Матрицы и определители реферат

Обновлено: 02.07.2024

При изучении вопросов, связанных с действием над векторами,а также при изучении систем линейных уравнений приходится иметь дело стаблицами из чисел, которые называются матрицами.

Определение. Матрицей называется прямоугольная таблица изчисел, содержащая /> строк и /> столбцов.

Числа /> и /> называются порядкамиматрицы. Если />, то матрицаназывается квадратной. Для обозначения матрицы пользуются либо вертикальнымидвойными черточками, либо круглыми скобками:

Для краткого обозначения матрицы может быть использована иодна буква, например, />. Кроме того,вместо всей таблицы может быть написано:

Числа /> называютсяэлементами матрицы, /> - номер строки, /> - номер столбца.

Для квадратной матрицы вводится понятие главной и побочнойдиагонали: главная диагональ идет из верхнего левого угла в нижний правый; побочная- из верхнего правого в нижний левый.

Ранг матрицы. Эквивалентные матрицы.

Дана прямоугольная матрица:

Выделим в этой матрице k произвольных строк и kпроизвольных столбцов (k Ј m, k Ј n).

Определение. Определитель k-го порядка, составленныйиз элементов матрицы A, расположенных на пересечении выделенных строк истолбцов, называется минором k-го порядка матрицы A. Матрица Aимеет C km*C kn миноров k-гопорядка.

Определение. Рассмотрим всевозможные миноры матрицы A,отличные от нуля. Рангом матрицы A называется наибольший порядокотличных от нуля миноров этой матрицы. Если все элементы матрицы равны нулю, торанг этой матрицы принимают равным нулю.

Определение. Всякий отличный от нуля минор матрицы, порядоккоторого равен рангу этой матрицы, называется базисным минором матрицы.

Ранг матрицы A будем обозначать через r (A). Еслиr (A) = r (B), то матрицы A и B называются эквивалентными.

Полезно иметь ввиду, что ранг матрицы не изменяется отэлементарных преобразований. Под элементарными преобразованиями понимаются:

1) замена строк столбцами, а столбцов соответствующимистроками;

2) перестановка строк матрицы;

3) вычеркивание строки, все элементы которой равны нулю;

4) умножение какой-либо строки на число, отличное от нуля;

5) прибавление к элементам одной строки соответствующихэлементов другой строки.

Действия над матрицами.

Определение. Две матрица называются равными, если ониимеют одинаковые порядки и все их соответствующие элементы совпадают.

Определение. Суммой двух матриц /> (/>) и /> (/>) одинаковых порядков /> называется матрица /> (/>) того же порядка, элементыкоторой равны />.

На письме это действие может быть записано так: />. Операция сложенияобладает, очевидно, обычными свойствами: перестановочным />; сочетательным />.

Определение. Произведением матрицы /> на число /> называется матрица />, элементы которой равны />.

Умножение матрицы на число может быть записано: /> или />.

Эта операция обладает следующими свойствами: сочетательнымотносительно числового множителя />; распределительнымотносительно суммы матриц />; распределительнымотносительно суммы чисел />.

После первых двух действий необходимо отметить, чтовычитание матриц производится аналогично сложению, а деление матрицы на числоможет быть определено как умножение на обратное число.

Определение. Произведением матрицы /> (/>), имеющей порядок />, на матрицу /> (/>), имеющую порядок />, называется матрица /> (/>), имеющая порядок />, элементы которой равны />, где />.

Записывается это действие так />.Из сказанного выше следует, что для нахождения элемента />, в произведении /> необходимо попарноперемножить все соответствующие элементы />-ойстроки матрицы /> на элементы />-го столбца матрицы />, а затем все это сложить. Изопределения также следует, что для умножения двух матриц необходимо, чтобычисло столбцов матрицы /> было равно числустрок матрицы />. Отсюда следует,что одновременно произведение /> и /> существует только лишь втом случае, когда число столбцов /> равночислу строк />, а число столбцов /> равно числу строк />. В этом случае /> и /> будут квадратнымиматрицами, но разных порядков. Чтобы оба произведения были одинакового порядка,необходимо, чтобы /> и /> были квадратными матрицамиодинакового порядка.

Произведение матриц /> имеетсвойства: сочетательное />; распределительное/>. Перестановочным свойствомв общем случае произведение матриц не обладает. Оно выполняется лишь внекоторых случаях.

Среди квадратных матриц необходимо выделить важный классдиагональных матриц.

Определение. Диагональной называется квадратная матрица,все элементы которой, расположенные вне главной диагонали, равны 0:

В том случае, если />,то для любой квадратной матрицы /> порядка/> справедливо />. Действительно, для /> получаем />. Для /> - />. Отсюда, />.

Среди диагональных матриц с равными друг другу элементамиособое место занимают две матрицы: единичная и нулевая. У единичной матрицы />, обозначается она — />, у нулевой />, обозначается она — />.

Как было показано />, />. Перемножив эти матрицы,можно убедиться, что />; />. Таким образом, матрицы /> и /> выполняют ту же роль, чтои 1 и 0 среди чисел. Вообще нулевой называют любую матрицу, элементы которойравны нулю.

Выше было показано, что матрица — это прямоугольная таблица,составленная из чисел. Особое место среди матриц занимают квадратные матрицы. Рассмотримпроизвольную квадратную матрицу порядка /> илипросто />:

Оказывается, что с такой матрицей всегда можно связатьвполне определенную численную характеристику.

Определение. Численная характеристика квадратной матрицыназывается ее определителем.

Рассмотрим матрицу первого порядка />.

Определение. Численной характеристикой матрицы первогопорядка, то есть определителем первого порядка, называется величина ее элемента/>.

Обозначается определитель одним из символов />.

Рассмотрим матрицу второго порядка

Определение. Определителем второго порядка,соответствующим матрице второго порядка, называется число, равное />.

Обозначается определитель одним из символов

Очевидно, что для составления определителя второго порядка,необходимо найти разность произведения элементов, стоящих на главной диагоналиматрицы, и произведения элементов, стоящих на побочной диагонали этой матрицы.

Поскольку одна из форм обозначения определителя иобозначения матрицы имеют много общего (записывается таблица из чисел), то также, как и у матрицы, говорят о столбцах, строках и элементах определителя.

После того как рассмотрены определители 1-го и 2-гопорядков, можно перейти к понятию определителя любого порядка. Но перед этимвведем понятие минора.

Определение. Минором любого элемента /> квадратной матрицы порядка/> называется определительпорядка />, соответствующий тойматрице, которая получается из первоначальной в результате вычеркивания />-ой строки и />-го столбца, на пересечениикоторых стоит элемент />.

Обычно минор элемента /> обозначается/>.

Определение. Определителем порядка />, соответствующим матрицепорядка />, называется число, равное

Обозначается определитель одним из символов

Приведенное выражение представляет собой правило вычисленияопределителя />-го порядка по элементампервой строки соответствующей ему матрицы и по минорам элементов этой строки,которые являются определителями порядка />.Для /> это правило дает:

В приведенном правиле вычисления определителя фигурируетлишь первая строка. Возникает вопрос, а нельзя ли вычислить определитель,используя элементы других строк?

Теорема. Каков бы ни был номер строки /> (/>), для определителя />-го порядка справедливаформула

называемая разложением этого определителя по />-ой строке.

Нетрудно заметить, что в этой формулировке степень при (-1) равнасумме номеров строки и столбца, на пересечении которых стоит элемент />.

Докажем эту теорему для />.В этом случае /> может быть равно только 2,так как /> входит в основноеопределение величины определителя. Итак:

Полученное выражение совпадает с тем, которое было дано вопределении, следовательно, для определителя 2-го порядка теорема доказана.

Для произвольного /> даннаятеорема доказывается методом математической индукции.

Итак, показано, что определитель может быть разложен полюбой строке. Возникает вопрос, а нельзя ли сделать то же самое, использовавпроизвольный столбец.

Теорема. Каков бы ни был номер столбца /> (/>), для определителя />-го порядка справедливаформула />, называемая разложениемэтого определителя по />-му столбцу.

Докажем теорему для />:

Данное выражение равно величине определителя, введенной поопределению.

Итак, на основании теорем можно сказать, что для вычисленияопределителя />-го порядка необходимо егоразложить по произвольной строке или столбцу.

В заключение введем еще одно определение.

Определение. Алгебраическим дополнением данного элемента /> определителя />-го порядка называетсячисло, равное />, котороеобозначается />.

Значит, алгебраическое дополнение отличается отсоответствующего минора только лишь знаком. Теперь величину определителя можновычислить с помощью формул:


Литература

2. Минорский В.П. Сборник задач по высшей математики.

6. Баврин И.И. Высшая математика — 1980 г.3

7. Дж. Голуб, Ч. Ван Лоун Матричные вычисления. — М.: Мир, 1999.

8. Беллман Р. Введение в теорию матриц. — М.: Мир, 1969.

9. Гантмахер Ф.Р. Теория матриц (2-е издание). — М.: Наука, 1966.

10. Ланкастер П. Теория матриц. — М.: Наука, 1973.

11. Соколов Н.П. Пространственные матрицы и их приложения. — М.: ГИФМЛ, 1960.

При изучении вопросов, связанных с действием над векторами, а также при изучении систем линейных уравнений приходится иметь дело с таблицами из чисел, которые называются матрицами.

Определение. Матрицей называется прямоугольная таблица из чисел, содержащая строк и столбцов.

Числа и называются порядками матрицы. Если , то матрица называется квадратной. Для обозначения матрицы пользуются либо вертикальными двойными черточками, либо круглыми скобками:

Для краткого обозначения матрицы может быть использована и одна буква, например, . Кроме того, вместо всей таблицы может быть написано: , где ; .

Числа называются элементами матрицы, - номер строки, - номер столбца.

Для квадратной матрицы вводится понятие главной и побочной диагонали: главная диагональ идет из верхнего левого угла в нижний правый; побочная - из верхнего правого в нижний левый.

Ранг матрицы. Эквивалентные матрицы

Дана прямоугольная матрица:

Выделим в этой матрице k произвольных строк и k произвольных столбцов (k Ј m, k Ј n).

Определение. Определитель k-го порядка, составленный из элементов матрицы A, расположенных на пересечении выделенных строк и столбцов, называется минором k-го порядка матрицы A. Матрица A имеет C k m*C k n миноров k-го порядка.

Определение. Рассмотрим всевозможные миноры матрицы A, отличные от нуля. Рангом матрицы A называется наибольший порядок отличных от нуля миноров этой матрицы. Если все элементы матрицы равны нулю, то ранг этой матрицы принимают равным нулю.

Определение. Всякий отличный от нуля минор матрицы, порядок которого равен рангу этой матрицы, называется базисным минором матрицы.

Ранг матрицы A будем обозначать через r (A). Если r (A) = r( B), то матрицы A и B называются эквивалентными.

Полезно иметь ввиду, что ранг матрицы не изменяется от элементарных преобразований. Под элементарными преобразованиями понимаются:

1) замена строк столбцами, а столбцов соответствующими строками;

2) перестановка строк матрицы;

3) вычеркивание строки, все элементы которой равны нулю;

4) умножение какой-либо строки на число, отличное от нуля;

5) прибавление к элементам одной строки соответствующих элементов другой строки.

Действия над матрицами

Определение. Две матрицы называются равными, если они имеют одинаковые порядки и все их соответствующие элементы совпадают.

Определение. Суммой двух матриц ( ) и ( ) одинаковых порядков называется матрица ( ) того же порядка, элементы которой равны .

На письме это действие может быть записано так: . Операция сложения обладает, очевидно, обычными свойствами: перестановочным ; сочетательным .

Определение. Произведением матрицы на число называется матрица , элементы которой равны .

Умножение матрицы на число может быть записано: или .

Эта операция обладает следующими свойствами: сочетательным относительно числового множителя ; распределительным относительно суммы матриц ; распределительным относительно суммы чисел .

После первых двух действий необходимо отметить, что вычитание матриц производится аналогично сложению, а деление матрицы на число может быть определено как умножение на обратное число.

Определение. Произведением матрицы ( ), имеющей порядок , на матрицу ( ), имеющую порядок , называется матрица ( ), имеющая порядок , элементы которой равны , где .

Записывается это действие так . Из сказанного выше следует, что для нахождения элемента , в произведении необходимо попарно перемножить все соответствующие элементы -ой строки матрицы на элементы -го столбца матрицы , а затем все это сложить. Из определения также следует, что для умножения двух матриц необходимо, чтобы число столбцов матрицы было равно числу строк матрицы . Отсюда следует, что одновременно произведение и существует только лишь в том случае, когда число столбцов равно числу строк , а число столбцов равно числу строк . В этом случае и будут квадратными матрицами, но разных порядков. Чтобы оба произведения были одинакового порядка, необходимо, чтобы и были квадратными матрицами одинакового порядка.

Произведение матриц имеет свойства: сочетательное ; распределительное . Перестановочным свойством в общем случае произведение матриц не обладает. Оно выполняется лишь в некоторых случаях.

Среди квадратных матриц необходимо выделить важный класс диагональных матриц.

Определение. Диагональной называется квадратная матрица, все элементы которой, расположенные вне главной диагонали, равны 0:

В том случае, если , то для любой квадратной матрицы порядка справедливо . Действительно, для получаем . Для - . Отсюда, .

Среди диагональных матриц с равными друг другу элементами особое место занимают две матрицы: единичная и нулевая. У единичной матрицы , обозначается она - , у нулевой , обозначается она - .

Как было показано , . Перемножив эти матрицы, можно убедиться, что ; . Таким образом, матрицы и выполняют ту же роль, что и 1 и 0 среди чисел. Вообще нулевой называют любую матрицу, элементы которой равны нулю.

Понятие определителя

Выше было показано, что матрица - это прямоугольная таблица, составленная из чисел. Особое место среди матриц занимают квадратные матрицы. Рассмотрим произвольную квадратную матрицу порядка или просто :

Оказывается, что с такой матрицей всегда можно связать вполне определенную численную характеристику.

Определение. Численная характеристика квадратной матрицы называется ее определителем.

Рассмотрим матрицу первого порядка .

Определение. Численной характеристикой матрицы первого порядка, то есть определителем первого порядка, называется величина ее элемента .

Обозначается определитель одним из символов .

Рассмотрим матрицу второго порядка .

Определение. Определителем второго порядка, соответствующим матрице второго порядка, называется число, равное .

Обозначается определитель одним из символов

Очевидно, что для составления определителя второго порядка, необходимо найти разность произведения элементов, стоящих на главной диагонали матрицы, и произведения элементов, стоящих на побочной диагонали этой матрицы.

Поскольку одна из форм обозначения определителя и обозначения матрицы имеют много общего (записывается таблица из чисел), то так же, как и у матрицы, говорят о столбцах, строках и элементах определителя.

После того как рассмотрены определители 1-го и 2-го порядков, можно перейти к понятию определителя любого порядка. Но перед этим введем понятие минора.

Определение. Минором любого элемента квадратной матрицы порядка называется определитель порядка , соответствующий той матрице, которая получается из первоначальной в результате вычеркивания -ой строки и -го столбца, на пересечении которых стоит элемент .

Обычно минор элемента обозначается .

Определение. Определителем порядка , соответствующим матрице порядка , называется число, равное .

Обозначается определитель одним из символов

Приведенное выражение представляет собой правило вычисления определителя -го порядка по элементам первой строки соответствующей ему матрицы и по минорам элементов этой строки, которые являются определителями порядка . Для это правило дает:

В приведенном правиле вычисления определителя фигурирует лишь первая строка. Возникает вопрос, а нельзя ли вычислить определитель, используя элементы других строк?

Теорема. Каков бы ни был номер строки ( ) , для определителя -го порядка справедлива формула , называемая разложением этого определителя по -ой строке.

Нетрудно заметить, что в этой формулировке степень при (-1) равна сумме номеров строки и столбца, на пересечении которых стоит элемент .

Докажем эту теорему для . В этом случае может быть равно только 2, так как входит в основное определение величины определителя. Итак:

Полученное выражение совпадает с тем, которое было дано в определении, следовательно, для определителя 2-го порядка теорема доказана.

Для произвольного данная теорема доказывается методом математической индукции.

Итак, показано, что определитель может быть разложен по любой строке. Возникает вопрос, а нельзя ли сделать то же самое, использовав произвольный столбец.

Теорема. Каков бы ни был номер столбца ( ), для определителя -го порядка справедлива формула , называемая разложением этого определителя по -му столбцу.

Докажем теорему для :

Данное выражение равно величине определителя, введенной по определению.

Итак, на основании теорем можно сказать, что для вычисления определителя -го порядка необходимо его разложить по произвольной строке или столбцу.

В заключение введем еще одно определение.

Определение. Алгебраическим дополнением данного элемента определителя -го порядка называется число, равное , которое обозначается .

Значит, алгебраическое дополнение отличается от соответствующего минора только лишь знаком. Теперь величину определителя можно вычислить с помощью формул:

Литература

1. Лобоцкая Н.Л. Основы высшей математики. Минск, "Высшая школа", 1973.

2. Минорский В.П. Сборник задач по высшей математики.

3. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М., "Наука", 1986.

4. Гмурман В.Е. Теория вероятностей и математическая статистика. М., "Высшая школа" изд. 5, 1977.

5. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М., "Высшая школа" изд. 2.

6. Баврин И.И. Высшая математика - 1980 г.3

7. Дж. Голуб, Ч. Ван Лоун Матричные вычисления. -- М.: Мир, 1999.

8. Беллман Р. Введение в теорию матриц. -- М.: Мир, 1969.

9. Гантмахер Ф. Р. Теория матриц (2-е издание). -- М.: Наука, 1966.

10. Ланкастер П. Теория матриц. -- М.: Наука, 1973.

11. Соколов Н. П. Пространственные матрицы и их приложения. -- М.: ГИФМЛ, 1960.

или сокращенно в виде A = (a ij ) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij ) и B = (b ij ) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n, все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:


.

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:


E = .

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу


A T = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением матрицы А на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением на число λ: λA = ( λa ij ).

Суммой двух матриц А = (a ij ) и B = (b ij ) одного размера называется матрица C = (c ij ) того же размера, элементы которой определяются по формуле c ij = a ij + b ij .

Произведение АВ матрицы А на матрицу В определяется в предположении, что число столбцов матрицы А равно числу строк матрицы В.

Произведением двух матриц А = (a ij ) и B = (b jk ), где i = , j= , k= , заданных в определенном порядке АВ, называется матрица С = (c ik ), элементы которой определяются по следующему правилу:

c ik = a i1 b 1k + a i2 b 2k + . + a im b mk = a is b sk . (4.2)

Иначе говоря, элементы матрицы-произведения определяются следующим образом: элемент i-й строки и k-го столбца матрицы С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В.

Перестановкой чисел 1, 2. n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12. n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i > j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1 → 2, 2 → 1, 4 → 3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n


. (4.3)

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:


, (4.4)

где индексы q 1 , q 2 . q n составляют некоторую перестановку из чисел

1, 2. n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1) q , где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ A = или det A= (детерминант, или определитель, матрицы А).

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.


7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a ij = b j + c j (j = ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов b j , в другом - из элементов c j .

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором M ij элемента a ij определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента a ij определителя d называется его минор M ij , взятый со знаком (-1) i+j . Алгебраическое дополнение элемента a ij будем обозначать A ij . Таким образом, A ij = (-1) i+j + M ij .

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки


d = a i1 A i1 + a i2 A i2 +. + a in A in (i = )

или j- го столбца


d = a 1j A 1j + a 2j A 2j +. + a nj A nj (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,


например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

4. Обратная матрица

Рассмотрим квадратную матрицу


A = .

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 , так что В = А -1 . Обратная матрица вычисляется по формуле


А -1 = 1/ Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

или сокращенно в виде A = (aij) (i = ; j = ). Числа aij, составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (aij) и B = (bij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если aij = bij.

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n, все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

Если все элементы aii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением матрицы А на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением на число λ: λA = ( λaij).

Суммой двух матриц А = (aij) и B = (bij) одного размера называется матрица C = (cij) того же размера, элементы которой определяются по формуле cij = aij + bij.

Произведение АВ матрицы А на матрицу В определяется в предположении, что число столбцов матрицы А равно числу строк матрицы В.

Произведением двух матриц А = (aij) и B = (bjk), где i = , j= , k= , заданных в определенном порядке АВ, называется матрица С = (cik), элементы которой определяются по следующему правилу:

Иначе говоря, элементы матрицы-произведения определяются следующим образом: элемент i-й строки и k-го столбца матрицы С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В.

2. Определители

Перестановкой чисел 1, 2. n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12. n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i > j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1→2, 2→1, 4→3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

где индексы q1, q2. qn составляют некоторую перестановку из чисел

1, 2. n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1) q , где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ ‌ A ‌ = или det A= (детерминант, или определитель, матрицы А).

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых aij = bj + cj (j = ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Mij элемента aij определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента aij определителя d называется его минор Mij, взятый со знаком (-1) i+j . Алгебраическое дополнение элемента aij будем обозначать Aij. Таким образом, Aij = (-1) i+j + Mij.

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

или j- гостолбца

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

3. Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

4. Обратная матрица

Рассмотрим квадратную матрицу

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 , так что В = А -1 . Обратная матрица вычисляется по формуле

где Аij - алгебраические дополнения элементов aij.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Оглавление

1) Введение. 3
2) Матрица. 3
3) Основные операции над матрицами и их свойства. 4
• Сложение матриц. 4
• Умножение матрицы на число. 5
• Разность матриц. 5
• Умножение матриц. 5
4) Определители матриц. 7
5) Обратная матрица. 8

Файлы: 1 файл

Матрицы и определители (копия).doc

Министерство образования и науки РФ

МБОУ Гимназия №8

Реферат по математике на тему:

Матрицы и определители

  1. Введение. . . . 3
  2. Матрица. . . . 3
  3. Основные операции над матрицами и их свойства. 4
    • Сложение матриц. . . 4
    • Умножение матрицы на число. . 5
    • Разность матриц. . . 5
    • Умножение матриц. . . 5
    1. Определители матриц. . . 7
    1. Обратная матрица. . . 8

    Понятие матрицы впервые появилось в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу.

    При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

    Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

    или сокращенно в виде A = (aij) (i = ; j = ). Числа aij, составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (aij) и B = (bij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если aij = bij.

    Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом.

    Нулевой матрицей называют матрицу, все элементы которой равны нулю.

    Если число строк матрицы равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n.

    Рассмотрим некоторые частные виды квадратных матриц.

    1) Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

    2) Если все элементы aii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

    3) Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю.

    треугольная матрица треугольная матрица

    Матрица, полученная из данной заменой ее строк столбцами с теми же номерами, называется транспонированной к данной.

    Матрицу, транспонированную к А, обозначают А Т .

    Основные операции над матрицами и их свойства

    Определение основных операций над матрицами.

    Суммой двух матриц A = || a ij || , где (i = 1, 2, . т, j=1, 2, . n) и В = || b ij || , где (i = 1, 2, . т, j=1, 2, . n) одних и тех же порядков т и п называется матрица С = || c ij || (і =1,2, . т; j = 1, 2, . п) тех же порядков т и п, элементы сij которой определяются по формуле

    , где (i = 1, 2, . т, j=1, 2, . n)

    Для обозначения суммы двух матриц используется запись С = А + В. Операция составления суммы матриц называется их сложением. Итак, по определению:

    Из определения суммы матриц, а точнее из формул , где (i = 1, 2, . т, j=1, 2, . n) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

    1) переместительным свойством: А + В = В + А,

    2) сочетательным свойством: (A + B) + С = А + (В + С).

    Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

    Умножение матрицы на число

    Произведением матрицы A = || a ij || , где (i = 1, 2, . m, j=1, 2, . n) на вещественное число l, называется матрица С = || c ij || (і =1,2, . m; j = 1, 2, . n), элементы которой определяются по формуле:

    , где (i = 1, 2, . т, j=1, 2, . n) (1.3)

    Для обозначения произведения матрицы на число используется запись С = l A или С = Аl. Операция составления произведения матрицы на число называется умножением матрицы на это число.

    Непосредственно из формулы , где (i = 1, 2, . т, j=1, 2, . n) ясно, что умножение матрицы на число обладает следующими свойствами:

    1) сочетательным свойством относительно числового множителя: ( l m ) A = l ( m A );

    2) распределительным свойством относительно суммы матриц: l (A + B) = l A + l B;

    3) распределительным свойством относительно суммы чисел: (l + m) A = l A + m A

    Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A — В.

    Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.

    Произведением матрицы А размера m ´ n на матрицу В размера n ´ k называется матрица С размера m ´ k, элемент которой аi j , расположенный в i –ой строке и j – ом столбце, равен сумме произведений элементов i – ой строки матрицы А на соответствующие элементы j – столбца матрицы В, т.е.

    Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.

    Обозначим: С = А · В.

    Произведение В ´ А не имеет смысла, т.к. матрицы не согласованы.

    ПРИМЕРЫ. Найти , если можно, А ´ В и В ´ А.

    Решение: Квадратные матрицы одного и того же второго порядка согласованы в томи другом порядке, поэтому А ´ В и В ´ А существуют.

    Решение: Матрицы А и В согласованы

    Матрицы В и А не согласованы, поэтому В ´ А не имеет смысла.

    Отметим, что в результате перемножения двух матриц получается матрица, содержащая столько строк, сколько их имеет матрица–множимое и столько столбцов, сколько их имеет матрица-множитель.

    СВОЙСТВА УМНОЖЕНИЯ МАТРИЦ

      1. Сочетательное свойство: А ´ ( В ´ С ) = (А ´ В ) ´С
      2. Распределительное свойство: (А + В) ´ С = А ´ С + В ´С

    Действие "деление" для матриц не вводится.

    Определителем матрицы первого порядка, или определителем первого порядка, называется элемент а11:

    Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

    Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

    Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Каждое слагаемое состоит из произведения трех сомножителей.

    Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

    1. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

    2. Если в определителе переставить две строки, определитель поменяет знак.

    3. Определитель, содержащий две одинаковые строки, равен нулю.

    4. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

    5. Определитель, содержащий две пропорциональные строки, равен нулю.

    6. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых aij = bj + cj (j = ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

    7. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

    Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

    Рассмотрим квадратную матрицу

    Обозначим Δ = det A.

    Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

    Квадратная матрица В называетс я обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

    Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

    Матрица, обратная матрице А, обозначается через А -1 , так что В = А -1 . Обратная матрица вычисляется по формуле

    где Аij - алгебраические дополнения элементов aij.

    Вычисление обратной матрицы по формуле для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП).

    Читайте также: