей. Изменчивость делает вид неоднородным и создает предпосылки для его дальнейшей эволюции.

Связана с хромосомами, находящимися в ядре клетки, в состав которых входит ДНК и белковые компоненты, Хорошо изучена: для нее установлены закономерности наследования свойств и признаков

Основными носителями ядерной наследственности являются хромосомы, расположенные в ядре клетки. У каждой хромосомы имеются химические компоненты: одна гигантская молекула ДНК (дезоксирибонуклеиновая кислота), достигающая иногда нескольких сантиметров в длину при микроскопических размерах клетки. Каждая хромосома представлена одной молекулой ДНК. Из хромосом человека самая большая – первая; ее ДНК имеет общую длину до 7 см. Суммарная длина молекул ДНК всех хромосом одной клетки человека составляет 170 см. Молекулы ДНК очень плотно упакованы в хромосомах. Такую укладку хромосомной ДНК обеспечивают белки, содержащиеся в хромосоме.

Хромосома ядерных организмов (эукариот) состоит из ДНК, белков и других химических веществ составляет 99% ДНК клетки, которая связана с белками. Содержание белков в хромосомах высших растений и животных достигает 65%. У доядерных (прокариот), к которым относятся бактерии и сине-зеленые водоросли, в качестве хромосом лежит одна кольцевая молекула ДНК. У вирусов носителем наследственности является либо молекула ДНК, либо молекула рибонуклеиновой кислоты РНК.

Хромосомы хорошо заметны только во время деления клеток в профазу, метафазу и анафазу в световом микроскопе. Они образуют тельца палочковидной формы. Хромосомы отличаются друг от друга порядком нуклеотидов ДНК и расположением первичной перетяжки – центромеры, делящей её на два плеча (рис. 1).

Хромосомы могут состоять из одной нуклеопротеидной нити – хроматиды(однохроматидные хромосомы), либо из двух хроматид – сестринских хромосом(двухроматидные хромосомы) (рис. 2).


  • акроцентрические – центромера значительно смещена к одному концу хромосомы, в результате чего одно плечо очень короткое;

  • субметацентрические – центромера умеренно смещена от середины хромосомы и плечи имеют разную длину;

  • метацентрические – центромера расположена посередине и плечи примерно одинаковой длины (рис. 2.).

а: I – хроматиды; 2 – спутник; 3 – вторичная перетяжка; 4 – центромера; 5 – плечо; 6 – теломеры;

б: 7 – метацентрическая; 8 – еубметацентрическая, 9 – акроцентрическая

Каждая хромосома уникальна морфологически и генетически, она не может быть заменена другой и не может быть восстановлена при потере. При потере хромосомы клетка погибает.

Понятие о кариотипе человека

Число, размеры и форма хромосом являются специфическими признаками для каждого вида живых организмов. Так, в клетках рака-отшельника содержится по 254 хромосомы, а у комара – только 6. Соматические клетки человека содержат 46 хромосом. Совокупность всех структурных и количественных особенностей полного набора хромосом характерного для клеток конкретного вида живых организмов называется кариотипом.

Кариотип будущего организма формируется в процессе слияния двух половых клеток (сперматозоида и яйцеклетки). При этом объединяются их хромосомные наборы. Ядро зрелой половой клетки содержит половинный набор хромосом (для человека – 23). Подобный одинарный набор хромосом, аналогичный таковому в половых клетках, называется гаплоидным и обозначается – п. При оплодотворении яйцеклетки сперматозоидом в новом организме воссоздается специфический для данного вида кариотип, включающий у человека 46 хромосом. Полный состав хромосом обычной соматической клетки является диплоидным (2п).

В диплоидном наборе каждая хромосома имеет аналогичную по размеру и расположению центромеры другую парную хромосому. Такие хромосомы называются гомологичными. Гомологичные хромосомы не только похожи друг на друга, но и содержат гены, отвечающие за одни и те же признаки.

Правила хромосом

Существует 4 правила хромосом:

Правило постоянства числа хромосом. Соматические клетки организма каждого вида в норме имеют строго определенное число хромосом (например, у человека – 46, у дрозофилы – 8).

Правило парности хромосом. Каждая хромосома в диплоидном наборе имеет гомологичную - сходную по размерам, расположению центромеры и содержанию генов.

Правило индивидуальности хромосом. Каждая пара хромосом отличается от другой пары размерами, расположением центромеры и содержанием генов.

Правило непрерывности хромосом. В процессе удвоения генетического материала новая молекула ДНК синтезируется на основе информации старой молекулы ДНК (реакция матричного синтеза – каждая хромосома происходит от хромосомы).

Классификация хромосом человека

Хромосомы подразделяют на аутосомы (одинаковые у обоих полов) и гетерохромосомы, или половые хромосомы (разный набор у мужских и женских особей). Например, кариотип человека содержит 22 пары аутосом и две половые хромосомы – ХХ уженщины и XY y мужчины (44,ХУ и 44,XYсоответственно). Соматические клетки организмовсодержат диплоидный (двойной) набор хромосом, а гаметы – гаплоидный (одинарный).

Идиограмма – это систематизированный кариотип, в котором хромосомы располагаются по мере уменьшения их размеров. Точно расположить хромосомы по размеру удается далеко не всегда, так как некоторые пары имеют близкие размеры. Поэтому в I960 г. была предложена Денверская классификация хромосом , которая помимо их размеров учитывает форму, положение центромеры, наличие вторичных перетяжек и спутников (рис. 3). Согласно этой классификации, 23 пары хромосом человека разбили на 7 групп – от А до G. Важным признаком, облегчающим классификацию, являетсяцентромерный индекс (ЦИ), который отражает отношение (в процентах) длины короткого плеча к длине всей хромосомы.

В основе Парижской классификации хромосом человека (1971 г.) лежат методы специального дифференциального их окрашивания, при которых в каждой хромосоме выявляется характерный только для нее порядок чередования поперечных светлых и темных сегментов (рис. 4). Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее четко. Данные методы позволяют четко дифференцировать хромосомы человека внутри групп.

Короткое плечо хромосом обозначают латинской буквой р, а длинное – q. Каждое плечо хромосомы разделяют на районы, нумеруемые от центромеры к теломерам. В некоторых коротких плечах выделяют один такой район, а в других (длинных) – до четырех. Полосы внутри районов нумеруются по порядку от центромеры. Локализация генов не всегда известна с точностью до полосы. Так, местоположение гена ретинобластомы обозначают 13q, что означает локализацию его в длинном плече тринадцатой хромосомы.

Основные функции хромосом состоят в хранении, воспроизведении и передаче генетической информации при размножении клеток и организмов.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

СодержаниеМолекулярные основы наследственностиХромосомыКлеточный циклМейоз и образование гаметСтроение хромосомНаследование одиночных признаковНезависимая сегрегация и независимое комбинированиеСвязь между генами и хромосомамиРекомбинацияСвязь между генами и белкамиГены и ДНКПеренос генетической информации в клеткеСтруктура и сохранение геномной ДНКЭкспрессия и регуляция генов

Молекулярные основы наследственности

Систематическое изучение наследственности начиналось со сложных в генетическом отношении объектов - растений и животных. Благодаря этим ранним исследованиям была сформулирована концепция неделимого гена как функциональной единицы наследственности и принято положение, что перенос генов от одного поколения к другому подвержен действию разных случайных факторов. Однако до понимания химической природы генов и механизма их функционирования было еще далеко. Исследование генетических молекул и тонких механизмов регуляции наследственности стало возможным лишь тогда, когда в качестве экспериментальных моделей начали использоваться бактерии и вирусы, о существовании которых первые генетики даже не подозревали. Только благодаря этим организмам впервые было показано, что дезоксирибонуклеиновая кислота, рибонуклеиновая кислота и белок - универсальные детерминанты генетического поведения. Стремительность дальнейшего прогресса в этой области и убедительность полученных результатов стали реальными благодаря особым биологическим свойствам микроорганизмов, которые позволяли проводить манипуляции, необходимые для анализа генетических структур. Аналогичные аналитические исследования более сложных генетических систем тогда были невозможны, поэтому на животных и растения этот прогресс не распространялся. Развитие технологии рекомбинантных ДНК разрушило труднопреодолимые технические и концептуальные барьеры на пути расшифровки и понимания сложных генетических систем. Неудивительно, что наши взгляды на структуру и функцию генов значительно изменились, а новое мышление в свою очередь радикально изменило перспективы биологии.Некоторые предпосылки последних достижений можно обнаружить, изучая историю создания фундаментальных положений о наследственности и их последующих изменений. Основным препятствием на пути формирования единых принципов наследственности служило исключительное разнообразие живых форм. Первым, кто проследил аналогии между процессами воспроизведения животных и растений и ввел слова "самец" и "самка" применительно к участникам этого процесса, был ученик Аристотеля - Теофраст. Еще раньше греческие философы V в., воззрения которых оказали заметное влияние на последующее развитие научных идей, пришли к заключению, что, поскольку дети похожи на обоих родителей, оба пола вносят определенный вклад в формирование нового индивидуума. Они полагали, что этим вкладом является своего рода информация, сконцентрированная в мужском или женском "семени" и поступившая туда из разных частей тела зрелых индивидуумов. Демокрит, мнение которого не было общепринятым, предположил, что информация заключена в частицах, размер, форма и строение которых влияют на

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю


В пособии освещаются все разделы современной генетики, необходимые для понимания генетики человека и психогенетики. Показана методологическая роль генетики в современной биологии. Первые главы посвящены фундаментальным положениям общей генетики. В специальных разделах рассматриваются вопросы медицинской генетики, генной инженерии, генетики поведения, эволюции, психогенетики. Второе издание книги значительно переработано автором с учетом новой информации, опубликованной за последние три года. Пособие предназначено для студентов биологических, педагогических, психологических и социологических факультетов. Представляет интерес для научных работников всех специальностей, занимающихся вопросами, связанными с изучением биологической природы человека. 2-е издание, переработанное и дополненное.

Оглавление

  • Предисловие
  • Глава 1. История и значение генетики
  • Глава 2. Молекулярные основы наследственности
  • Глава 3. Цитогенетика

Приведённый ознакомительный фрагмент книги Генетика человека с основами общей генетики. Учебное пособие предоставлен нашим книжным партнёром — компанией ЛитРес.

Глава 2. Молекулярные основы наследственности

Представьте себе, что увеличили человека до размеров Великобритании, тогда клетка будет иметь размер фабричного здания. Внутри клетки находятся содержащие тысячи атомов молекулы, в том числе молекулы нуклеиновой кислоты. Так вот, даже при таком громадном увеличении молекулы нуклеиновой кислоты будут тоньше электрических проводов.

Дж. Кендръю, английский биохимик, лауреат Нобелевской премии 1962 г.

Эксперименты 1940–1950-х гг. убедительно доказали, что именно нуклеиновые кислоты (а не белки, как предполагали многие) являются носителями наследственной информации у всех организмов.

2.1. Структура нуклеиновых кислот

Нуклеиновые кислоты обеспечивают разнообразные процессы хранения, реализации и воспроизведения генетической информации.

Нуклеиновые кислоты — это полимеры, мономерами которых являются нуклеотиды. Нуклеотид включает в себя азотистое основание, углевод пентозу и остаток фосфорной кислоты (рис. 2.1).

Азотистые основания нуклеотидов делятся на два типа: пиримидиновые (состоят из одного 6-членного кольца) и пуриновые (состоят из двух конденсированных 5 — и 6-членных колец). Каждый атом углерода колец оснований имеет свой определенный номер. Каждый атом углерода пентозы также имеет свой номер, но с индексом штрих ('). В нуклеотиде азотистое основание всегда присоединено к первому атому углерода пентозы.

Именно азотистые основания определяют уникальную структуру молекул ДНК и РНК. В нуклеиновых кислотах встречаются 5 основных видов азотистых оснований (пуриновые — аденин и гуанин, пиримидиновые — тимин, цитозин, урацил) и более 50 редких (нетипичных) оснований. Главные азотистые основания обозначаются их начальными буквами: А, Г, Т, Ц, У. Большинство нетипичных оснований специфичны для определенного типа клеток.


Рис. 2.1. Структура нуклеотида

Формирование линейной полинуклеотидной цепочки происходит путем образования фосфодиэфирной связи пентозы одного нуклеотида с фосфатом другого. Пентозофосфатный остов состоит из (5' — 3') — связей. Концевой нуклеотид на одном конце цепочки всегда имеет свободную 5'-группу, на другом — 3'-группу.

В природе встречаются два вида нуклеиновых кислот: ДНК и РНК. В прокариотических и эукариотических организмах генетические функции выполняют оба типа нуклеиновых кислот. Вирусы всегда содержат лишь один вид нуклеиновой кислоты.

В составе нуклеотидов ДНК встречаются 4 типа основных азотистых оснований:

А — аденин;

Т — тимин;

Г — гуанин;

Ц — цитозин.

Углевод нуклеотида ДНК — дезоксирибоза5Н10О4).

Две полинуклеотидные цепочки объединяются в единую молекулу ДНК при помощи водородных связей между азотистыми основаниями нуклеотидов разных цепей. Соединены азотистые основания по принципу комплементарности:


Принцип комплементарности — это одна из фундаментальных закономерностей природы, определяющая механизм передачи наследственной информации.

Между аденином и тимином две, а между цитозином и гуанином три водородные связи, что часто отражается при написании комплементарности взаимодействий: А=Т, Г=Ц.

Полинуклеотидные цепочки одной молекулы являются антипараллельными, т. е. против З'-конца одной цепочки всегда находится 5'-конец другой цепочки.

Хотя в молекуле ДНК всего 4 типа нуклеотидов, благодаря их различной последовательности и огромному количеству в полинуклеотидной цепочке, достигается невероятное разнообразие молекул ДНК. В зависимости от видовой принадлежности организма варьирует соотношение АТ/ГЦ нуклеотидов ДНК (у человека это соотношение составляет 1,52).

Столь гигантских полимеров, как ДНК, не выявлено больше ни в природе, ни среди искусственно синтезированных химических соединений. Длина молекулы ДНК первой хромосомы человека (самой крупной в наборе) достигает почти 8 см. Общая длина всех молекул ДНК клетки человека — около двух метров, а у саламандры почти в 30 раз больше.

Рибонуклеиновая кислота имеет множество разновидностей, но все ее молекулы построены по общим структурным принципам. Они состоят из одной полинуклеотидной цепочки, значительно более короткой, чем цепочка ДНК. В нуклеотидах РНК имеются 4 типа азотистых оснований: А, Г, Ц, У (урацил). РНК чаще, чем ДНК, содержит нетипичные нуклеотиды, которые обычно модифицируют ее функции. Углевод РНК — рибоза5Н10О5). Рассмотрим основные виды РНК в клетке.

Информационная (матричная) РНК — и-РНК (м-РНК). Содержит от нескольких сотен до десятков тысяч нуклеотидов. Молекула и-РНК представляет собой незамкнутую цепочку. Она переносит информацию о структуре белка с ДНК на рибосомы — место непосредственного синтеза полипептидной цепочки. У эукариот каждый белок клетки обычно кодируется отдельной молекулой и-РНК. У прокариот все гены одного оперона переписываются на одну общую молекулу и-РНК.

Гетерогенная ядерная РНК — гя-РНК. Является предшественником и-РНК у эукариот и превращается в и-РНК в результате сложных преобразований, которые будут рассмотрены в дальнейшем. Обычно гя-РНК значительно длиннее и-РНК.

Малая ядерная РНК — мя-РНК. Принимает участие в процессе преобразования гя-РНК.

РНК-праймер — крошечная РНК (обычно 10 нуклеотидов), участвующая в процессе репликации ДНК.

Нуклеиновые кислоты (ДНК и РНК) имеют характеристики первичной, вторичной и третичной структуры.

Первичная структура — последовательность нуклеотидов в полинуклеотидной цепочке.

Вторичная структура — порядок укладки полинуклеотидной нити.

Для ДНК вторичная структура — это двойная спираль нуклеотидных нитей. Существует несколько видов спиралей ДНК. Наиболее часто встречается правозакрученная спираль В-формы. Обнаружены участки ДНК, имеющие другую конфигурацию, как правозакрученную (А — и С-формы), так и левозакрученную (Z-форма).

2.2. Репликация ДНК

Расшифровка структуры молекулы ДНК помогла объяснить принцип ее репликации. Репликацией называется процесс удвоения молекул ДНК. Этот процесс лежит в основе воспроизведения себе подобных живыми организмами, что является главным признаком жизни.

Особая роль ДНК в живом организме определяется такой ее фундаментальной особенностью, как способность к самоудвоению.

Гигантские молекулы ДНК эукариот имеют много участков репликации — репликонов, тогда как относительно небольшие кольцевые молекулы ДНК прокариот представляют каждая один репликон. Полирепликативный характер огромных молекул ДНК эукариот обеспечивает возможность ее репликации без одновременной деспирализации всей молекулы. Так, хромосомы клетки человека имеют более 50 000 репликонов, которые синтезируются как самостоятельные единицы. Если бы молекула ДНК эукариот удваивалась как один репликон, то этот процесс растянулся бы на несколько месяцев. Благодаря полирепликации он сокращается до 7–12 ч. В остальном в общих чертах процессы репликации прокариот и эукариот весьма похожи.


Рис. 2.2. Полуконсервативный принцип репликации ДНК

Процесс репликации ДНК в репликоне происходит в 3 этапа, в которых участвуют несколько разных ферментов.

Начинается репликация ДНК с локального участка, где двойная спираль ДНК (под действием ферментов ДНК-геликазы, ДНК-топоизомеразы и др.) раскручивается, водородные связи разрываются и цепи расходятся. В результате образуется структура, названная репликативной вилкой.

На втором этапе происходит типичный матричный синтез. К образовавшимся свободным связям присоединяются по принципу комплементарности (А-Т, Г-Ц) свободные нуклеотиды. Этот процесс идет вдоль всей молекулы ДНК. У каждой дочерней молекулы ДНК одна нить происходит от материнской молекулы, а другая является вновь синтезированной. Такая модель репликации получила название полуконсервативной (рис. 2.2). Этот этап осуществляет фермент ДНК-полимераза (известно несколько ее разновидностей).


Рис. 2.3. Схема репликации ДНК

На двух материнских нитях синтез происходит неодинаково. Поскольку синтез возможен только в направлении 5' 3', на одной нити идет быстрый синтез, а на другой — медленный, короткими фрагментами (1000–2000 нуклеотидов). В честь открывшего их биохимика Р. Оказаки они называются фрагментами Оказаки. Свободный 3'-конец, необходимый для начала синтеза фрагмента Оказаки, обеспечивает РНК-праймер, синтезируемая при помощи особой РНК-полимеразы — праймазы. После выполнения своей функции РНК-праймер удаляется, а ДНК-лигаза соединяет фрагменты Оказаки и восстанавливает первичную структуру ДНК (рис. 2.3).

На третьем этапе происходит закручивание спирали и восстановление вторичной структуры ДНК при помощи ДНК-гиразы.

Большинство ферментов, участвующих в репликации ДНК, работают в мультиэнзимном комплексе, связанном с ДНК. На основании этого американский биохимик Б. Альбертс выдвинул концепцию реплисомы, однако отдельные структуры, аналогичные рибосомам, пока не выявлены. Слаженная работа ферментов позволяет осуществлять репликацию с огромной скоростью: у прокариот — около 3000 п. н. (пар нуклеотидов) в секунду, у эукариот — 100–300 п. н. в секунду. Две новые молекулы ДНК представляют собой точные копии исходной молекулы.

Механизмы репликации весьма сложны, и многие детали этого процесса, особенно у высших животных, до настоящего времени неизвестны.

Читайте также: