Оценка неопределенности измерений реферат

Обновлено: 02.07.2024

Неопределенность (измерения) — это параметр, связанный с результатом измерения, характеризующий дисперсию значений, которые могли быть обоснованно приписаны измеряемой величине.

Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при любых уровнях точности в широком спектре измерений, включая:

  • измерения для обеспечения контроля качества и поддержания заданного уровня качества в процессе производства;
  • измерения в ходе фундаментальных и прикладных исследований;
  • измерения калибровочных мер;
  • измерения с целью обеспечения единства измерений в стране;
  • измерения для разработки, поддержания и сличения международных и национальных эталонов единиц физических величин, включая стандартные образцы свойств веществ и материалов.

К оцениванию неопределенности следует приступать только после исключения результатов с грубыми погрешностями и исправления результатов измерений (исключения систематических составляющих погрешностей). Такой подход позволяет обоснованно применять математический аппарат теории вероятностей и математической статистики к «исправленным результатам измерений.


На рисунке отражены качественная оценка неопределенности (нормальное распределение), а также ее количественные оценки (расширенная неопределенность при выбранной доверительной вероятности ).

В руководстве используются следующие термины и определения:

Стандартная неопределенность — неопределенность результата измерения, выраженная как стандартное отклонение.

Оценка (неопределенности) по типу А — метод оценивания неопределенности путем статистического анализа рядов наблюдений.

Оценка (неопределенности) по типу В — метод оценивания неопределенности иным способом, чем статистический анализ рядов наблюдений.

Суммарная стандартная неопределенность — стандартная неопределенность результата измерения, когда результат получают из значений ряда других величин, равная положительному квадратному корню суммы членов, причем члены являются дисперсиями или ковариациями этих других величин, взвешенными в соответствии с тем, как результат измерения изменяется в зависимости от изменения этих величин.

Расширенная неопределенность — величина, определяющая интервал вокруг результата измерения, в пределах которого можно ожидать, находится большая часть распределения значений, которые с достаточным основанием могли быть приписаны измеряемой величине.

Установление связи между выбранным уровнем доверия и интервалом, характеризующим расширенную неопределенность, требует явных и неявных предположений относительно закона распределения вероятностей.

Классификация методов оценивания неопределенности на тип А и тип В представляет два различных способа получения оценки составляющих неопределенности. Оба типа основаны на вероятностном оценивании распределений случайных величин, а составляющие неопределенности при любом типе оценивания количественно представляют как оценки дисперсией или стандартных отклонений. Различия двух типов оценивания заключаются в методе получении оценки: прямое получение оценки путем статистического анализа рядов наблюдений (оценивание неопределенности по типу А) или получение оценки без непосредственного статистического анализа рядов наблюдений (оценивание неопределенности по типу В). Стандартную неопределенность при оценивании по типу В получают из предполагаемой функции плотности вероятностей, причем используют готовые оценки, полученные в ходе разнообразных метрологических мероприятий.

Наиболее распространенным способом формализации неполного знания о распределении величины является постулирование равновероятного распределения возможных значений этой величины в указанных границах.

Расширенную неопределенность получают умножением суммарной стандартной неопределенности , на коэффициент охвата . Фактически представляет собой доверительный интервал, который с выбранной вероятностью накрывает истинное значение измеряемой величины. Коэффициент охвата зависит от вида приписанного распределения и выбранной доверительной вероятности.

По определению суммарная стандартная неопределенность измерения, представляет собой оценку среднего квадратического отклонения результата косвенных измерений, поскольку результат измерения получают из значений ряда других величин. Суммарную стандартную неопределенность при этом рассчитывают как значение квадратного корня из суммы дисперсий (или ковариаций) этих величин с учетом весовых коэффициентов.

Значения составляющих, входящих в суммарную неопределенность, могут быть получены путем оценивания как по типу А, так и по типу В, главное требование — под корнем эти составляющие должны быть представлены оценками соответствующих дисперсий.


Вычисление стандартной неопределенности по типу А

Исходными данными для вычисления являются результаты многократных измерений:


где — число измерений -й входной величины.


Стандартную неопределенность единичного измерения -й входной величины вычисляют по формуле:


где — среднее арифметическое результатов измерений -й входной величины.


Стандартную неопределенность измерений -й входной величины, при которых результат определяют как среднее арифметическое, вычисляют по формуле:



Вычисление стандартной неопределенности по типу В

Исходными данными для вычисления является следующая информация:

-данные предшествовавших измерений величин, входящих в уравнение измерения; сведения о виде распределения вероятностей;

  • данные, основанные на опыте исследователя или общих знаниях о поведении и свойствах соответствующих приборов и материалов;
  • неопределенности констант и справочных данных;
  • данные поверки, калибровки, сведения изготовителя о приборе и др.

Неопределенности этих данных обычно представляют в виде границ отклонения значений величины от ее точечной оценки. При неполном знании о неопределенности некоторой -й входной величины обычно постулируют равновероятное распределение возможных значений этой величины в указанных (нижней и верхней) границах . При этом стандартную неопределенность, вычисляемую по типу В, определяют по формуле:


а для симметричных границ



В случае других законов распределения формулы для вычисления неопределенности по типу В будут иными.

Для вычисления коэффициента корреляции используют согласованные пары результатов измерений где — число согласованных результатов измерений:


где — результаты прямых измерений, — средние значения результатов прямых измерений.


Вычисление суммарной стандартной неопределенности


В случае некоррелированных результатов измерений оценку дисперсии суммарной стандартной неопределенности вычисляют по формуле:


где — весовой коэффициент -ой стандартной неопределенности, — -ая стандартная неопределенность.


В случае коррелированных результатов измерений оценку дисперсии суммарной стандартной неопределенности вычисляют по формуле:


где — коэффициент корреляции; — стандартная неопределенность входной величины , вычисленная по типу А или по типу В.


Выбор коэффициента охвата при вычислении расширенной неопределенности

В общем случае коэффициент охвата выбирают в соответствии с формулой:


где — квантиль распределения Стьюдента с эффективным числом степеней свободы и доверительной вероятностью (уровнем доверия) .

Число степеней свободы определяют по формуле:


где — число степеней свободы при определении оценки -й входной величины: — для вычисления неопределенностей по типу A; — для вычисления неопределенностей по типу В.

Во многих практических случаях при вычислении неопределенностей измерений делают предположение о нормальном законе распределения возможных значений измеряемой величины и полагают:


При допущении распределения данных по закону равной вероятности полагают:


При представлении результатов измерений Руководство рекомендует приводить достаточное количество информации для возможности проанализировать или повторить весь процесс получения результата измерений и вычисления неопределенностей измерений, а именно:


  • алгоритм получения результата измерений;
  • алгоритм расчета всех поправок и их неопределенностей;
  • неопределенности всех используемых данных и способы их получения;
  • алгоритмы вычисления суммарной и расширенной неопределенностей (включая значение коэффициента ).

Эта лекция взята со страницы лекций по нормированию точности:

Возможно эти страницы вам помогут:

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Определения погрешности и неопределенности измерений.

История возникновения термина "неопределенность измерений".

Термины используемые при расчете неопределенности.

Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):

  • Неопределенность результата измерения (погрешность результата измерения),
  • Неопределенность типа А (случайная погрешность),
  • Неопределенность типа Б (систематическая погрешность),
  • Стандартная неопределенность (стандартное отклонение погрешности) результата измерения,
  • Расширенная неопределенность (доверительные границы) результата измерения,
  • Вероятность охвата, вероятность покрытия (доверительная вероятность),
  • Коэффициент охвата, коэффициент покрытия (коэффициент распределения погрешности)


Рис.1. Диапазон возможных значений при погрешности


Рис.2. Диапазон возможных значений при неопределенности


Рис.3. Интервал значений при расчете неопределенности

Расчёт неопределённости с применением приборов.

В следующей статье "Расчет неопределенности результатов измерений | пример для люксметра "еЛайт"" мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.

Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.


Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.

МСИ

При измерении мы имеем случайно меняющуюся величину, и наилучшей оценкой математического ожидания измеренного значения является среднее арифметическое.

Понятие погрешности измерений как разности между результатом измерений и истинным (действительным) значением измеряемой величины используется для описания точности измерений в НД ГСИ по метрологии. Неопределенность измерений понимают как неполное знание значения измеряемой величины и для количественного выражения этой неполноты вводят распределение вероятностей возможных (обоснованно приписанных) значений измеряемой величины.

Измерения выполняются ради оценки результата, сравнения его с нормативами и правила оценки результатов обуславливают требования к выполнению измерений.

Термины и определения

3.1 предельные значения, пределы поля допуска (limiting values, specification limits) L: Установленные значения параметра, представляющие собой верхнюю и/или нижнюю границы допустимых значений.

3.2 нижняя граница поля допуска (lower specification limit) LSL: Нижняя граница допустимых значений параметра.

3.3 верхняя граница поля допуска (upper specification limit) USL:Верхняя граница допустимых значений параметра.

3.4 оценка соответствия (conformity test): Систематическая оценка соответствия продукции, процесса или услуги установленным требованиям посредством испытаний.

3.5 область допустимых значений (region of permissible values): Интервал или интервалы всех допустимых значений параметра.

Примечание – Если иначе не установлено, предельные значения считают принадлежащими области допустимых значений.

3.6 область недопустимых значений (region of non-permissible values): Интервал или интервалы всех недопустимых значений параметра.

RPV – область допустимых значений; RNV – область недопустимых значений; L, LSL, USL, L1 и L2– пределы поля допуска

Решение о соответствии требованиям может быть принято только в том случае, если интервал неопределенности окончательного результата измерений находится внутри области допустимых значений. Примечание — Если интервал неопределенности находится внутри области допустимых значений и одна из границ интервала неопределенности совпадает с предельным значением, считают, что интервал неопределенности находится в области допустимых значений. Если интервал неопределенности результатов измерений полностью лежит в области недопустимых значений, после первого или после второго этапа принимают решение о несоответствии требованиям. Примечание — Если интервал неопределенности находится в области недопустимых значений и одна из границ интервала неопределенности совпадает с границей поля допуска, считают, что интервал неопределенности находится в области недопустимых значений. Если интервал неопределенности, рассчитанный после этапа 2, включает в себя границу поля допуска, результат оценки соответствия является неокончательным. В отчете о результатах оценки соответствия утверждения для соответствия, несоответствия или неокончательной оценки должны быть дополнены всеми свидетельствами, которые удостоверяют использованное утверждение. Решение о соответствии Если интервал неопределенности результатов измерений находится внутри области допустимых значений, принимают решение о соответствии. Решение о соответствии должно быть сформулировано: оценка соответствия продемонстрировала, что значение контролируемого параметра соответствует требованиям. Решение о несоответствии Если интервал неопределенности результатов измерений находится внутри области недопустимых значений, то принимают решение о несоответствии. Решение о несоответствии должно быть сформулировано: оценка соответствия продемонстрировала, что значение контролируемого параметра не соответствует требованиям. 7.4 Неокончательный результат Если в соответствии с 6.1 или 6.2 не может быть принято решение ни о соответствии, ни о несоответствии требованиям, результат оценки соответствия является неокончательным и должен иметь следующую формулировку: оценка соответствия не способна продемонстрировать, что значение контролируемого параметра соответствует или не соответствует требованиям.

Оценка соответствия — важный аспект управления качеством производства, метрологического надзора, проверки соответствия требованиям безопасности и санитарным нормам (например, по выбросам, уровню радиации, содержанию химических веществ и т. д.).

Измерение является неотъемлемой частью оценки соответствия, когда необходимо решить, соответствует ли выходная (измеряемая) величина установленному требованию. Для единственной величины такое требование обычно принимает вид границ, определяющих интервал допустимых значений величины. При отсутствии неопределенности полученное значение измеряемой величины, лежащее в пределах границ, считают соответствующим требованиям, в противном случае — несоответствующим. Наличие неопределенности измерения влияет на процедуру контроля и делает необходимым установление баланса рисков производителя и потребителя.

Возможные значения контролируемой величины представляют в виде распределения вероятностей. Можно рассчитать вероятность, с которой она соответствует установленным требованиям.

  • когда значение величины признано соответствующим требованиям, но на самом деле им не является, и
  • когда значение величины признано несоответствующим, но на самом деле установленным требованиям удовлетворяет. Связанные с этим риски относят, соответственно, к риску потребителя и риску производителя.

Хотя вышеизложенное справедливо для любых распределений вероятностей, в основном, целесообразно рассматривать случай нормального распределения как наиболее характерного для практики.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЕЙ И БЛАГОПОЛУЧИЯ ЧЕЛОВЕКА ПИСЬМО от 13 июня 2012 года N 01/6620-12-32 Об оценке данных, получаемых при инструментальных измерениях физических факторов неионизирующей природы

СанПиН 2.2.4.3359-16 "Санитарно-эпидемиологические требования к физическим факторам на рабочих местах" (Общие положения)

1.5. Оценка фактических уровней производственных физических факторов должна проводиться с учетом неопределенности измерений*(1).

Межгосударственный стандарт ГОСТ ИСО/МЭК 17025-2009 "Общие требования к компетентности испытательных и калибровочных лабораторий" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 4 апреля 2011 г. N 41-ст)

4.13.2.1 Записи о первичных наблюдениях, производные записи и достаточный объем информации должны храниться в течение установленного времени в лаборатории для того, чтобы установить аудиторское заключение, записи о калибровке, записи о персонале и копии каждого протокола испытаний или выданного сертификата о калибровке. Записи о каждом испытании или калибровке должны содержать достаточно информации, чтобы обеспечить, по возможности, выявление факторов, влияющих на неопределенность, и проведение повторных испытаний или калибровки в условиях, максимально приближенных к первоначальным. 5.1.2 Степень влияния факторов на общую неопределенность измерения значительно различается в зависимости от видов испытаний и калибровки. Лаборатория должна учитывать эти факторы при разработке методики процедур испытаний и калибровки, подготовке и оценке квалификации персонала и выборе и калибровке используемого оборудования. 5.4.6.2 Испытательные лаборатории должны иметь и применять процедуры оценки неопределенности измерений. В некоторых случаях характер метода испытаний может помешать тщательному, обоснованному с точки зрения метрологии и статистики расчету неопределенности измерения. В подобных случаях лаборатория должна, по крайней мере, попытаться идентифицировать все составляющие неопределенности и провести ее разумную оценку, а также принять меры, чтобы форма представления результатов не создавала ложного представления о неопределенности. 5.4.6.3 При оценке неопределенности измерения все составляющие неопределенности, являющиеся существенными в данной ситуации, должны быть приняты во внимание при помощи соответствующих методов анализа.

При оценке неопределенности типа A источником информации служат результаты актуальных повторных измерений. Методом оценки типа A является статистический анализ актуальной серии измерений (повторных измерений). Примером неопределенности типа A является экспериментальное стандартное отклонение.

При оценке неопределенности типа B исходная информация получается из других источников (не из актуальных повторных измерений), и в этом случае неопределенность оценивается иначе, чем в случае типа A. Это значит, что методы оценки типа B не связаны со статистическим анализом актуальной серии повторных измерений. Методом оценки типа B является обработка информации, полученной иными методами и иным образом. Неопределенность типа B мы можем оценивать, исходя из опыта, теоретически или иным путем, исходя из предполагаемого распределения вероятностей. Примером неопределенности типа B является оценка неопределенности в форме стандартного отклонения, сделанная на основе предельной погрешности, указанной в паспорте инструмента, при этом предполагается некоторое распределение вероятности отклонения показаний.

Стандартная неопределенность — это неопределенность, выраженная в форме стандартного отклонения результатов измерения.

Расширенная неопределенность — это параметр, который задает вокруг результата измерения интервал, предположительно содержащий бОльшую часть распределения значений, обоснованно присваиваемых измеряемой величине". Это означает, что в доверительном интервале, ограниченном расширенной неопределенностью, с большой вероятностью находится бОльшая часть вероятностного распределения действительного значения измеряемой величины.

Суммарная неопределенность — это стандартная неопределенность результата измерения, которая получена из оценки неопределенности значений нескольких величин, и она равна положительному квадратному корню из суммы, в которую в качестве слагаемых входят дисперсии или ковариации этих оценок, взвешенные в соответствии с тем, как результат измерения изменяется в зависимости от изменения значений этих величин".

СКО, характеризующее случайную погрешность Стандартная неопределенность, вычисленная по типу А
СКО, характеризующее неисключенную систематическую погрешность (погрешность СИ) Стандартная неопределенность, вычисленная по типу В
СКО, характеризующее суммарную погрешность Стандартная неопределенность, вычисленная по типу В
Доверительные границы погрешности Расширенная неопределенность

где X1 — подозрительно выделяющийся результат измерения; X2 — результат единичного измерения, ближайший по значению к X1; R — размах варьирования (разница между наибольшим и наименьшим значением ряда измерений) Вычисленное значение Q сопоставляют с табличным значением Q (Р, ni).

Наличие грубой погрешности доказано, если Q > Q (Р, ni).

Пример

Оценка интервала неопределённости при выполнении прямых измерений, для которых отсутствуют показатели точности в методиках измерений


Вычисление стандартной неопределённости измерений.

  • среднее квадратическое отклонение, обусловленное случайными колебаниями результата последовательных измерений, соответствует стандартной неопределенности типа А при отсутствии других составляющих, не связанных со статистически случайными процессами (SX);
  • среднее квадратическое отклонение неисключенной систематической погрешности (НСП) измерения (как правило, погрешность средства измерений — СИ) (SΘ)

График плотности вероятности нормального распределения и процент попадания случайной величины на отрезки, равные среднеквадратичному отклонению (σ). Практически все значения нормально распределённой случайной величины лежат в интервале x±3σ

где
Θ – граница НСП симметричного доверительного интервала (выражена как абсолютная погрешность СИ);

Θ+, Θ– верхняя и нижняя граница НСП для несимметричных доверительных интервалов, например, когда погрешность СИ несимметрична в положительную и отрицательную сторону (при измерении плотности потока энергии).

где
Xi — результат i-ro наблюдения (единичного замера),
X̅ — среднее арифметическое значение оценки величины X (результат измерения),
n — количество наблюдений (замеров); для многократных измерений количество замеров должно быть не менее 4.

Встречаются ситуации, когда измерения проводятся с однократным наблюдением, и в этом случае стандартная неопределённость измерений оценивается только как Sθ., которая рассчитывается на основе погрешностей СИ.

  • производственной необходимостью (невозможность повторения измерений, экономическая целесообразность и т. д.);
  • возможностью пренебрежения случайными погрешностями (SX).

Вычисление расширенной неопределённости измерений

Расширенная неопределенность измерений (U) определяется как суммарная стандартная неопределенность (u), умноженная на коэффициент охвата (k):

Одно и двусторонний интервал охвата

Если неопределённость оценивается по типу А, то интервал охвата=интервалу неопределённости

К чему ведет недостаточное количество измерений?

Коэффициент охвата для уровня доверия 95% для двухстороннего интервала охвата можно принять равным 2, а для одностороннего интервала охвата равным 1,64 при условии, что количество замеров будет не менее 11, что соответствует числу степеней свободы, равному 10 (ГОСТ 54500.3, п. 6.3.3, G6.6 ). Таким образом, чем больше измерений в выборке, тем меньше ожидаемая неопределенность измерений.

Если число измерений > 11, то k можно принять равным 2 для двухстороннего коэффициента охвата и 1,64 для одностороннего коэффициента охвата При меньшем числе измерений k зависит от числа измерений (n) В таблице представлены его величины при доверительной вероятности 95%

Оценка интервала неопределённости при использовании аттестованных методик измерений с установленными показателями точности

Аттестованная методика измерений (МИ) должна содержать значения установленной точности измерений в виде расширенной неопределённости.

При наличии установленного МИ диапазона расширенной неопределённости (U), приведенного в используемой аттестованной МИ, в протоколе измерений следует указывать ее значение, если целью исследования является оценка значения величины с некоторой точностью. Как правило, аттестованные МИ содержат установленные значения расширенной неопределённости измерений для двухстороннего охвата при уровне доверия 95%: ±U(95%), при этом используется коэффициент охвата (k), равный 2. В этом случае результат измерений приводится в протоколе как:

Верхняя (нижняя) граница одностороннего интервала неопределённости для уровня доверия 95% (Y̅) рассчитывается как среднее значение (Y̅), к которому прибавлен односторонний интервал охвата (1,64*u) с плюсом или минусом:

находится в области допустимых значений (то есть ниже или, соответственно, выше предельного значения).

Представление результатов оценивания неопределенности

Если мерой неопределенности результата измерения является расширенная неопределенность U = kис(у), то при представлении результата измерения следует: a) дать подробное определение измеряемой величины У; b) указать результат измерения в виде Y = у ± U с указанием единиц измерений для у и U; c) при необходимости указать относительную расширенную неопределенность; d) указать использованное для получения расширенной неопределенности значение k; e) указать приблизительный уровень доверия для интервала у ± У и пояснить, как он был определен;

Неопределённость

К неопределённостям типа А относят любые неопределённости, которые, по своей природе, могут быть посчитаны только статистически. Результатом подсчёта является закон распределения p(q), для которого выполняются условия:

Статистические оценки

Статистическая оценка среднего значения μq при n замеров в одинаковых условиях:
q = 1/n Σ n k=1 qk (1)

Экспериментальная дисперсия - статистическая оценка дисперсии σ 2 :
s 2 (qk) = 1/(n-1) Σ n j=1 (qj - q ) 2 (2)

Значение неопределённости

Неопределённость u(xi) статистической оценки среднего значения n замеров величины Xi равна s( X i) (формула 3).

Степень свободы vi для значения u(xi), равная n-1 (n - количество измерений величины xi) обязательно указывается в документации к определению неопределённости типа А.

Среднее значение неопределённости

Статистическая оценка искомой величины Y, обозначаемая y, рассчитывается основываясь на статистических оценках величин x1, x2, . xn: y = f(x1, x2, . xn). Иногда предпочтительнее рассчитать статистическую оценку Y по формуле:

Пример расчет неопределенности по типу А

Сложность расчёта неопределённости типа А заключается в правильном выборе метода статистического анализа, так, например, статистическая оценка дисперсии может быть получена по формуле математического ожидания, либо вычислена посредством апроксимации закона распределения к нормальному распределению с последующим выбором доверительного интервала.

Рассмотрим пример замера диаметра цилиндра, номинальным диаметром 14.5см с помощью микрометра.

Статистическая оценка среднего значения 36 независимых измерений легче всего определяется как среднее арифметическое, по формуле:

Статистическая оценка дисперсии генеральной совокупности:

Мы получили статистическую оценку дисперсии и значение σ = √s 2 - экспериментальное значение стандартного отклонения.

Наилучшей статистической оценкой стандартного отклонения среднего значения является σ 2 ( q ) = σ 2 /n, которую мы получим по формуле стандартной ошибки:

Данное значение, s 2 ( q ), описывает интервал, в котором ожидается значение μq.

Таким образом, для величины диаметра, полученного в результате 36 независимых измерений, неопределённость типа А среднего значения является u(q) = s( q ):

Важно!

Данный пример является простым и не может применяться как общий случай для поиска неопределённости типа А в случаях со сложными моделями измерений. Во многих случаях, результатом измерения является сложная модель калибровки, например, основанная на методе наименьших квадратов. В таких случаях необходимо производить статистический анализ измерений. Для величин, зависимых от нескольких переменных, используется дисперсионный анализ (ANOVA).

Неопределённость типа А в эксель

Реализация в эксель очень проста, здесь потребуется только формулы СУММ и КОРЕНЬ. Параметры рассчитываются как в примере выше:

  • Статистическая оценка среднего значения - отношение суммы результатов к их количеству
  • Статистическая оценка дисперсии генеральной совокупности - по формуле q = 1/n (Σ n k=1qk)
  • Стандартное отклонение среднего значения, sq - отношение дисперсии к количеству результатов минус один
  • Стандартная неопределённость типа А - корень из стандартного отклонения среднего значения

Неопределённость измерения типа Б

Величины Xi, для которых статистическая оценка была получена не посредством измерений, а на основе некоторой научной информации, называется неопределённостью типа Б. Прмером такой информации может послужить: данные предыдущих измерений, опыт, спецификация производителя, данные калибровки, информация из справочников и другие источники априорных значений.

Правильное определение неопределённости типа Б основывается только на опыте и общем понимании процесса измерения. Неопределённость типа Б может быть также информативна как и неопределённость типа А исключительно в ситуациях, когда неопределённость типа А основывается на относительно малом количестве независимых измерений.

Примеры неопределённости типа Б

Неопределённость типа Б - это общее понятие, поэтому количество примеров может быть неограниченным, но общая идея - это интервал, например, "Доверительный интервал с уровнем доверия 82%", или "Неопределённость в пределах трёх стандартных отклонениях".

Пример 1. Неопределённость в стандартных отклонениях

В сертификате о калибровке указано, что действительное значение массы образца из нержавеющей стали, номинальным весом 1 кг, равно 1000,000325 г и "Неопределённость массы равна 240 мкг в пределах трёх стандартных отклонениях".

Таким образом, стандартная неопределённость: u = 240 мкг/3 = 80 мкг. Ожидаемая дисперсия: u 2 = (80 мкг) 2 = 6,4 • 10 -9 г 2 .

Пример 2. Неопределённость в доверительном интервале

В сертификате о калибровке указано, что сопротивление образца Rs, с номинальным сопротивлением 10 Ом, равно 10,000742 Ом ± 129 мкОм и неопределённость 129 мкОм покрывает доверительный интервал с уровнем доверия 99%.

Стандартная неопределённость u(Rs) = (129 мкОм)/2,58 = 50 мкОм (про число 2,58 и доверительный интервал описано в статье). Относительная неопределённость u(Rs)/Rs = 5,0 • 10 -6 . Ожидаемая дисперсия: u 2 (Rs) = (50 мкОм) 2 = 2,5 • 10 -9 Ом 2 .

Читайте также: