Машинный стандартный интерфейс виды принципы построения и работы реферат

Обновлено: 05.07.2024

Человеческо-машинное взаимодействие (HCI - Human-Computer Interaction) – это наука, которая изучает, как люди используют компьютерные системы, чтобы решить поставленные задачи. HCI обеспечивает нас знаниями о компьютере и человеке для того, чтобы взаимодействие между ними было более эффективным и более удобным.
HCI включает в себя несколько различных дисциплин. Это требуется для того, чтобы разработчики программного обеспечения понимали основы деятельности, поведения и ментальной специфики человека в соответствии с проектируемой системой.

Содержание работы
Файлы: 1 файл

Реферат по информ.doc

Студент гр. БГР-14-03 ____________ И.И.Мусин

Доцент кафедры ВТИК ____________ М.Н. Каданцев

2. Взаимодействие между пользователем и компьютером ……………….………..…..…3

3. Основные принципы создания интерфейса ………………………………………..…. 5

3.1 Размещение информации на экране ……………………………………….………..….6

3.2 Выделение элементов интерфейса яркостью .………………………………….…..….6

3.3 Использование цвета при проектировании эргономичного интерфейса………..……7

3.4 Непротиворечивость и стандартизация …………………………………….….…..…. 8

3.6 Средства управления графического интерфейса пользователя ………..……….…….9

3.8.1 Основные принципы создания меню……………………..……………..…….……..11

3.8.2 Принципы проектирования меню ………………………….…………..…….……. 12

3.9 Дизайн заголовков и полей ……………………..…………….…………..…….……. 12

4. Общие принципы проектирования………………………………………… ..………….13

5. Предотвращение, обнаружение и исправление ошибок……………………..………. 14

5.1 Обработка ошибок в формах ввода………………………………………….. ………..15

Человеческо-машинное взаимодействие (HCI - Human-Computer Interaction) – это наука, которая изучает, как люди используют компьютерные системы, чтобы решить поставленные задачи. HCI обеспечивает нас знаниями о компьютере и человеке для того, чтобы взаимодействие между ними было более эффективным и более удобным.

HCI включает в себя несколько разлиных дисциплин. Это требуется для того, чтобы разработчики программного обеспечения понимали основы деятельности, поведения и ментальной специфики человека в соответствии с проектируемой системой.

Приведем некоторые из дисциплин, которые включает в себя HCI:

  • Ергономика
  • Информатика
  • Искуственный интеллект
  • Лингвистика
  • Психология
  • Социология
  • Основы разработки программного обеспечения
  • Дизайн

2. Взаимодействие между пользователем и компьютером

Человеко-машинный интерфейс обеспечивает связь между пользователем и компьютером - он позволяет достигать поставленных целей, успешно находить решение поставленной задачи. Взаимодействие - обмен действиями и реакциями на эти действия между компьютером и пользователем. Несколько лет назад основным видом взаимодействия был текст (так называемые терминальные или коммандные системы). В настоящее время, взаимодействие может также включать графику и иконки (знаки) вместо текста, но для описания процесса взаимодействия всеравно еще используется текст.

Имеется ряд стилей взаимодействий, которые делятся на два основных вида. Первый – это использование интерфейса языка команд - ввод команд текстовыми средствами; и второй – это непосредственное манипулирование. Таким образом, имеется ряд способов, которыми пользователь мог бы связываться с компьютером:

  • Языки команд - пользователь управляет системой, вводя соответствующие команды в тестовом режиме;
  • Вопрос и ответ - диалог, где компьютер задает вопросы, а пользователь отвечает ему (или наоборот);
  • Формы - пользователь заполняет формы или поля диалога, вводя данные в необходимые поля;
  • Меню - пользователь обеспечен рядом опций и управляет системой, выбирая необходимые пункты;
  • Прямое манипулирование - пользователь управляет объектами на экране посредством устройства манипулирования, типа мыши. Другой термин, используемый для прямого интерфейса манипулирования - Графический Интерфейс Пользователя.

В различных операционных системах не сегодняшний день обычно используются комбинированные стили взаимодейсвтия из приведенных выше.

Например, в графическом интерфейсе операционной системы Windows используется прямое манипулирование, а также меню, диалоговые элементы, формы и язык команд. Такой подход важен для проектировщика автоматизированных систем, поскольку позволяет тщательно рассмотреть поставленную задачу заказчика (будущего пользователя), чтобы выбрать наилучший вариант решения задачи.

В разрабатываемой программной системе также применен комплексный подход к созданию интерфейса. Здесь используется прямое манипулирование, меню, формы и диалоги. По ходу изложения материалы будут представлены примеры из разрабатываемой системы.

Цель создания эргономичного интерфейса состоит в том, чтобы отобразить информацию настолько эффективно насколько это возможно для человеческого восприятия и структурировать отображение на дисплее таким образом, чтобы привлечь внимание к наиболее важным единицам информации. Основная же цель состоит в том, чтобы минимизировать общую информацию на экране и представить только то, что является необходимым для пользователя.

3. Основные принципы создания интерфейса

Работа с ситемой не должна вызывать у пользователя сложностей в поиске необходимых директив (элементов интерфейса) для управления процессом решения поставленной задачи.

Если в процессе работы с системой пользователем были использованы некоторые приемы работы с некоторой частью системы, то в дургой части системы приемы работы должны быть идентичны. Также работа с системой через интерфейс должна соответствовать установленным, привычным нормам (например, использование клавиши Enter).

Это означает, что пользователь должен вводить только минимальную информацию для работы или управления системой. Например, пользователь не должен вводить незначимые цифры (00010 вместо 10). Аналогично, нельзя требовать от пользователя ввести информацию, которая была предварительно введена или которая может быть автоматически получена из системы. Желательно использовать значения по умолчанию где только возможно, чтобы минимизировать процесс ввода информации.

4. Непосредственный доступ к системе помощи

Насколько хорошо интерфейс системы может обслуживать пользователя с различными уровнями подготовки? Для неопытных пользователей интерфейс может быть организован как иерархическая структура меню, а для опытных пользователей как команды, комбинации нажатий клавиш и параметры.

3.1 Размещение информации на экране

Количество информации, отображаемой на экране, называется экранной плотностью. Исследования показали, что, чем меньше экранная плотность, тем отображаемая информация наиболее доступна и понятна для пользователя и наоборот, если экранная плотность большая, это может вызвать затруднения в усвоении информации и ее ясном понимании. Однако, опытные пользователи могут предпочитать интерфейсы с большой экранной плотностью. Информация на экране может быть сгруппирована и упорядочена в значимые части. Это может быть достигнуто с использованием кадров (фреймов), методов типа цветового кодирования, рамок, негативного изображения или других методов для привлечения внимания.

3.2 Выделение элементов интерфейса яркостью

Для привлечения внимания к каким-либо элементам интерфейса можно воспользоваться выделением этих элементов большей яркостью на фоне других – более темных. Однако, не стоит переусердствовать с этим методом, поскольку большое количество ярких элементов может вызвать дискомфорт у пользователя. Таким образом, можно достичь обратного эффекта – перегрузки интерфейса. Применять этот метод нужно только при необходимости. Существует несколько способов выделения яркостью:

  • Движение (мигание или изменение позиции). Очень эффективный метод, поскольку глаз имеет специальный детектор для движущихся элементов;
  • Яркость. Не очень эффективный метод, так как люди могут обнаружить всего лишь несколько уровней яркости;
  • Цвет - использование цвета может быть чрезвычайно эффективно;
  • Форма (символ, шрифт, форма символа). Используется для того, чтобы отличить различные категории данных;
  • Использование различных алфавитов (шрифтов) в различных формах;
  • Размер (текста, символов). Обычно применяют увеличение выделенного объекта в 1.5 раза;
  • Оттенение (различная текстура объектов). Эффективный метод для привлечения внимания к какой-либо части экрана;

Окружение (подчеркивание, рамки, инвертированное изображение). Очень эффективный метод если не переусердствовать.

3.3 Использование цвета при проектировании эргономичного интерфейса

Цвет может улучшить интерфейс пользователя, но для многих систем использование цвета практически не влияет на эффективность работы пользователя. Основное назначение цвета - в создании интерфейсов, более интересных для пользователей. Однако, имеются случаи, где цвет может помочь проектировщику интерфейса пользователя. Это наиболее эффективно когда цвет используется для:

Цвет – мощный визуальный инструмент, его необходимо использовать очень острожно, чтобы не вызвать дискомфорта у пользователя ошибочными цветовыми комбинациями.

Приведем некоторые принципы использования цвета, которыми нужно руководствоваться при проектировании эргономичного интерфейса:

  • необходимо ограничить число цветов до 4 на экране и до 7 для последовательности экранов; для неактивных элементов нужно использовать бледные цвета;
  • если цвет используется для кодировки информации, необходимо удостовериться, что пользователь правильно понимает код, например, просроченные счета выделяются красным цветом, а непросроченные – зеленым;
  • необходимо использовать цвета согласно представлениям пользователя, например, для картографа зеленый - лес, желтый - пустыня, синий - вода. Для химика, красный -горячий, синий – холодный;
  • для отображения состояния: красный = опасность/стоп, зеленый = нормально/продолжение работы, желтый = предостережение;
  • для привлечения внимания наиболее эффективны белый, желтый и красный цвета;
  • для упорядочения данных можно использовать спектр 7 цветов (радуга);
  • для разделения данных необходимо выбрать цвета из различных частей спектра (красный / зеленый, синий / желтый, любой цвет / белый);
  • для группировки данных, объединения и подобия нужно использовать цвета, которые являются соседями в спектре (оранжевые / желтые, синие / фиолетовые);

Важно отметить, что около 9% людей не различают цвета, (обычно красной - зеленые сочетания). Однако эти люди могут отличать черно-белые оттенки, поэтому проектировщики автоматизированных систем должны проверять, не нарушает ли восприятие пользователей этой категории использование различных цветов в интерфейсах программных продуктов.

Интерфейсы современных компьютеров. Виды, типы, характеристики [09.06.13]

Вследствие широкого распространения компьютеров и процессов информатизации, которые переживает человечество, с основами информатики должен быть знаком каждый современный человек. Тема “Интерфейсы современных компьютеров. Виды, типы, характе­ристики” очень актуальна на сегодняшний день.

Данная курсовая работа состоит из двух частей: теоретической и практической.

В теоретической части будут рассмотрены следующие понятия: “интерфейс”, “порты”, “шины”, а также виды и характеристика интерфейсов.

В практической части будет решена экономическая задача по данным организации с использованием пакетов прикладных программ.

1. Теоретическая часть

Интерфейсы современных компьютеров. Виды, типы, характеристики

1.1. Понятия, характеризующие интерфейсы компьютера

В общем значении интерфейс (от англ. interface — поверхность раздела, перегородка) — это совокупность средств, методов и правил взаимодействия (управления, контроля и т. д.) между элементами системы. [7] Мы же в нашей работе будем говорить о понятии “интерфейс” в информатике.

Интерфейс представляет собой совокупность стандартизованных аппаратных и программных средств, обеспечивающих обмен информацией между устройствами. В основе построения интерфейсов лежат унификация и стандартизация (использование единых способов кодирования данных, форматов данных, стандартизация соединительных элементов - разъемов и т.д.). Наличие стандартных интерфейсов позволяет унифицировать передачу информации между устройствами независимо от их особенностей. В настоящее время для разных классов ЭВМ применяются различные принципы построения системы ввода-вывода и структуры вычислительной машины. В персональном компьютере, как правило, используется структура с одним общим интерфейсом, называемым также системной шиной. [6, стр. 83]

Таким образом, основной функцией интерфейсов компьютера является унификация внутрисистемных и межсистемных связей и устройств.

Различные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды.

Совокупность интерфейсов определяет архитектуру персонального компьютера.

К интерфейсам относятся: порты, шины, сетевые интерфейсы.

Порты — специализированные разъёмы в компьютере, предназначенные для подключения оборудования определённого типа. [7]

Шины — наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера. [1, стр. 76]

Сетевые интерфейсы — периферийные устройства, позволяющие компьютеру взаимодействовать с другими устройствами сети. [7]

Далее мы рассмотрим более подробные классификации интерфейсов.

1.2. Классификации интерфейсов компьютера

Классификация интерфейсов по выполняемым функциям:

1. Машинные интерфейсы. Непосредственно организуют связи между составными элементами ЭВМ.

2. Интерфейсы периферийного оборудования. Выполняют функции сопряжения процессоров, контроллеров, запоминающих устройств и аппаратурой передачи данных.

3. Интерфейсы мультипроцессорных систем представляют собой в основном магистральные системы сопряжения, ориентированные в единый комплекс нескольких процессоров, модулей памяти, контроллеров запоминающих устройств, ограничено размещенных в пространстве. [8]

Классификация интерфейсов по расположению:

1. Внутримашинный системный интерфейс - система связи и сопряжения узлов и блоков ЭВМ между собой - представляет собой совокупность электрических линий связи (проводов), схем сопряжения с компонентами компьютера, протоколов (алгоритмов) передачи и преобразования сигналов. [4, стр. 107-108]

2. Внешние интерфейсы - средства сопряжения с внешними по отношению к компьютеру в целом устройствами [5, с. 58]. К ним относятся: CD и DVD-диски, сканеры, принтеры, мобильные телефоны, цифровые камеры и т.д.

Классификация внутримашинного интерфейса по способу организации:

1. Многосвязный интерфейс. Каждый блок компьютера связан с прочими блоками локальными проводами. Многосвязный интерфейс применяется, как правило, только в простейших бытовых ПК.

2. Односвязный интерфейс. Все блоки ПК связаны друг с другом через общую шину.

Как было отмечено ранее, к интерфейсам относятся: порты, шины, сетевые интерфейсы. Ниже рассмотрим их классификации.

1. Параллельный порт — тип интерфейса, разработанный для подключения различных периферийных устройств к компьютеру. Основывается на принципе параллельного соединения. Также известен как принтерный порт или порт Centronics.

2. Последовательный порт (серийный порт или COM-порт) — двунаправленный последовательный интерфейс. В отличие от параллельного порта информация через него передается по одному биту последовательно.

Основные шины компьютера:

1. Адресная шина. Обычно у современных процессоров адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров. [1, стр. 76]

2. Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно.

Классификация шин по выполняемым функциям:

1. Внутренние компьютерные шины (параллельные и последовательные). Предназначены для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы.

2. Внешние компьютерные шины. Предназначены для подключения внешних устройств, например, принтера, сканера и т.д.

В подавляющем большинстве современных ПК в качестве системного интерфейса используется системная шина.

Системная шина - это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. [4, стр. 104]

Системная шина обеспечивает передачу информации между микропроцессором и основной памятью, между микропроцессором и портами ввода-вывода внешних устройств, между основной памятью и портами ввода-вывода внешних устройств. Однако по этой шине происходит не только обмен информацией, но и передача адресов, служебных сигналов.

Системная шина включает в себя:

1. Кодовую шину данных (КШД). Содержит в себе провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда.

2. Кодовую шину адреса (КША). Включает провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства.

3. Кодовую шину инструкций (КШИ). Содержит провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины.

4. Шину питания. Имеет провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

В качестве системной шины используются также:

1. Шины расширений – это шины общего назначения, разрешающие подключение большого количества самых разнообразных устройств.

2. Локальные шины – это шины, обслуживающие небольшое количество устройств определенного типа.

Обобщенный интерфейс микропроцессора включает шину данных, шину адреса и шину управления.

Шина данных — шина, предназначенная для передачи информации.

Шина адреса — компьютерная шина, используемая центральным процессором для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения операции чтения или записи.

Шина управления — компьютерная шина, по которой передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен информацией между устройствами и т. д. [7]

Оперативная память (Random Access Memory - память с произвольным доступом) — энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обмен данными между процессором и оперативной памятью производится непосредственно либо через сверхбыструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него (см. рис. 1.7).

Рис. 1.7. Простейшая схема взаимодействия оперативной памяти с ЦП

Рис. 1.7. Простейшая схема взаимодействия оперативной памяти с ЦП

Интерфейсом оперативной памяти является системная шина. Системная шина — это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. [4, стр. 104]

Далее мы рассмотрим конкретные примеры интерфейсов современного компьютера.

1.3. Основные интерфейсы современного компьютера и их подробная характеристика

MCA (Micro Channel Architecture) – 32-разрядная шина, созданная фирмой IBM в 1987 г. для машин PS/2, пропускная способность 76 Мбайт/с, рабочая частота 10-20 МГц. [4, стр. 108] Из-за того, что ЭВМ PS/2 не получили широкого распространения, а также из-за несовместимости шины MCA с шиной ISA, эта опередившая свое время архитектура так и не стала настоящим стандартом.

VLB. Шина VLB (VESA Local Bus – локальная шина VESA) – разработана в 1992 году Ассоциацией стандартов видеооборудования (VESA – Video Electronics Standards Association). Шина VLB, по существу, является расширением внутренней шины микропроцессора для связи с видеоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. [4, стр. 109] Разрядность шины – 32 бита, на подходе 64-разрядный вариант шины. Реальная скорость передачи данных – 80 Мбайт/с. Основным недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Также отсутствует арбитраж шины, то есть могут быть конфликты между подключаемыми устройствами. Конфигурация системы с шиной VLB изображена на рисунке 1.1.

Рис. 1.1. Конфигурация системы с шиной VLB

Рис. 1.1. Конфигурация системы с шиной VLB

PCI. Шина PCI (Peripheral Component Interconnect – стандарт подключения внешних компонентов) разработана в 1993 году фирмой Intel. По своей сути это интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной компьютера (ISA/ EISA) используются мосты PCI (PCIBridge). Данный интерфейс поддерживает частоту шины 33 МГц и обеспечивает пропускную способность 132 Мбайт/с. С оформлением стандарта plug-and-play появилась возможность выполнять установку новых устройств с помощью автоматических программных средств. Шина PCI является намного более универсальной, чем VLB, имеет свой адаптер, позволяющий ей настраиваться на работу с любым микропроцессором. Шина PCI пока еще весьма дорогая. Конфигурация системы с шиной PCI изображена на рисунке 1.2.

Рис. 1.2. Конфигурация системы с шиной PCI

Рис. 1.2. Конфигурация системы с шиной PCI

Сравнительная характеристика шин ISA, EISA, MCA, VLB, PCI приведена в таблице 1.1.

Машинные (или системные) интерфейсы предназначены для объединения составных блоков ЭВМ в единую систему. Тенденция развития машинных интерфейсов вызвана необходимостью значительного увеличения доли операций ввода-вывода, номенклатуры и числа периферийных устройств. В связи с этим существенно возросли требования к унификации и стандартизации интерфейсов.

Характерной особенностью машинных интерфейсов является необходимость их работы в нескольких режимах взаимодействия, влияющих на функциональный состав систем шин. Основными режимами взаимодействия являются ввод-вывод по программному каналу и по каналу прямого доступа в память.

Широко известными примерами машинных интерфейсов являются последовательный интерфейс RS-232, параллельные интерфейсы RS-422 и RS-485, более современные SCSI, ISA, VLB, PCI, AGP, USB и др.

Машинные интерфейсы могут использоваться в тех случаях, когда отдельные блоки ИИС размещены непосредственно в системном блоке ЭВМ, что имеет место в первую очередь для локальных ИИС, а также в том случае, если АЦП, работающий в мультиплексном режиме, и коммутатор размещены в ЭВМ, а информация с ИК поступает в виде аналоговых сигналов.

Разработчик ИИС в основном выбирает приборные интерфейсы, обеспечивающие информационный обмен различных технических средств ИИС. Машинный интерфейс ПК заложен в его конструкцию. При разработке специализированного вычислительного устройства разработчик ИИС может повлиять на выбор машинного интерфейса.

В процессе выполнения контрольной работы мы ознакомились с общими понятиями

каналов связи и интерфейсами информационных измерительных систем.

Другое по теме:

Структура и технические средства информационных измерительных систем. Выбор ЭВМ. Базирующие устройства
Тема контрольной работы "Структура и технические средства информационных измерительных систем. Выбор ЭВМ. Базирующие устройства" по дисциплине "Информационные измерительные системы". Применение и развитие измерительной тех .

Основные понятия и стандарты человеко-машинных интерфейсов

Стандартизация требований (в том числе эргономических) к органам управления особенно важна в областях, где принятие мер по обеспечению безопасности крайне необходимо (например, когда в результате неправильной работы системы приведения в действие может произойти авария или когда необходимы частые или оперативные действия: при работе подъемных кранов, эксплуатации транспортных средств и др.), особенно в случаях, когда потенциально опасное оборудование используется людьми с низкой квалификацией.

В МЭК 60447:2004 установлены основные принципы приведения в действие человеко-машинного интерфейса, обеспечивающие правильное и своевременное функционирование органов управления, безопасную и надежную работу оборудования в целом.

Установленные в МЭК 60447:2004 принципы применяют при эксплуатации электрооборудования, машин или даже целого предприятия.
На территории Украины эти требования используются с учетом основных нормативных документы и норм ДСТУ и ГОСТ.

Основные требования представлены в таких стандартах Украины:

Согласно вышеуказанным стандартам внесем такие основные определения и термины:

Орган управления это часть системы приведения в действие, которая принимает воздействие человека.

Под системой приведения в действие следует понимать совокупность взаимосвязанных устройств, применяемых для достижения конкретной цели путем выполнения определенных функций.

Классификация органов управления

1 однофункциональный орган управления: Один или несколько органов управления, результат действия которого приводит к одному конечному результату (например, перемещение в определенном направлении или расположение).
2 многофункциональный орган управления: Один или несколько органов управления, результат действия которого приводит к различным конечным результатам (например, перемещение в определенном направлении и расположение).

Клавиатура - это расположение клавиш (печатных или функциональных) определенным способом. Виды клавиатур:

1. Цифровая клавиатура - набор клавиш, обозначенных цифрами.
2. Алфавитно-цифровая клавиатура - набор клавиш, обозначенных набором символов;
Примеры: буквы латинского алфавита (от А до Z); цифры (от 0 до 9); непечатаемый пробел; знаки пунктуации и другая графика, если необходимо.
3. функциональная клавиатура: Набор клавиш, представляющих некоторые оборудование, машины, функции или команды.

Человеко-машинный интерфейс (ЧМИ) это набор технических средств, предназначенных для обеспечения непосредственного взаимодействия между оператором и оборудования, который и дает возможность оператору управлять оборудованием и контролировать его функционирование.

Примечание— Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.

Человеко-машинные интерфейсы подразделяются на:

  • Аппаратные интерфейсы;
  • Программные интерфейсы(интерфейс пользователя);
  • Аппаратно-программные интерфейсы.

Сигнал - визуальное, звуковое или осязательное обозначение передаваемой информации. Виды сигналов:

1. визуальный сигнал - визуальное обозначение передаваемой информации посредством знаков, фигур, цветов и других средств отображения информации.
2. звуковой сигнал - звуковое обозначение передаваемой информации посредством тона, частоты или периодичности.
3. осязательный сигнал - ощущаемое обозначение (через осязательный орган чувств человека) передаваемой информации посредством шероховатости поверхности, очертания или специального размещения органа управления.

Основные принципы построения человеко-машинных интерфейсов

Применение принципов приведения в действие, конструктивное расположение и последовательность функционирования органов управления должны рассматриваться на стадии разработки и проектирования оборудования.

Тип, форма и размер органа управления, а также его расположение должны быть выбраны таким образом, чтобы он отвечал требованиям назначения, обслуживания и условий эксплуатации. Также должны быть приняты во внимание навыки пользователей, ограничения в маневренности, аспекты эргономики и требуемый уровень предотвращения возможности выполнения непреднамеренной операции.
Принципы построения ЧМИ:

Должны быть использованы один или несколько из следующих принципов группировки органов управления:
- группировка по функции или взаимосвязи;
- группировка по последовательности применения;
- группировка по частоте применения;
- группировка по приоритетам;
- группировка по процедурам функционирования (нормальное или критическое состояние);
- группировка по моделированию схемы предприятия (машины).

Принципы группировки должны быть совместимы с навыками пользователя, приобретенными им в результате обучения.
Не должны применяться зеркальные и симметричные схемы панелей с расположенными на них органами управления, контроллерами и средствами отображения информации.

Связанные группы органов управления должны размещаться согласно их уровню приоритета, например:
- самый высокий приоритет – вверху слева;
- самый низкий приоритет – внизу справа.

Последовательность операций

В технологическом оборудовании для выполнения определенных функций используются два вида последовательностей:

  • одношаговая последовательность;
  • трехшаговая последовательность.

Трехшаговый принцип характеризует последовательность приведения в действие и связанные с ним показания:
- шаг 1 – выбор функции/оборудования/устройства;
- шаг 2 – выбор соответствующей команды;
- шаг 3 – выполнение команды.

Могут применяться три шага:

а) с отдельными группами органов управления: каждая группа относится к одной функции или оборудованию, включая выполнение команды (монофункция). Пример применения приведен на рисунке 1;
б) с двумя группами органов управления: первая группа предназначена для выбора функции/ оборудования/устройства, а вторая – для выбора соответствующей команды; также используется дополнительный орган управления, отделенный от этих групп, для выполнения команды (мультифункция). Пример применения приведен на рисунке 2.
Может возникнуть необходимость указания состояния выбранного оборудования, являющегося основой для следующей требуемой команды.
Может возникнуть необходимость подтверждения каждого выбранного шага операции.
После выполнения команды как можно быстрее должно быть обеспечено понятное и однозначное подтверждение конечного результата обработки команды.

Рисунок 1 – Трехшаговая последовательность выполнения однофункционального применения

Рисунок 2 — Трехшаговая последовательность выполнения многофункционального применения

При одношаговой последовательности каждый орган управления отвечает за определенную команду для заданного устройства. Т.е. оператор визуально без использования дополнительных аппаратных средств выбирает орган управления для определенного оборудования и контролирует выполнение команды.

Обозначению органов управления

Органы управления в соответствии с требованиями безопасности должны иметь обозначения либо на самом органе управления, либо рядом (например, графическими символами, цветами, буквами). Может также использоваться осязательная или звуковая информация, если органы управления не всегда видны.

Обозначения органов управления должны легко распознаваться и однозначно соответствовать назначению, конечному результату и быть взаимосвязанными с органами управления и, если воз-можно, с их расположением.

1 Визуальный сигнал
Визуальный сигнал должен попадать в поле зрения оператора в течение времени необходимой операции.
Визуальный сигнал может иметь различные смысловые значения. В соответствии с требованиями по безопасности цвет выключателя и его фон должны соответствовать ГОСТ 12.4.040 – 78*(СТ СЭВ 3082 - 81).

2 Звуковой сигнал
Звуковой сигнал может выдаваться как ответ на операцию органа управления, особенно для стандартных действий. Использование звукового сигнала в качестве единственного средства для обозначения органа управления не рекомендуется.

При использовании звукового сигнала должны учитываться характер и громкость звука в соответствии с уровнем окружающего шума и расстоянием от оператора до источника звука.

Чтобы гарантировать распознавание звукового сигнала, сигнал должен сохраняться или повторяться до момента вмешательства оператора.
Значение звукового сигнала должно быть ясно оператору и однозначно им воспринято.

3 Осязательный сигнал
Осязательные сигналы могут быть необходимы в некоторых случаях:
- когда необходимо идентифицировать связанные с безопасностью органы управления в условиях ограниченной видимости (например, в темноте, в дыму);
- в нормальных условиях, когда орган управления не находится в поле зрения оператора;
- в нормальных условиях по причинам эргономичности, чтобы избежать ошибок оператора. Информация, переданная оператору через осязательный орган чувств, должна быть независимой от информации, получаемой оператором через зрительный или слуховой органы чувств.
Осязательное обозначение должно ясно и однозначно идентифицировать необходимый элемент(ы) системы приведения в действие.
Информация, переданная осязательным сигналом, должна быть хорошо известна оператору. Значение каждого осязательного сигнала должно быть указано на оборудовании и в инструкции по эксплуатации, которая поставляется с оборудованием.

Читайте также: