Методика определения переходного сопротивления защитного покрытия реферат

Обновлено: 02.07.2024

В настоящем стандарте используются термины и определения, принятыми согласно ПУЭ изд. 6 и комплекса стандартов ГОСТ Р 50571.

3.1 Электрооборудование — любое оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии, например: машины, трансформаторы, аппараты, измерительные приборы, устройства защиты, кабельная продукция, электроприемники.

3.2 Электроустановка — любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения.

3.3 Электрическая цепь — совокупность электрооборудования, соединенного проводами и кабелями, через которое может протекать электрический ток.

3.4 Защитный проводник (РЕ) — проводник, применяемый для каких-либо защитных мер от поражения электрическим током в случае повреждения и для соединения открытых проводящих частей:

— с другими открытыми проводящими частями;

— со сторонними проводящими частями;

— с заземлителями, заземляющим проводником или заземленной токоведущей частью.

3.5 Нулевой защитный проводник (РЕ) — проводник в электроустановках напряжением до 1 кВ, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока.

3.6 Нулевой рабочий проводник (N) — проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки.

3.7 Совмещенный нулевой рабочий и защитный проводник (PEN — проводник ) — проводник, сочетающий функции защитного и нулевого рабочего проводников.

3.8 Заземляющий проводник — защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.

3.9 Заземлитель — проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например, с неизолированным от земли водоемом.

3.10 Защита от непосредственного прикосновения к токоведущим частям; защита от прямого контакта — технические мероприятия, электрозащитные средства и их совокупности, предотвращающие прикосновение к токоведущим частям, находящимся под напряжением, или приближение к ним на расстояние менее безопасного.

  • Характеристики измеряемой величины, нормативные значения измеряемой величины.

Объектами измерений являются:

— зануляющие (заземляющие) защитные проводники;

Действующий ГОСТ 50571.10-94 регламентирует требования к электробезопасности, согласно которым:

4.1 Заземление или зануление следует выполнять:

— при напряжение 380 В и выше переменного тока и 440В и выше постоянного тока во всех электроустановках,

— при номинальных напряжениях выше 42В, но ниже 380В переменного тока и выше 110В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и наружных установках.

4.2 Заземление и зануление электроустановок не требуется при номинальных напряжениях до 42В переменного тока и до 110В постоянного тока во всех случаях (исключение составляет металлические оболочки и броня контрольных и силовых кабелей и проводов напряжением до 42В переменного тока и 110В постоянного тока, проложенных на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п. Вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению).

К частям, подлежащим занулению или заземлению относятся:

— корпуса электрических машин, трансформаторов, аппаратов, светильников и.т.п;

— приводы электрических аппаратов;

— вторичные обмотки измерительных трансформаторов;

— каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съёмные или открывающие части, если на последних установлено электрооборудование напряжением выше 42В переменного тока или более 110В постоянного тока;

— металлические конструкции распределительных устройств, металлические кабельные

конструкции, металлические кабельные соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, металлические рукава и трубы электропроводки, кожухи и опорные конструкции шинопроводов, лотки, короба, струны, тросы и стальные полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с заземленной металлической оболочкой или броней.), а также другие металлические конструкции, на которых устанавливается электрооборудование;

— металлические корпуса передвижных электроприёмников:

а) Заземляющие и нулевые защитные проводники, а также проводники металлической связи корпусов оборудования передвижных электроустановок должны быть медными, гибкими, как правило находиться в общей оболочке с фазными проводами и иметь равное с ними сечение.

б) В сетях с изолированной нейтралью допускается прокладка заземляющих проводников металлической связи корпусов оборудования отдельно от фазных проводов. При этом их сечение должно быть не менее 2,5см 2 .

— металлические корпуса переносных электроприёмников:

а) Заземление или зануление переносных электроприёмников должно осуществляться специальной жилой, расположенной в одной оболочке с фазными жилами переносного провода и присоединяемый к корпусу электроприёмника и к специальному контакту вилки втычного соединителя. Сечение этой жилы должно быть равным сечению фазных проводов. Использование для этой цели нулевого рабочего провода ,в том числе расположенного в одной оболочке не допускается.

б) Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5мм 2 для переносных электроприёмников в промышленных установках и не менее 0,75мм 2 для

бытовых переносных электроприёмников.

Заземляющие и нулевые защитные проводники в электроустановках до 1кВ в соответствии с ПУЭ п. 1.7.76 табл. 1.7.1. должны иметь размеры не менее приведенных в таблице 1.

Таблица 1. Наименьшие размеры заземляющих и нулевых защитных проводников.

Заземляющие и нулевые жилы кабелей и многожильных проводов в общей оболочке с фазными жилами:

Толщина полки, мм

Водогазопроводные трубы (стальные):

Толщина стенки, мм

Тонкостенные трубы (стальные):

Толщина стенки, мм

  • При прокладке проводов в трубах сечение нулевых защитных проводников допускается применять равным 1мм, если фазные проводники имеют то же сечение.

4.3 В соответствии с ПТЭЭП Приложение 1, измеренное значение сопротивления цепи между заземленными установками и элементами заземленной установки должно быть не выше 0,05 Ома.

4.4 Во взрывоопасных зонах любого класса подлежат занулению ( заземлению):

-Электроустановки при всех напряжениях переменного и постоянного тока;

-Электрооборудование, установленное на занулённых (заземленных) металлических конструкциях (которые в невзрывоопасных зонах разрешается не занулять (не заземлять))

Это требование не относится к электрооборудованию, установленному внутри зануленных заземленных) корпусов шкафов и пультов.

В качестве нулевых защитных (заземляющих) проводников должны быть использованы

проводники, специально предназначенные для этой цели.

4.5 Электросварочные установки подлежат заземлению (занулению).

В электросварочных установках кроме заземление (зануления) корпуса и других металлических нетоковедущих частей оборудования, как указано выше, как правило, должно быть предусмотрено заземление одного из зажимов (выводов) вторичной цепи источников сварочного тока: сварочных трансформаторов, статических преобразователей и тех двигателей – генераторных преобразователей, у которых обмотки возбуждений генераторов присоединяются к электрической сети без разделительных трансформаторов.

В электросварочных установках, в которых дуга горит между электродом и электропроводящим изделием, следует заземлять (занулять) зажим вторичной цепи источника сварочного тока, соединяемый проводником (обратным проводом) с изделием.

Если указанное выше по условиям электротехнического процесса не может быть выполнено, а также переносные и передвижные электросварочные установки, заземление ( зануление ) оборудования которых представляет значительные трудности, должны быть снабжены устройством защитного отключения.

4.6 На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
— основной (магистральный) защитный проводник;
— основной (магистральный) заземляющий проводник или основной заземляющий зажим;

— стальные трубы коммуникаций зданий и между зданиями;
— металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.

Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

4.7 К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток).

Для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной и должна предусматривать, в том числе, подключение сторонних проводящих частей, выходящих за пределы помещений. Если отсутствует электрооборудование с подключенными к системе уравнивания потенциалов нулевыми защитными проводниками, то систему уравнивания потенциалов следует подключить к РЕ шине (зажиму) на вводе. Нагревательные элементы, замоноличенные в пол, должны быть покрыты заземленной металлической сеткой или заземленной металлической оболочкой, подсоединенными к системе уравнивания потенциалов. Не допускается использовать для саун, ванных и душевых помещений системы местного уравнивания потенциалов.

При выполнении измерений, согласно руководству по эксплуатации «Измеритель сопротивления ИС-10, соблюдают следующие условия:

— измерения производятся в светлое время суток, при естественном или искусственном освещении, при температуре от минус 30 до плюс 40 0 С, и относительной влажности воздуха до 90% (при температуре 30 0 С). Внешние магнитные поля, кроме поля земного магнетизма, должны отсутствовать.

— схема цепи заземления на период проверки должна быть полностью смонтирована, укомплектована всеми элементами согласно проекту.

6.1 Измерения активного сопротивления зануляющих (заземляющих) защитных проводников выполняют методом прямых измерений.

6.2 Прочность контактных сварок и сварных соединений определяется ударом молотка массой не более 1 кг.

6.3 Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры с помощью штангенциркуля.

6.4 Измерение сопротивления переходных контактов сети заземления производится Измерителем сопротивления ИС-10.

6.5 За величину измеренного активного сопротивления принимают показания цифрового индикатора.

  1. Требования к средства измерения, вспомогательным устройствам.

При выполнении измерений применяются средства измерения и другие технические средства, приведенные в таблице 2.

Таблица 2. Приборы, средства измерений.

Порядковый номер и наименование средства измерений (СИ), испытательного оборудования (ИО), вспомогательных устройств

Обозначение стандарта, ТУ и типа СИ, ИО

Метрологические характеристики (кл. точности, пределы погрешностей, пределы измерений)

П.1.1 Испытание предназначено для определения изменения защитной способности защитного покрытия в среде электролита.

Сущность метода заключается в измерении переходного сопротивления защитного покрытия после выдержки в растворе электролита при различных температурах в течение определенных промежутков времени.

П 1.2 Требования к образцам

П.1.2.1 Образцами для испытаний являются:

- трубы (или изделия) с защитным покрытием;

- карты, вырезанные из труб с покрытием (темплеты), или образцы - свидетели размером не менее 100×100мм.

П.1.2.2 К испытаниям допускаются образцы без повреждений защитного покрытия, толщина и диэлектрическая сплошность которых соответствует нормативным требованиям.

П.1.2.3 Количество параллельных образцов для заданных условий испытаний должно быть не менее трех.

П.1.3 Средства контроля и вспомогательные устройства:

- источник постоянного напряжения с минимальным выходным напряжением 50В;

- тераомметр с диапазоном измерений от 103 до 1015 Ом или вольтметр и амперметр;

- экранирующая камера для защиты образцов от внешних электромагнитных полей;

- вспомогательный электрод (инертный)

графитовый стержень или платиновая проволока диаметром (0,5-0,8)мм по ГОСТ 10821;

- термошкаф, обеспечивающий поддержание температуры с точностью ±3°С;

- цилиндры из токонепроводящего термостойкого материала (оргстекла, поликарбоната, полиэтилена, минерального стекла размерами: внутренний диаметр не менее 60мм, высота не менее 70мм;

- крышки к цилиндрам из токонепроводящего термостойкого материала;

- токонепроводящий термостойкий герметик;

- хлористый натрий по ГОСТ 4233;

- вода дистиллированная по ГОСТ 6709;

- провода соединительные по ГОСТ 6323;

- спирт этиловый технический по ГОСТ 17299.

П.1.4 Подготовка к проведению контроля

П.1.4.1 Поверхность защитного покрытия образцов обезжиривают этиловым спиртом.

П.1.4.2 Подготовка ячейки для проведения испытаний на пластинах или картах.

На пластину с покрытием или карту 4 (см. рисунок П.1) с помощью герметика или пластилина устанавливают цилиндр 5. Если испытания проводят на картах или трубах, то торец цилиндра обрезают сообразно кривизне образца.

Рисунок П.1. Ячейка для испытаний на пластинах, картах или трубах (изделиях)


1 - вспомогательный электрод (инертный); 2 - контакт для подачи напряжения на испытуемый образец; 3 - карта или пластина с покрытием (испытуемый образец); 4 - цилиндр; 5 - крышка; 6-электролит; 7 - омметр или источник постоянного напряжения

П.1.4.3 Подготовка ячейки для проведения испытаний на трубках малого диаметра. Ячейка должна иметь дно (стакан) и боковые отверстия достаточной величины для помещения образца в виде трубки с наружным покрытием (см. рисунок П.2). Трубка должна выходить за пределы стакана, зазоры между трубкой и стаканом должны быть заполнены герметиком.

Рисунок П.2. Ячейка для испытаний на трубках малого диаметра


1 - вспомогательный электрод (инертный); 2 - контакт для подачи напряжения на испытуемый образец; 3 - трубка с покрытием (испытуемый образец); 4 - стакан с боковыми отверстиями; 5 - крышка; 6 - электролит; 7 - омметр или источник постоянного напряжения

П.1.4.4 В ячейку заливают 3%-ный раствор хлористого натрия. Уровень электролита должен находиться от поверхности покрытия не менее чем на 50мм. Цилиндры накрывают крышками для предотвращения испарения воды.

П.1.5 Порядок контроля

Исходное переходное сопротивление защитного покрытия определяют через трое суток после выдержки образцов в электролите при температуре (20±5)°С.

Переходное сопротивление защитного покрытия измеряют с погружением инертного электрода в раствор при температуре (20±5)°С с помощью тераомметра или определяют по результатам измерений с помощью вольтметра и амперметра. С целью исключения влияния внешних электромагнитных полей ячейку с электролитом на время измерения помещают в экранирующую камеру.

При длительных испытаниях при комнатной температуре результирующие измерения проводят через 100 сут от момента заливки испытательной ячейки раствором электролита. Промежуточные измерения рекомендуется проводить через каждые 25 сут. Если хотя бы в одной ячейке переходное сопротивление имеет значение меньше нормативного, испытания прекращают.

При испытаниях в условиях повышенных температур испытательные ячейки с электролитом помещают в термошкафы после замера исходного значения. Результирующие измерения проводят через 30 сут от начала выдержки образцов в термошкафу.

Перед очередным определением переходного сопротивления покрытия образцы необходимо охладить до комнатной температуры, при необходимости поменять раствор электролита.

Один раз в 10 суток проверяют уровень электролита в ячейках и, подливая дистиллированную воду, доводят его до первоначального. Допускается замена электролита, для чего ячейку промывают дистиллированной водой, затем заливают свежий 3%-ный раствор NaCI.

П.1.6 Обработка результатов контроля

П.1.6.1 Расчет среднего значения переходного сопротивления покрытия Riср, Ом·м2, на каждом образце проводят по формуле

Riср = S/n (∑jRij) (j=1. n) , (П.1)

i - номер образца;

j - номер измерения;

n - количество измерений на i-м образце;

Rij - сопротивление i-го образца при j-м измерении, Ом;

S - площадь контакта образца с раствором, м2, равная:

d - внутренний диаметр цилиндра, м.

Rij = Uij / Iij , (П.3)

Uij - приложенное напряжение между противоположным инертным электродом и металлической подложкой i-го образца при j-м измерении, В;

Iij - ток, протекающий между противоположным инертным электродом и металлической подложкой i-го образца при j-м измерении, А.

П.1.6.2 За значение переходного сопротивления защитного покрытия принимают среднее арифметическое результатов измерений.

П.1.6.3 Покрытие считают выдержавшим испытание, если величина переходного сопротивления защитного покрытия не менее значения, нормируемого настоящим стандартом на данный вид покрытий.

П.1.7 По результатам испытаний составляют протокол, который должен содержать следующие сведения:

- дату проведения испытания;

- сведения о заводе-изготовителе;

- наименование испытываемого защитного покрытия;

- площадь контакта образца с раствором;

- напряжение на образце при измерении;

- значения переходного сопротивления покрытия для каждого образца;

- среднее арифметическое значение переходного сопротивления защитного покрытия по всем параллельным испытаниям.

П.2 Определение переходного электрического сопротивления на уложенном в грунт трубопроводе Метод предназначен для проведения локальной оценки защитной способности покрытия на уложенном в грунт трубопроводе (в местах шурфования) при температуре свыше 0°С

П.2.1 Средства контроля и вспомогательные устройства:

- тераомметр с диапазоном измерений от 104 до 1014 Ом или мегомметр;

- электрод-бандаж из оцинкованного стального листа толщиной 0,5мм, шириной 0,4м, длиной L, равной πD+0,1, где D - диаметр трубы;

- полотенце из хлопчатобумажной ткани размером не менее размера электрода-бандажа;

- натрий сернокислый (Na2SO4 ) по ГОСТ 4166 или натрий хлористый (NaCl) по ГОСТ 4233, 3%-ный раствор;

- дефектоскоп искровой типа Крона 1Р или другой с аналогичными параметрами;

- толщиномер любого типа с погрешностью измерения: ±50 мкм - для покрытий толщиной до 1,0мм; ±100 мкм - для покрытий толщиной более 1,0мм;

- провода соединительные по ГОСТ 6323 или аналогичные;

- источник постоянного тока - система электрических батарей по ГОСТ 2583 или аналогичные с общим напряжением не менее 30В;

- вольтметр высокоомный типа ЭВ-2234 по ГОСТ 8711;

- миллиамперметры по ГОСТ 8711;

- резистор (реостат) любого типа.

П.2.2 Образцы для испытаний

П.2.2.1 В качестве образцов для испытаний используют непосредственно трубы, уложенные в грунт.

П.2.2.2 Количество испытуемых участков на трубопроводе определяет количество шурфов.

П.2.3 Проведение измерений

П.2.3.1 При измерении переходного электрического сопротивления защитного покрытия на эксплуатирующихся подземных трубопроводах в местах шурфования на поверхность покрытия трубопровода, очищенную от грунта не менее чем на 0,8м по его длине, по периметру накладывают тканевое полотенце, смоченное 3%-ным раствором сернокислого натрия, на полотенце накладывают металлический электрод-бандаж шириной не менее 0,4м и плотно стягивают его болтами или резиновыми лентами.

П.2.3.2 Для исключения влияния поверхностной утечки тока через загрязненную или увлажненную поверхность защитного покрытия дополнительно по обе стороны накладывают два экранирующих электрода-бандажа шириной не менее 0,05м, так чтобы они не контактировали с грунтом.

П.2.3.3 Резистором устанавливают рабочее напряжение 30В и снимают показания амперметра и вольтметра.

Допускается измерять переходное электрическое сопротивление защитного покрытия на уложенных в грунт трубопроводах мегомметром, например марки М1101, при этом измерения проводят, как приведено на рисунке П.3.

П.2.3.4 Если при шурфовании не предусматривается нарушение целостности защитного покрытия (например, для измерения адгезии), то контакт 1 замыкают не на оголенный участок трубы, а на стальной штырь, вбитый в грунт рядом с трубопроводом.

П.2.4 Обработка результатов испытаний

П.2.4.1 Переходное электрическое сопротивление защитного покрытия на новых трубах Rпер.1, Ом·м2, вычисляют по формуле

Rпер.1 = R1S1 , (П.4)

R1 - показания тераомметра или мегомметра, Ом;

S1 - площадь электрода-бандажа, имеющего контакт с защитным покрытием, м2.

Рисунок П.3. Схема измерения переходного электрического сопротивления защитного покрытая методом "мокрого контакта" на уложенных в грунт трубопроводах (в шурфах)


1 - контакт с трубой; 2 - экранирующие кольцевые электроды-бандажи; 3 - кольцевой электрод-бандаж; 4 - тканевое полотенце; 5 - защитное покрытие трубы; б - стенка трубы; Е - источник постоянного тока; R - потенциометр; V - высокоомный вольтметр; mA - миллиамперметр

П.2.4.2 Переходное электрическое сопротивление защитного покрытия Rпер.2, Ом·м2, на уложенных в грунт трубопроводах вычисляют по формуле

Rпер.2 = VпокрS2 / Iпокр , (П.5)

Vпокр - падение напряжения между трубопроводом и бандажом (по показаниям вольтметра), В;

Iпокр - сила тока в цепи А;

S2 - площадь электрода-бандажа, имеющего контакт с защитным покрытием трубопровода, м2.

Защитное покрытие считают выдержавшим испытания, если переходное электрическое сопротивление соответствует указанному в таблицах 2 и 3 настоящего стандарта.

П.2.5 Оформление результатов испытаний

П.2.5.1 Результаты испытаний для новых труб оформляют в виде протокола, в котором указывают:

- наименование предприятия-изготовителя и его адрес;

- номер партии труб с защитным покрытием;

- дату изготовления труб с защитным покрытием;

- результаты определения среднего значения переходного электрического сопротивления защитного покрытия;

- должность, фамилию, подпись лица, проводившего испытания;

П.2.5.2 Результаты измерений переходного электрического сопротивления защитного покрытия на уложенных в грунт трубопроводах заносят в протокол, приведенный в П.2.5.3.

П.2.5.3 Форма протокола определения переходного электрического сопротивления покрытий методом "мокрого контакта" на уложенных в грунт трубопроводах

Протокол определения переходного электрического сопротивления покрытий методом "мокрого контакта" на уложенных в грунт трубопроводах

Наименование трубопровода, его протяженность._____________________________________

Участок трубопровода (номер шурфа) __________________

Тип и конструкция защитного покрытия _________________

Дата Номер шурфа Диаметр трубы, м Падение напряжения (по показаниям вольтметра) Vпокр, В Сила тока в цепи Iпокр, А Площадь электрода-бандажа, контактирующего с трубой S2, м 2 Значение переходного электрического сопротивления покрытия Rпер.2, Ом·м 2

Переходное электрическое сопротивление покрытия трубопровода __ соответствует, не соответствует требуемому значению__

___________________________________ ______________ __________________

должность лица, проводившего измерения личная подпись расшифровка подписи

Руководящий документ устанавливает методические основы для оценки остаточного ресурса изоляционных покрытий подземных стальных трубопроводов по результатам расчетов переходного сопротивления изоляционных покрытий. РД разработан и рекомендуется для оценки остаточного ресурса находящихся в эксплуатации подземных стальных трубопроводов диаметром до 1400 мм включительно с избыточным давлением среды не выше 20,0 МПа, прокладываемых подземно и в насыпи. В РД использованы вероятностно-статистические методы оценки остаточного ресурса изоляционных покрытий подземных стальных трубопроводов.

Обозначение: РД 39Р-00147105-025-02
Название рус.: Методика определения остаточного ресурса изоляционных покрытий подземных трубопроводов
Статус: не действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 18.07.2002 ГУП ИПТЭР

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное унитарное предприятие

профессор техн. наук

от 15 сентября 2002 г.

____________ А.Г. Гумеров

РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИКА ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА
ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

РД 39Р-00147105-025-02

Научный руководитель, д.т.н.

_______________ Ф.М. Мустафин

ПРЕДИСЛОВИЕ

Творческий коллектив: Абдуллин Н.В., Ведерникова Т.Г., Веселов Д.Н., Гамбург И.Ш., Гильметдинов Р.Ф., Домрачев Е.Н., Квицинская М.С., Квятковский О.П., Коновалов Н.И., Маркухов О.В., Мустафин Ф.М. (руководитель), Соловьев А.Б., Тарасов А.В., Фархетдинов И.Р., Харисов Р.А., Щепетов А.Е.

4 РД согласован с Госгортехнадзором России (письмо от 15 сентября 2002 г. № 10-03/868).

МЕТОДИКА ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА
ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

Дата введения 2002-11-01

1.1 Настоящий руководящий документ (РД) устанавливает методические основы для оценки остаточного ресурса изоляционных покрытий подземных стальных трубопроводов по результатам расчетов переходного сопротивления изоляционных покрытий.

1.2 РД разработан и рекомендуется для оценки остаточного ресурса находящихся в эксплуатации подземных стальных трубопроводов диаметром до 1400 мм включительно с избыточным давлением среды не выше 20,0 МПа, прокладываемых подземно и в насыпи.

В РД использованы вероятностно-статистические методы оценки остаточного ресурса изоляционных покрытий подземных стальных трубопроводов.

2.1 В настоящем стандарте использованы ссылки на следующие нормативно-технические документы и стандарты:

ГОСТ Р 51164-98 . Трубопроводы стальные магистральные. Общие требования к защите от коррозии

ГОСТ 9.602-89* . Сооружения подземные. Общие требования к защите от коррозии

ГОСТ 27.002-89 . Надежность в технике. Термины и определения

СНиП 2.05.06-85* . Магистральные трубопроводы

ВСН 012-88 . Строительство магистральных и промысловых трубопроводов. Контроль качества и приемка работ

ВСН 009-88 . Строительство магистральных и промысловых трубопроводов. Средства и установки электрохимзащиты. Дополнение. Электрохимзащита кожухов на переходах под автомобильными и железными дорогами

Трубопровод рассматривается как система последовательно соединенных элементов (труб и деталей). Разрушение одного из элементов выводит из строя весь трубопровод.

Предельный срок службы изоляционных покрытий подземных трубопроводов - это время, в течение которого величина переходного сопротивления изоляции Rп снизится до 10 3 Ом∙м 2 .

Переходным электрическим сопротивлением защитного покрытия называется электросопротивление единицы площади покрытия в цепи труба - покрытие - электролит. Единица измерения - Ом∙м 2 .

Ресурс трубопровода - суммарная наработка трубопровода от пуска до перехода в предельное состояние.

Наработка - период эксплуатации трубопровода без учета простоев.

Срок службы трубопровода - календарный период времени от ввода трубопровода в эксплуатацию до его перехода в предельное состояние.

Предельное состояние изоляционного покрытия трубопровода - техническое состояние изоляции трубопровода, при котором исключена его дальнейшая эксплуатация. В качестве предельного состояния может быть принято разрушение как изоляционного покрытия трубопровода в целом, так и определенного его участка при условии, что ремонт из-за его частой повторяемости опасен для окружающей среды или экономически нецелесообразен.

Отказ изоляционного покрытия трубопровода - прекращение выполнения функции изоляции трубопровода от внешних воздействий вследствие разрушения.

Остаточный ресурс изоляционного покрытия трубопровода - время эксплуатации изоляции трубопровода с момента текущего диагностирования до перехода в предельное состояние.

Диагностирование (техническое) изоляционного покрытия трубопровода - определение технического состояния изоляционного покрытия трубопровода.

Вероятность безотказной работы изоляционного покрытия трубопровода - вероятность того, что за рассматриваемый период в изоляционном покрытии трубопровода не возникнет отказов.

Параметр технического состояния - характеристика, определяющая работоспособность элементов трубопроводов (толщина, сплошность, допускаемое напряжение, переходное сопротивление и т.д.) [3].

В методике кроме описанных используются следующие обозначения:

Rп.н - начальное значение переходного сопротивления изоляции;

Rп.з. - значение заданного переходного сопротивления;

Rк - конечное значение переходного сопротивления;

Rп - расчетное значение переходного сопротивления;

Ri э - измеренное значение переходного сопротивления;

τ3 - время достижения заданного значения переходного сопротивления труба-земля;

τ - время эксплуатации трубопровода;

Р - коэффициент пропорциональности, описывающий зависимость количества влаги, проникающей через покрытие, от площади и толщины покрытия, времени и перепада давлений водяных паров над и под покрытием;

D - диаметр трубопровода;

S - сумма квадратов отклонений измеренных значений эксплуатируемого трубопровода от расчетных;

F - площадь изоляционного покрытия;

∆p - перепад давлений водяных паров над и под покрытием;

∆m - количество влаги;

δ - толщина изоляционного покрытия;

е - постоянная экспонента;

a и а1, - постоянные коэффициенты, показатели скорости старения изоляционного покрытия;

pгр - удельное электросопротивление грунта;

β - показатели скорости старения изоляционного покрытия;

tс - постоянная времени старения изоляционного покрытия.

Данная методика определения остаточного ресурса изоляционных покрытий подземных трубопроводов предназначена для определения срока службы изоляционных покрытий стальных трубопроводов диаметром до 1400 мм (включительно), с избыточным давлением среды до 20,0 МПа, прокладываемых подземно или в насыпи.

Определение срока службы изоляционных покрытий подземных стальных трубопроводов важно для осуществления планирования работ по капитальному ремонту трубопроводов с заменой изоляции.

Знание закономерностей влияния времени и комплекса основных факторов на срок службы изоляционных покрытий позволяет осуществлять оптимальный выбор изоляционных покрытий, их толщину и количество слоев в период проектирования конкретного трубопровода [11, 12].

Подземные стальные трубопроводы предохраняют от коррозии средствами комплексной защиты: изоляционными покрытиями и катодной поляризацией. Качество комплексной защиты оценивается переходным сопротивлением, которое характеризует состояние изоляционного покрытия и позволяет определять расход тока катодной поляризации. Снижение значения переходного сопротивления в период эксплуатации трубопровода вызывает необходимость увеличивать ток катодных станций и их количество или ремонтировать изоляцию на данном участке [13].

Предельный срок службы изоляционных покрытий подземных трубопроводов определяется временем, в течение которого величина переходного сопротивления изоляции Rп снизится до 10 3 Ом∙м 2 . Данное значение определяется из требований ГОСТ Р 51164-98 (таблицы 2, 3). Переходное сопротивление изоляции для всех видов покрытий не должно уменьшаться более чем в 8 раз через 20 лет эксплуатации.

К важнейшим эксплуатационным свойствам изоляционных покрытий трубопроводов относятся толщина, влагопроницаемость, водопоглощение, сплошность, переходное электросопротивление, стойкость к отслаиванию под действием катодного тока, адгезия, термостойкость и долговечность [16, 19].

Скорость коррозии стали под полимерным покрытием зависит от множества факторов: наличия электролита и кислорода под покрытием, уровня пассивации и гетерогенности поверхности, скорости отвода продуктов реакции, присутствия ингибиторов, pН и химического состава среды, температуры, давления, наличия блуждающих токов и др. В различных условиях определяющим фактором скорости коррозии (контролирующим процессом) могут оказаться разные процессы, от которых зависят требования к толщине изоляции. Кроме того, если контролирующей стадией окажется отвод продуктов коррозии (что весьма вероятно во многих случаях), то этот процесс вообще непосредственно не зависит от толщины покрытия. Таким образом, выработать единое требование к необходимой толщине изоляции не представляется возможным [14].

Влагопроницаемость характеризуется коэффициентом влагопроницаемости - так называется коэффициент пропорциональности Р в уравнении, описывающем зависимость количества влаги ∆m, проникающей через покрытие, от площади F и толщины δ покрытия, времени τ и перепада давлений водяных паров над и под покрытием ∆p:

Размерность коэффициента влагопроницаемости - кг/(м с Па).

Водопоглощение покрытий характеризует их способность впитывать влагу и тем самым снижать свои диэлектрические свойства. Технические требования по водопоглощению нормируют для каждого вида покрытий на основании результатов испытаний, за норму принимают данные по лучшим образцам.

Сплошность нанесенного покрытия определяется отсутствием в нем сквозных микро- или макродефектов. Сплошность покрытия контролируют, помещая его между разноименными полюсами источника постоянного электрического тока. При этом величина электрического напряжения строго нормирована и определяется из следующих соображений: если в покрытии имеются микродефекты, то напряжение должно быть достаточным для пробоя слоя воздуха толщиной, равной толщине покрытия. В этом случае через микродефект происходит замыкание электрической цепи и срабатывает световой или звуковой индикатор.

Требования к сплошности изоляционных покрытий трубопроводов определены в нормативных документах.

Переходным электрическим сопротивлением защитного покрытия называется электросопротивление единицы площади покрытия в цепи труба - покрытие - электролит. Единица измерения - Ом∙м 2 . Это показатель комплексной интегральной оценки состояния изоляционных покрытий трубопроводов, прогнозируя который, можно определять остаточный ресурс трубопровода.

Специальными исследованиями, выполненными в области электрозащиты, установлено, что для предотвращения перерасхода электроэнергии на катодную защиту достаточно иметь переходное электросопротивление покрытия не меньше 10 4 Ом∙м 2 . Однако многие изоляционные материалы (полимеры, эпоксидные смолы) характеризуются более высоким переходным электросопротивлением (порядка 10 8 Ом∙м 2 ). Снижение этого показателя обычно свидетельствует о происшедших в материале или конструкции покрытия изменениях, являющихся предшественниками выхода покрытия из строя (начало трещинообразования, увеличение пористости вследствие вымывания или выпотевания отдельных компонентов, появление микродефектов и т.д.). Поэтому, предъявляя к материалу требования по величине переходного электросопротивления, исходят не только из необходимости предотвращения повышенного расхода электроэнергии на катодную защиту, но и из свойств изоляционного материала.

Адгезия (прилипаемость) изоляционного покрытия к металлу трубы определяется адгезионной прочностью соединения, которую измеряют при нормальном отрыве или касательном сдвиге в единицах силы на единицу площади, а также при отслаивании - в единицах силы на единицу ширины полосы отслаивания. Последний способ наиболее широко применяется в практике трубопроводного строительства.

Устойчивость покрытий к действию катодного тока должна предохранять покрытия от отслаивания вследствие действия электрохимической защиты трубопроводов.

Термостойкостью изоляционного покрытия трубопровода называют предельную температуру, при которой в течение всего срока службы трубопровода значения основных эксплуатационных характеристик покрытия не выходят за пределы допустимых.

Долговечностью покрытия называют предельное время эксплуатации при заданных условиях, в течение которого значения основных эксплуатационных характеристик изделия не выходят за пределы допустимых.

Ударная прочность изоляционного покрытия трубопровода характеризует его стойкость к внешним механическим ударам. Ударной прочностью изоляционного покрытия называют минимальную энергию удара, приводящую к потере сплошности покрытия.

Механические свойства покрытий нормируются в технических требованиях пределом прочности при разрыве и относительным удлинением [6].

Анализ различных методов прогнозирования изменения защитных свойств изоляционных покрытий трубопроводов выявил три основные зависимости, описывающие изменение основного критерия оценки качества изоляции - переходного сопротивления труба-земля Rп [8, 15, 19]:

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУБОПРОВОДЫ СТАЛЬНЫЕ МАГИСТРАЛЬНЫЕ

Общие требования к защите от коррозии

Steel pipe mains.
General requirements for corrosion protection

____________________________________________________________________
Текст Сравнения ГОСТ Р 51164-98 с ГОСТ 25812-83 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

ОКС 23.040.90
ОКП 13 0000

Дата введения 1999-07-01

1 РАЗРАБОТАН Инжиниринговой научно-исследовательской компанией Всероссийский научно-исследовательский институт по строительству трубопроводов и объектов ТЭК (АО ВНИИСТ), Всероссийским научно-исследовательским институтом природного газа и газовых технологий (ВНИИГАЗ) и Институтом проблем транспорта энергоресурсов (ИПТЭР)

ВНЕСЕН Министерством топлива и энергетики Российской Федерации

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 апреля 1998 г. N 144

3 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает общие требования к защите от подземной и атмосферной коррозии наружной поверхности стальных (малоуглеродистые низколегированные стали класса не выше К60) магистральных трубопроводов, транспортирующих природный газ, нефть и нефтепродукты, и отводов от них, трубопроводов компрессорных, газораспределительных, перекачивающих и насосных станций, а также нефтебаз, головных сооружений нефтегазопромыслов (включая резервуары и обсадные колонны скважин), подземных хранилищ газа, установок комплексной подготовки газа и нефти, трубопроводов теплоэлектростанций, соединенных с магистральными трубопроводами (далее - трубопроводы), подземной, подводной (с заглублением в дно), наземной (в насыпи) и надземной прокладках, а также трубопроводов на территории других аналогичных промышленных площадок.

Стандарт не распространяется на теплопроводы и трубопроводы, проложенные в населенных пунктах, коллекторах, зданиях, многолетнемерзлых грунтах и в водоемах без заглубления в дно.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Требования настоящего стандарта должны выполняться при проектировании, строительстве, монтаже, реконструкции, эксплуатации и ремонте трубопроводов и являются основой при разработке нормативной документации (НД), используемой при защите от коррозии конкретных видов трубопроводов, утвержденной в установленном порядке и согласованной с Госгортехнадзором России.

3.2 Защита трубопроводов от коррозии должна обеспечивать их безаварийную (по этой причине) работу на весь период эксплуатации.

3.3 При всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты, независимо от коррозионной агрессивности грунта.

3.4 При надземной прокладке трубопроводы защищают от атмосферной коррозии металлическими и неметаллическими покрытиями в соответствии с НД на эти покрытия.

3.5 Участки трубопроводов при надземной прокладке должны быть электрически изолированы от опор. Общее сопротивление этой изоляции при нормальных условиях должно быть не менее 100 кОм на одной опоре.

3.6 Магистральные трубопроводы, температура стенок которых в период эксплуатации ниже 268 К (минус 5 °С), не подлежат электрохимической защите в случае отсутствия негативного влияния блуждающих токов источников переменного (50 Гц) и постоянного тока.

Если в строительный период температура стенок и грунта выше указанной температуры, то они подлежат временной электрохимической защите на срок с момента засыпки до момента стабилизации технологического режима эксплуатации согласно НД.

3.7 На нефтегазопромысловых объектах допускается не применять электрохимическую защиту и (или) защитные покрытия при условии технико-экономического обоснования с учетом коррозионной агрессивности грунтов и срока службы объекта при обеспечении безопасной эксплуатации и исключении экологического ущерба.

Обсадные колонны скважин допускается защищать от коррозии только средствами электрохимической защиты.

3.8 Тип, конструкция и материал защитного покрытия и средства электрохимической защиты трубопроводов от коррозии должны быть определены в проекте защиты, который разрабатывается одновременно с проектом нового или реконструируемого трубопровода.

В проекте должны учитываться возможные изменения условий коррозии трубопровода.

3.8.1 Проекты противокоррозионной защиты для трубопроводов длиной более 100 км должны проходить экспертизу в специализированных организациях на соответствие требованиям государственной стандартизации.

3.9 Каждый вновь построенный трубопровод должен иметь сертификат соответствия качества противокоррозионной защиты государственным стандартам и другой НД. Для эксплуатируемых трубопроводов сертификат соответствия может быть выдан только после комплексного обследования. Сертификаты соответствия выдаются органами по сертификации, внесенными в Госреестр.

3.10 Комплексное обследование трубопроводов с целью определения состояния их защиты от коррозии и коррозионного состояния должно проводиться периодически организациями, имеющими право на выполнение этих работ в соответствии с требованиями настоящего стандарта.

Читайте также: