Классические генетические эксперименты реферат

Обновлено: 04.07.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Происхождение генетики

Законы генетики

Законы генетики, открытые Менделем, Морганом и многими их последователями, описывают передачу признаков от родителей детям. Они утверждают, что все унаследованные черты определяются генами. Каждый ген может быть представлен в одной или нескольких формах, называемых аллелями. Все клетки в организме, за исключением половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если две аллели идентичны, тело называется гомозиготным по этому гену. Если аллели отличаются, тело называется гетерозиготным. Клетки (гаметы), вовлеченные в половое размножение, содержат только одну аллель каждого гена, т.е. они являются гаплоидами. Половина гейметов, произведенных человеком, несут одну аллель, а половина — другую. Объединение двух гаплоидных гамет во время оплодотворения приводит к появлению диплоидной зиготы, которая развивается во взрослый организм.

Гены являются специфическими фрагментами ДНК, они организованы в хромосомах ядра клетки. Каждый вид растений или животных имеет определенное количество хромосом. В диплоидных организмах количество хромосом пары; две хромосомы каждой пары называются гомологичными. Предположим, что у человека 23 пары хромосом, по одной хромосоме от матери, а по другой — от отца. Существуют также дополнительные ядерные гены (в митохондриях и в растениях — также в хлоропластиках).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митоз и мейоз. Митоз — процесс распределения хромосом по дочерним клеткам при делении клетки. В результате митоза каждая хромосома материнской клетки дублируется и идентичные копии делятся на дочерние клетки; в этом случае генетическая информация полностью передается из одной клетки в две дочерние клетки. Таким образом, клетки делятся в онтогенезе, т.е. в процессе индивидуального развития. Мейоз — это специфическая форма деления клеток, которая возникает только при образовании гамет, гамет (сперматозоидов и яйцеклеток). В отличие от митоза, при мейозе количество хромосом уменьшается вдвое; только одна из двух гомологичных хромосом каждой пары достигает каждой дочерней клетки, так что половина дочерних клеток имеет гомологизм, другая половина — гомологизм, и хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении). При слиянии двух зародышевых гаплоидных клеток (оплодотворение) восстанавливается количество хромосом — образуется диплоидная зигота, которая получила от каждого родителя по одному набору хромосом.

Методологические подходы

Каковы особенности методологического подхода Менделя, который позволил ему сделать свои открытия? Для экспериментов по скрещиванию он выбрал линии гороха, отличающиеся одной из альтернативных характеристик (семена гладкие или морщинистые, семена желтые или зеленые, форма фасоли выпуклая или с стеблями и т.д.). Он количественно проанализировал потомство каждого скрещивания, т.е. подсчитал количество растений с этими характеристиками, чего до этого никто не делал. Благодаря такому подходу (выбор качественно различных признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что черты родителей не смешиваются в потомстве, а передаются неизменными из поколения в поколение.

Заслуга Менделя заключается еще и в том, что он предоставил генетикам мощный метод изучения наследственных признаков — гибридологический анализ, т.е. метод изучения генов путем анализа характеристик потомков определенных скрещиваний. Законы мендельского и гибридного анализа основаны на событиях, происходящих в мейозе: альтернативные аллели расположены в гомологичных хромосомах гибридов и поэтому одинаково различаются. Именно гибридный анализ определяет требования к объектам общего генетического исследования: Это должны быть легко культивируемые организмы, которые производят большое количество потомства и имеют короткий репродуктивный период. Дрозофила меланогастер, фруктовая муха Дрозофилы, отвечает таким требованиям в высших организмах. На протяжении многих лет он стал излюбленным объектом генетических исследований. Благодаря усилиям генетиков из разных стран на ней были открыты фундаментальные генетические феномены. Установлено, что гены в хромосомах расположены линейно и их распределение в потомстве зависит от мейозных процессов; что гены, расположенные в одной хромосоме, наследуются вместе (генная кладка) и подлежат рекомбинации (кроссовер). Выявлены гены, локализованные в половых хромосомах, определена природа их наследования и генетическая основа определения пола. Также было обнаружено, что гены не являются неизменными, а подвержены мутациям; что ген имеет сложную структуру и что существует множество форм (аллелей) одного и того же гена.

Затем были проведены более тщательные генетические исследования микроорганизмов с целью изучения молекулярных механизмов наследования. Например, на кишечной палочке Escherichia coli был обнаружен феномен бактериальной трансформации — включение в клетку-реципиент ДНК, принадлежащей донорской клетке, — и впервые было доказано, что ДНК является генным носителем. Обнаружена структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перегруппировок, изучена регуляция генной активности, феномен смещения геномных элементов и др. В дополнение к упомянутым выше модельным организмам были проведены генетические исследования многих других видов, и была продемонстрирована универсальность основных генетических механизмов и методов их изучения для всех организмов, от вирусов до человека.

4. достижения и проблемы современной генетики

На основе генетических исследований возникли новые области знаний (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (например, генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие извлекать и синтезировать нуклеотидные последовательности, встроенные в геном для получения гибридной ДНК со свойствами, не встречающимися в природе. Было закуплено много лекарств, без которых лекарства уже немыслимы. Разработаны принципы разведения трансгенных растений и животных с признаками различных видов. Стало возможным охарактеризовать индивидов по многим полиморфным ДНК-маркерам: микроспутники, нуклеотидные последовательности и т.д. Большинство молекулярно-биологических методов не требуют гибридного анализа. Однако этот классический метод генетики по-прежнему необходим для изучения признаков, анализа маркеров и генного картирования.

Выводы

Современная генетика открыла новые возможности для изучения активности организмов: с помощью индуцированных мутаций можно выключать и включать практически все физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенном этапе. Теперь мы можем более детально изучить демографические и эволюционные процессы и исследовать наследственные заболевания, проблему рака и многое другое. В последние годы стремительное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и построить живые существа с заданными характеристиками. Таким образом, генетика открывает путь к моделированию биологических процессов и способствует вступлению биологии в эпоху унификации и синтеза знаний после длительного периода фрагментации на отдельные дисциплины.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

В своем реферате я рассмотрю такие вопросы, как законы наследования, генную инженерию и биотехнологии.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здесь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. ГЕНЕТИКА ПОЛА

Пол — совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

1.1. Генетические механизмы формирования пола

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая — Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) — гаплоидные. Самки развиваются из оплодотворенных яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина — одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) — одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A — бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

1.2. Наследование признаков, сцепленных с полом

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красно­глазые самцы и самки. При скрещива­нии этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой сам­кой из F1. В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y — хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери — признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой) .

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Х а Х а ) с мужчиной дальтоником (Х а y) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе — гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Предмет и задачи генетики

Методы генетических исследований

Основные этапы развития генетики

Список используемой литературы

Введение

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость. В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусогенетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНКматрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека. Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Предмет и задачи генетики

Генетика — наука о наследственности и изменчивости. Наследственность обычно определяют как способность организмов вопроизводить себе подобное, как свойство родительских особей передавать свои признаки и свойства потомству. Этим термином определяют также сходство родственных особей между собой. Ч. Дарвин отмечал, что потомки, как правило, не являются точной копией родительских особей, так как наряду с наследственностью им присуща изменчивость, которая проявляется в различиях отдельных органов, признаков или свойств, или комплекса их у потомков по сравнению с родителями и родственными особями.

Задачей генетики является изучение передачи наследственности от родителей потомкам. Преемственность между поколениями осуществляется путем полового, бесполого или вегетативного размножения. При половом размножении возникновение нового поколения происходит в результате слияния материнской и отцовской половых клеток, поэтому потомки несут признаки обеих родительских форм. Половые клетки составляют ничтожно малую долю многоклеточного организма. Они содержат наследственную информацию — совокупность генов — единиц наследственности. Наследственная информация определяет четкий план онтогенеза, в процессе которого развиваются и формируются специфические для данной особи свойства и признаки.

Больше внимание в генетике уделяется изучению изменчивости— способности организмов изменяться под действием наследственных и ненаследственных факторов. Различают наследственную (генотипическую) изменчивость и ненаследственную, возникающую под влиянием внешней среды и проявляющуюся в виде модификаций.

Современное изучение наследственности и изменчивости ведется на разных уровнях организации живой материи — молекулярном, клеточном, организменном и популяционном; при этом используют различные методы исследований.

Методы генетических исследований

Современная генетика изучает явления наследственности и изменчивости, опираясь на достижения различных отраслей, биологии — биохимии, биофизики, цитологии, эмбриологии, микробиологии, зоологии, ботаники, растениеводства и животноводства. Генетические исследования значительно обогатили теоретические области биологии, а также зоотехнию, ветеринарию, племенное дело и разведение сельскохозяйственных животных, селекцию и семеноводство растений, медицину.

Основными объектами генетических исследований на молекулярном уровне являются молекулы нуклеиновых кислот—ДНК и РНК, обеспечивающие сохранение, передачу и реализацию наследственной информации. Изучение нуклеиновых кислот вирусов, бактерий, грибов, клеток растений и животных, культивируемых вне организма (in vitro), позволяет установить закономерности действия генов в процессе жизнедеятельности клетки и организма.

Раздел генетики, изучающий явления наследственности на клеточном уровне, получил название цитогенегики. Клетка является элементарной системой, содержащей в полном объеме генетическую программу индивидуального развития особи. Основными объектами исследований с помощью цитологических методов являются клетки растений и животных как а организме (in vivo), так и вне организма, а также вирусы и бактерии. В последние годы проводятся исследования соматических клеток, размножаемых вне организма. Особое внимание уделяется исследованию хромосом и некоторых других органоидов клетки, содержащих ДНК, — митохондрий, пластид, плазмид, а также рибосом, на которых осуществляется синтез полипептидных цепей — первичных молекул белка.

Гибридологический метод впервые был разработан и применен Г. Менделем в 1856—1863 гг. для изучения наследования признаков и с тех пор является основным методом генетических исследований. Он включает систему скрещиваний заранее подобранных родительских особей, различающихся по одному, двум или трем альтернативным признакам, наследование которых' изучается. Проводится тщательный анализ гибридов первого, второго, третьего, а иногда и последующих поколений по степени и характеру проявления изучаемых признаков. Этот метод имеет важное значение в селекции растений и животных. Он включает и так называемый рекомбинационный метод, который основан на явлении кроссинговера — обмена идентичными участками в хроматидах гомологических хромосом в профазе I мейоза. Этот метод широко используют для составления генетических карт, а также для создания рекомбинантных молекул ДНК, содержащих генетические системы различных организмов.

Моносомный метод позволяет установить, в какой хромосоме локализованы соответствующие гены, а в сочетании с рекомбинационным методом —определить место локализации генов в хромосоме.

Генеалогический метод — один из вариантов гибридологического. Его применяют при изучении наследования признаков по анализу родословных с учетом их проявления у животных родственных групп в нескольких поколениях. Этот метод используют при изучении наследственности у человека и животных, малоплодие которых имеет видовую обусловленность.

Близнецовый метод применяют при изучении влияния определенных факторов внешней среды и их взаимодействия с генотипом особи, а также для выявления относительной роли генотипической и модификационной изменчивости в общей изменчивости признака. Близнецами называют потомков, родившихся в одном помете одноплодных домашних животных (крупный рогатый скот, лошади и др.).

Различают два типа близнецов — идентичные (однояйцовые), имеющие одинаковый генотип, и неидентичные (разнояйцовые), возникшие из раздельно оплодотворенных двух или более яйцеклеток.

Мутационный метод (мутагенез) позволяет установить характер влияния мутагенных факторов на генетический аппарат клетки, ДНК, хромосомы, на изменения признаков или свойств. Мутагенез используют в селекции сельскохозяйственных растений, в микробиологии для создания новых штаммов бактерий. Он нашел применение в селекции тутового шелкопряда.

Популяционностатистический метод используют при изучении явлений наследственности в популяциях. Этот метод дает возможность установить частоту доминантных и рецессивных аллелей, определяющих тот или иной признак, частоту доминантных и рецессивных гомозигот и гетерозигот, динамику генетической структуры популяций под влиянием мутаций, изоляции и отбора. Метод является теоретической основой современной селекции животных.

Феногенетический метод позволяет установить степень влияния генов и условий среды на развитие изучаемых свойств и признаков в онтогенезе. Изменение в кормлении и содержании животных влияет на характер проявления наследственно обусловленных признаков и свойств.

Составной частью каждого метода является статистический анализ — биометрический метод. Он представляет собой ряд математических приемов, позволяющих определить степень достоверности полученных данных, установить вероятность различий между показателями опытных и контрольных групп животных. Составной частью биометрии являются закон регрессии и статистический закон наследуемости, установленные Ф. Гальтоном.

В генетике широко используют метод моделирования с помощью ЭВМ для изучения наследования количественных признаков в популяциях, для оценки селекционных методов — массового отбора, отбора животных по селекционным индексам. Особенно широкое применение данный метод нашел в области генетической инженерии и молекулярной генетики.

Основные этапы развития генетики

К началу XX в. в растениеводстве и животноводстве был накоплен экспериментальный материал о наследовании потомками признаков родительских форм. Особенно ценные данные были получены во второй половине XVIII в. И. Кёльрейтером, который изучал полученные им гибриды у 54 видов растений и установил ряд закономерностей в наследовании признаков: равное влияние на признак отцовской и материнской форм, возврат признака у гибрида к одной из исходных родительских форм. Он впервые обратил внимание на дискретный характер наследования признаков, установил наличие пола у растений. Важное значение имели работы О. Сажре и Ш. Нодена во Франции, Т. Найта в Англии, А. Т. Болотова и К. Ф. Рулье в России, а также многих других ученых и практиков, которые наблюдали и описывали характер наследования признаков у растений и животных при внутривидовом и межвидовом скрещиваниях.

В 1900 г. Г. де Фриз (1848—1935) в Голландии, К. Корренс (1864—1933) в Германии и Э. Чермак "(1871 — 1962) в Австрии независимо друг от друга установили, что полученные ими результаты по наследованию признаков у растительных гибридов полностью согласуются с данными Г. Менделя, который за 35 лет до них сформулировал правила наследственности. Г. де Фриз предложил установленные Г. Менделем правила называть законами наследования признаков.

Цитологические исследования Т. Бовери (1862—1915) показали наличие параллелизма в поведении хромосом в мейозе и при оплодотворении с наследованием признаков у гибридов, что послужило предпосылкой для развития хромосомной теории наследственности, основоположником которой является Т. Г. Морган (1861 —1945), который вместе с А. Стертевантом (1892—1970) и К Бриджесом (1889—1938) установил, что наследственные факторы — гены — локализованы в хромосомах клеточного ядра. Этими учеными был разработан метод составления генетических карт, доказан хромосомный Механизм определения пола. Хромосомная теория наследственности была крупнейшим достижением генетики и сыграла ведущую роль в ее дальнейшем развитии, становлении молекулярной биологии.

Важное значение для развития генетики имели работы по получению и изучению индуцированных мутаций. О возможности спонтанного изменения признака или свойства у отдельных особей писал Ч. Дарвин. В 1902 г. Г. де Фриз создал и опубликовал основные теоретические положения мутационной теории. В 1925 г. Г. А. Надсон и Г. С. Филиппов в Ленинграде наблюдали мутационные изменения у дрожжевых и плесневых грибов под действием ионизирующей радиации. В 1927 г. в США Г. Меллером (1890—1967) были получены мутации у плодовой мушки (drosophila melanogaster) в результате воздействия рентгеновских лучей. Эти работы послужили началом широкого круга исследований по изучению характера мутационной изменчивости, разработке методов их получения, проверке и поискам факторов, вызывающих мутации. Большой вклад в развитие мутагенеза и его прикладное использование внесли советские генетики Н. П. Дубинин, В. В. Сахаров, М. Е. Лобашов, С. М. Гершензон, И. А. Рапопорт. В растениеводстве успешно разрабатывается методика получения геномных мутаций, обусловленных изменением числа хромосом в клетках растений, — полиплоидия. А. Р. Жебрак, Л. П. Бреславец получили полиплоидные формы у растений. Г. Д. Карпеченко экспериментально показал возможность создания новых видов растений методом аллополиплоидии. В. А. Рыбин осуществил ресинтез (воссоздание) существующего вида растений —культурной сливы.

В развитие генетики популяций и разработку генетических основ эволюционной теории большой вклад внесли русские ученые С. С. Четвериков (1880—1959), И. И. Шмальгаузен (1884— 1963), Н. П. Дубинин. Для разработки генетических методов селекции животных важное значение имели работы М. Ф. Иванова, А. С. Серебровского, С. Г. Давыдова и др.

С 1944 г. начались интенсивные исследования явлений наследственности и изменчивости на молекулярном уровне. В 1944 г. американский генетик О. Звери с сотрудниками показал, что ведущая роль в сохранении и передаче наследственной информации принадлежит ДНК. Это открытие послужило началом развития молекулярной генетики. Важное значение для развития молекулярной генетики имели успехи в области биохимии нуклеиновых кислот, проводимые В. А. Энгельгардом и его сотрудниками в Институте молекулярной биологии АН СССР, американским биохимиком Э. Чаргаффом и др.

В 1953 г. Ф. Крик и Д. Уотсон разработали модель структурной формулы молекулы ДНК; в 1961—1965 гг. М. Ниренберг и С. Очао расшифровали генетический код. Было установлено, что дезоксирибонуклеиновая кислота содержит наследственную информацию, специфическую для каждого вида и особи, и что гены являются функциональными единицами гигантских молекул ДНК, которая способна самокопироваться и таким образом сохраняться в поколениях. Наследственная информация реализуется в процессе синтеза белка, при этом важную роль играют рибонуклеиновые кислоты — информационная (иРНК), рибосомальная (рРНК) и транспортная (тРНК).

В 1969 г. в США Г. Корана с сотрудниками синтезировал вне организма химическим путем участок молекулы ДНК — ген аланиновой тРНК пекарских дрожжей. С начала 70х годов в лабораториях многих стран мира, в том числе и в СССР, с применением специфического фермента — обратной транскриптазы (ревертазы) была разработана методика синтеза генов вне организма. Синтез и выделение генов, перенос их в клетки бактерий позволяют получать штаммы суперпродуцентов аминокислот, ферментов, биологически активных веществ, гормонов. Это направление развития генетики получило название генетической инженерии.

Значение генетики

Генетика занимает ведущее место в современной биологии и, в свою очередь, опирается на достижения и методы ее отраслей. Один из важнейших задач генетики является разработка методов повышения продуктивности животных и урожайности растений.

В центре внимания современной генетики находиться такой важный ее раздел, как медицинская генетика. Установлено более тысячи различных наследственных заболеваний, и для некоторых из них разработаны методы предотвращения вредного действия генов, их вызывающих. В условиях крупных животноводческих и птицеводческих комплексов особенно велика опасность распространения инфекционных заболеваний, поэтому генетика разрабатывает методы селекции животных на иммунитет. Установленные Г. Менделем и В. Бэтсоном закономерности наследования признаков находят широкое применение пушном звероводстве. Использование гетерозиса в птицеводстве и в мясном животноводстве позволяет повысит продуктивность животных путем получения гибридов от заранее подобранных родительских форм, обладающих высокой комбинационной способностью. Генетика является теоретической основой для совершенствования пород сельскохозяйственных животных, определения потенциальной продуктивности, контролируемой генотипом, разработки методов генетической оценки популяции и отдельных особей по потомству. Важное значение имеет генетика и для растениеводства. Знание законов наследования и изменчивости признаков позволяет интенсифицировать селекционный процесс по созданию сортов устойчивых к неблагоприятным условиям произрастания вредителям и болезням. В селекции растений успешно используют гибридизацию, мутагенез, полиплоидию. Широкие возможности для создания новых форм растений открывают генетическая инженерия, гибридизация соматических клеток, культуры клеток и тканей. В последние годы для повышения урожайности широко применяют различные макро и микроудобрения, ядохимикаты, гербициды. Многие из них накапливаются в растениях и, попадая в организм животного или человека, воздействуют на генотип родительских форм и потомков.

Заключение

Генетика сравнительно молодая наука. Но перед ней стоят очень серьезные для человека проблемы. Так генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека: короткопалость, мышечная атрофия и другие. С помощью новейших цитологических методов, цитогенетических в частности, производят широкие исследования генетических причин различного рода заболеваний, благодаря чему существует новый раздел медицины медицинская цитогенетика.

Разделы генетики, связанные с изучением действия мутагенов на клетку (такие как радиационная генетика), имеют прямое отношение к профилактической медицине.

Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетика. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок.

Список используемой литературы

ИнгеВечтомов С. Г. Введение в молекулярную генетику. — М,: Высшая школа, 1983.

Левонтин Р. К. Генетические основы эволюции. — М.: Мир, 1978.

Мухаметгалиев Ф. М, Актуальные проблемы частной генетики сельскохозяйственных животных. — АлмаАта, Наука, 1985.

Никоро 3. С, Стакан Г. А., Харитонова 3. К, Васильева Л. А., Гинзбург Э. X.,

Ригер Р., Михаэлис А. Генетический и цитогенетический словарь. — М.: Колос, 1967.

Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. — М.: Мир, 1984.

Реферат на тему: Генная инженерия
Реферат на тему: Генная инженерия

Генная инженерия - удивительное явление в науке, когда разработка новой методологии дает мощный толчок развитию нашего понимания окружающей природы, ее сокровенных глубин.

Исследования в области генной инженерии вносят уникальный вклад в изучение структурной и функциональной организации геномов различных организмов. Методология генной инженерии постоянно совершенствуется, и все больше исследователей используют ее для решения самых разных задач биологической науки.

Штаммы бактерий, дрожжей и клеточные линии были созданы с использованием методов генной инженерии, которые с высокой эффективностью производят биологически активные белки человека и животных. Это позволяет получать эукариотические полипептиды в огромных количествах по сравнению с недавним прошлым, что упрощает процедуру их очистки до индивидуального состояния. Работа по созданию штаммов-продуцентов очень важна для медицины и ветеринарии и революционизирует быстро развивающуюся отрасль - биотехнологию. Чрезвычайно интересны исследования по созданию трансгенных животных и растений, содержащих и выражающих чужеродную генетическую информацию.

Общие принципы и методы генной инженерии

Генная инженерия - это новая отрасль экспериментальной молекулярной биологии. Возникновение его методологии стало возможным благодаря предыдущей работе многих исследователей в различных областях биохимии и молекулярной генетики. Основные достижения, которые привели к зарождению и успешному развитию генной инженерии, включают следующее:

  • доказательство в 1944 г. О. Эйвери с соавторами роли ДНК как носителя генетической информации и открытие в 1953 г. Дж. Уотсоном и Ф. Криком структуры ДНК;
  • экспериментальное подтверждение универсальности генетического кода;
  • интенсивное развитие молекулярной генетики, объектами которой являются в первую очередь бактерия Escherichia coli, а также ее вирусы и плазмиды;
  • разработка простых методов выделения высокоочищенных препаратов неповрежденных молекул ДНК плазмид и вирусов;
  • разработка методов введения в чувствительные клетки молекул ДНК вирусов и плазмид в биологически активной форме, обеспечивающей репликацию молекул ДНК и / или экспрессию кодируемых ими генов;
  • открытие ряда ферментов, использующих ДНК в качестве субстрата для катализируемых ими реакций, особенно рестрикционных ферментов и ДНК-лигаз.

Объединение в начале 1970-х гг. ранее независимо разработанные методы позволили создать современную стратегию генной инженерии, суть которой заключается в следующем:

  1. фрагменты молекул ДНК любого исследуемого организма или искусственно синтезированные сегменты ДНК ферментативно встраиваются в небольшую молекулу ДНК, способную реплицироваться в клетке автономно от хромосомы (плазмидная или вирусная ДНК);
  2. полученные молекулы (гибридная ДНК) вводятся в чувствительные прокариотические или эукариотические клетки, где они реплицируются, умножая встроенные фрагменты ДНК в свой состав;
  3. с помощью определенных методов отбираются клоны клеток или вирусов, содержащие отдельные типы гибридных молекул ДНК;
  4. идентифицированные гибридные ДНК подвергаются разностороннему структурно-функциональному изучению, особую роль играют высокоэффективные методы расшифровки нуклеотидной последовательности (секвенирование) фрагментов ДНК.

Применение генной инженерии в медицине

Синтез чужеродных белков для медицинского использования в растениях

Растения использовались в медицинских целях на протяжении тысяч лет, но генная инженерия позволила создать новые растения, белковые продукты которых важны для лечения различных заболеваний. Гены терапевтически важных белков человека и животных можно вводить в различные системы экспрессии, каждая из которых имеет свои преимущества и недостатки. Идеальная система экспрессии - это самая безопасная и обеспечивающая производство биологически активного продукта с наименьшими затратами. Система клеток млекопитающих может синтезировать человеческие и животные белки, которые максимально похожи на природные белки, но культивирование таких клеток является дорогостоящим и ограниченным по масштабу. Бактерии могут производиться в больших масштабах, но синтезируемые в них эукариотические белки не всегда имеют правильную третичную структуру. Кроме того, они не могут подвергаться посттрансляционной модификации.

Производство рекомбинантных белков в растениях имеет ряд потенциальных преимуществ перед другими системами экспрессии чужеродных генов. Растительные системы дешевле, чем выращивание в биореакторах (ферментерах). Все, что требуется для нормальной жизни растений, - это содержащиеся в почве минеральные соединения, вода, энергия солнечного света и углекислый газ. В растениях возможна посттрансляционная модификация синтезированных чужеродных полипептидов. Обязательным условием образования функционально активных белков является правильная укладка полипептидной цепи. У млекопитающих за это ответственны по крайней мере два шаперона, BiP / GRP78 и GRP94. У высших растений сигнальные последовательности (например, Lys-Arg-Glu-Leu на С-конце полипептида) направляют белки в эндоплазматический ретикулум, где обнаруживаются шапероны, гомологичные BiP / GRP78 и GRP94.

Важной особенностью растений по сравнению с культурами клеток млекопитающих и трансгенных животных является то, что они не могут вырабатывать такие патогены человека и животных, как вирусы, прионы и т. д., что обеспечивает гораздо большую безопасность генно-инженерных продуктов, выделенных из растений. Примеры в таблице.

Уже существуют технологии сбора и обработки растений в больших объемах, что значительно упрощает и удешевляет работу с посевами трансгенных растений.

Белки, образующиеся в семенах, клубнях и плодах, очень стабильны и могут храниться в них без изоляции в течение длительного времени.

Очистка значительно увеличивает стоимость медицинских рекомбинантных белков. Когда некоторые белки синтезируются в зернах риса, пшеницы, плодах томатов, бананов и т. д., возможно введение их в организм алиментарно (с пищей) без предварительной очистки, что значительно удешевит стоимость таких препаратов.

Наиболее впечатляющие практические достижения

Среди многих достижений генной инженерии, получивших применение в медицине, наиболее значительным является производство человеческого инсулина в промышленных масштабах.

Все широко и печально известны таким заболеванием, как сахарный диабет, когда человеческий организм теряет способность вырабатывать физиологически важный гормон инсулин. В результате в крови накапливается сахар, и пациент может умереть. Инсулин издавна получают из органов животных и применяют в медицинской практике. Однако длительное применение животного инсулина приводит к необратимому повреждению многих органов пациента из-за иммунологических реакций, вызванных инъекцией инсулина животного происхождения, чужеродного для человеческого организма. Но даже потребность в инсулине животного происхождения до недавнего времени удовлетворялась лишь на 60-70%. Так, в 1979 году из 6 миллионов пациентов во всем мире только 4 миллиона получали инсулин. Пациенты умерли без лечения инсулином. А если учесть, что среди больных сахарным диабетом много детей, становится ясно, что для многих стран эта болезнь превращается в национальную трагедию.

Генные инженеры решили клонировать ген инсулина в качестве первой практической задачи. Клонированные гены человеческого инсулина были вставлены с плазмидой в бактериальную клетку, где начался синтез гормона, который природные штаммы микробов никогда не синтезировали. С 1982 года фирмы в США, Японии, Великобритании и других странах производят генно-инженерный инсулин. Проблема решена. Приблизительно 200 г инсулина получается из 1000 литров бактериальной культуры, что равно количеству, полученному из 1600 кг поджелудочной железы животных. Параллельно решалась проблема иммунологического поражения организмов диабетиков инсулином животного происхождения.

Производство и продажа инсулина была начата американской фирмой Eli Lilly. Мировой рынок инсулина в настоящее время составляет более 400 миллионов долларов, годовое потребление - около 2500 кг.

Более двадцати фирм в Японии и несколько американских фирм разрабатывают еще один очень важный препарат - интерферон, который эффективен при различных вирусных заболеваниях и злокачественных новообразованиях. Первым из этих соединений, появившихся на рынке, был интерферон альфа, за ним последовал интерферон бета.

Другой эффективный противораковый препарат - интерлейкин - производится в Японии и США. Интересно отметить, что сегодня американский рынок генно-инженерных лекарств сопоставим с такими распространенными лекарствами, как антибиотики. К 2000 году стоимость продуктов, созданных с помощью генной инженерии, в Соединенных Штатах достигнет 50 миллиардов долларов в год.

В медицинскую практику уже внедрено около 200 новых диагностических препаратов, более 100 генно-инженерных препаратов проходят клинические исследования. Среди них лекарства, которые лечат артроз, сердечно-сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен фирм генной инженерии 60% работают над производством лекарств и диагностических продуктов.

Генная терапия

Неблагоприятная экологическая обстановка и ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективного лечения.

Генные инженеры уже внесли свой вклад в решение этой проблемы, разработав диагностические продукты, которые могут обнаруживать генетические аномалии во время беременности, что позволяет предотвратить рождение больного ребенка. Однако более одного процента всех новорожденных имеют генетические заболевания, которые приводят к физическим и умственным нарушениям, а также к ранней смерти.

Наиболее многообещающие результаты ожидаются в случаях, когда заболевание вызвано дефектом одного гена. В этом случае считается, что можно будет ввести нормальный ген в соматические клетки, нацеленный на то место на хромосоме, где находится дефектный ген. При гомологичной рекомбинации введенный ген заменит дефектный. В некоторых случаях одной такой процедуры будет достаточно, чтобы вылечить болезнь. Однако на практике очень сложно контролировать судьбу внедренной в клетки ДНК, и для одной правильной вставки в ген приходится более 1000 случайных. Разрабатывается другой подход, когда введенный ген не заменяет дефектный, а компенсирует его функцию, вставляя в хромосому в другом месте.

Исследования ведутся очень интенсивно, хотя до реализации программы лечения большинства наследственных заболеваний еще предстоит пройти долгий и трудный путь. Способность вылечить такие заболевания путем введения нормальных генов - это настолько благородное дело, что в некоторых странах исследования генной терапии считаются высшим приоритетом и финансируются в первую очередь.

Заключение

В заключение хочу скачать, что генная инженерия - молодая отрасль науки и сложно предсказать, что произойдет. Но ее вклад в медицину неоспорим, благодаря генной инженерии излечены многие болезни, и у нее много перспектив.

Генная инженерия может перевернуть всю сущность человечества и начать новую эру или вызвать смерть, если это не используется во благо человечества.

Список литературы

Посмотрите похожие темы рефератов возможно они вам могут быть полезны:

Читайте также: