История развития компьютерного моделирования реферат

Обновлено: 02.07.2024

1. Понятие моделирования. История развития математического моделирования. Особенности компьютерного моделирования.

Моделированием называется замещение одного объекта другим с целью получения информации о важнейших свойствах объекта – оригинала с помощью объекта – модели.

Всем моделям присуще наличие некоторой структуры (статической или динамической, материальной или идеальной), которая подобна структуре объекта – оригинала.

Процесс моделирования предполагает наличие:

q объекта исследования;

q исследователя, имеющего конкретную задачу;

q модели, создаваемой для получения информации об объекте, необходимой для решения задачи.

По отношению к модели исследователь является экспериментатором. Одним из наиболее важных аспектов моделирования систем является проблема цели. Любую модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании – это проблема целевого назначения. Подобие процесса, протекающего в модели, реальному процессу является не самоцелью, а условием правильного функционирования модели. Если цели моделирования ясны, то возникает следующая проблема, - проблема построения модели. Это построение оказывается возможным, если имеется информация или выдвинуты гипотезы относительно структуры, алгоритмов и параметров исследуемого объекта.

Когда модель построена, то следующей проблемой является проблема работы с ней, реализация модели. Здесь основные задачи – минимизация времени получения конечных результатов и обеспечение их достоверности. Для правильно построенной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы – оригинала, несущественные в данный момент.

q Не область математики, а вопрос применения математических теорий

q Основная идея: вместо исследования объекта строится математическая модель объекта и в дальнейшем исследуется именно она.

Под математическим моделированием будем понимать процесс установления соответствия данному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

(Есть немного другая классификация, которая описана в пятом вопросе: Аналитические модели; Простые структурные модели; Имитационные модели (Детерминированные модели, Статистические модели, Вероятностные или стохастические модели))

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнений в общем виде стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда,не имея решения в явном виде, можно найти некоторые свойства решения (например,оценить устойчивость решения).

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы. Основным преимуществом имитационного моделирования, по сравнению с аналитическим, является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования простых систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов — сначала создание качественной, а затем и количественной модели. Компьютерное моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

К основным этапам компьютерного моделирования относятся:

q постановка задачи, определение объекта моделирования;

q разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

q формализация, то есть переход к математической модели; создание алгоритма и написание программы;

q планирование и проведение компьютерных экспериментов;

q анализ и интерпретация результатов[2].

История развития математического моделирования (вода)

Говоря о математическом моделировании, нельзя не обратить внимания на эволюционный процесс "смены" парадигм моделирования, который, как кажется, характерен для многих дисциплинарных областей, где применяются методы теории управления. До сих пор ни в одной из работ по теории моделирования этот процесс не рассматривался как "смена поколений" математических моделей. Тем не менее, сейчас можно было бы говорить уже о трех таких поколениях. На первых этапах речь чаще всего идет о математической записи отдельных феноменологических наблюдений над реальными объектами. Для них характерна простота описаний, типична линейность уравнений и малая размерность (часто воспроизводится всего одна или две переменных). Методы анализа связаны в основном с получением аналитических решений и графическим рассмотрением на фазовой плоскости. Затем появляются модели, описывающие объект "во всей его полноте" - в них объект представлен в виде "системы" - модель отражает его структуру и законы, по которым он функционирует. Модели становятся существенно нелинейными, чисто математический аппарат дополняется логико-семантическим. Возрастает размерность, достигая нескольких десятков. Такие модели называются "сложными", "большими", а рабочим инструментом на этом этапе становится вычислительный эксперимент. Трудно не заметить, что в настоящее время начинается переход к третьему поколению математических моделей - моделям виртуального мира. Виртуальное моделирование можно определить как воспроизведение трехмерного мира компьютерными средствами. Резко возрастает объем обрабатываемой и воспроизводимой информации (например, количество визуализируемых "деталей" достигает нескольких тысяч). Любопытно, что модели третьего поколения по своей математической сущности могут быть как "феноменологическими", так и "системными" - на содержании этих понятий мы остановимся чуть ниже.

Процесс смены поколений моделей можно проиллюстрировать на многих дисциплинарных примерах - в небесной механике это переход от феноменологической модели Птолемея к системной модели Коперника-Кеплера и затем к современным моделям (таким, как совокупные модели движения объектов в космическом пространстве в системах слежения, используемых в космонавтике и в военном деле, или как виртуальные модели небесных явлений в мультимедийных системах Redshift).

В биомедицине первое поколение моделей появилось в самом конце XIX в. - модель сердца как "эластичного резервуара" О.Франка представляла собой типичную феноменологическую модель (модель данных). Многочисленные модели физиологических процессов охарактеризовали приход второго поколения моделей - системных моделей процессов жизнедеятельности, использовавшихся для исследования процессов управления искусственными органами. Развитие тренажерных моделей (в том числе мультимедийных) характеризует начало третьего этапа.

Наконец, такая же картина наблюдается в управлении технологическими процессами. Феноменологические модели передаточных функций, восстановленные по входо-выходным характеристикам объектов, сменились системными методами пространства состояний. Третий этап математического моделирования также связан здесь с виртуальным моделированием - динамическим моделированием в реальном масштабе времени.

Отметим, что многие фундаментальные проблемы прикладного моделирования впервые были выявлены И.А.Полетаевым. Он первым обратил внимание на утилитарность математических моделей, дав оригинальную классификацию моделей по целям их использования: "поисковая" модель - для проверки гипотез, "портретная", она же - демонстрационная, - для замены объекта в эксперименте (например, для тренажеров - что в то время рассматривалось едва ли не как научная фантастика) и, наконец, "исследовательская модель", что в современном понимании означает ориентацию на сложный вычислительный эксперимент.

В другой работе И.А.Полетаев поднял еще один столь же важный круг вопросов - о принципиальной "субъективности" математического моделирования. По меньшей мере два его высказывания и сегодня заслуживают внимания:

В задаче математического моделирования >. Роль субъекта моделирования оказывается решающей, ибо именно его цели, интересы и предпочтения формируют модель.

Создание модели нужно не само по себе, а для решения практических задач, что только и может оправдать затрату сил на создание модели. Модель создается для того, чтобы работать: >.

Это интересно (относится к истории):

Моделирование как метод познания применялось человечеством - осознанно или интуитивно - всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).

Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.

Наш знаменитый механик-самоучка И.П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н.Л. Кирпичев, моделированию в авиастроении - М.В. Келдыш, С.В. Ильюшин, А.Н. Туполев и др., моделированию ядерного взрыва - И.В. Курчатов, А.Д. Сахаров, Ю.Б. Харитон и др.

Широко известны работы Н.Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П.С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовалась на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель остойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

В данной статье вы сможете ознакомиться с кратко изложенной историей компьютерного моделирования от истоков ее развития до современности.

Введение компьютерного моделирования

Родителем данной методологии является математическое моделирование. Они прочно связаны между собой, а существование компьютерного моделирования не может невозможно без математического. Появление точных наук дало начало активному использованию математического моделирования. Вычислительные методы, названые в честь столь известных ученых, как Эйлер и Ньютон, активно используются и в наше время.

В середине прошлого века ведущие страны мира, участвовавшие в научной борьбе, требовали технологически новую методологию. Такие проекты, как ракетно-ядерный щит, взрывы ядерных боеголовок, запуск космических ракет и спутников, не могли обрабатываться старыми методами. Решением стало изобретение электронных вычислительных машин. Они не только уменьшили время на выполнение большого количества рутинной работы, но и дали толчок для основания новой методологии – компьютерного моделирования.

Развитие компьютерного моделирования

Первые применения данного моделирования осуществлялись в области физики. Оно помогало решать задачи гидравлики, фильтрации, теплопереноса и теплообмена, механики твердого тела и т.д. Фактически на первых этапах своего развития моделирование работало только с нелинейными задачами математической физики. Это делало его в большей степени математическим. Полученное доверие после успешных работ в области физики позволило компьютерному моделированию распространиться и на другие науки: химия, биология, электроэнергетика и т.д. А границы изучений этой методологии ограничивались исключительно возможностями ЭВМ. Уже в 70-ых годах прошлого столетия каждый успешный в области экологии или экономики проект разрабатывался с помощью моделирования.

Компьютерное моделирование в современном мире

В наше время моделирование активно проникает во все структуры информационного общества. Развитие данной технологии позволяет проектировать и изучать по-настоящему сложные процессы. Примером таких будет моделирование систем различной физической природы, включающих большое количество различных изменяющихся во времени параметров, структурных элементов и связей между ними.
Моделирование в медицине также довольно распространено. Мы имеем возможность изучать влияние тысяч молекул возможного препарата на белки, чтобы найти потенциально необходимое лекарство.

Каждое средство передвижения, архитектурное строение, производственный аппарат и т.д. не разрабатываются без помощи компьютерного моделирования.

Виртуальная реальность – плод данной технологии. Революционно новое направление с каждым днем набирает популярность. Она позволяет человеку попасть в виртуальный мир и управлять происходящим с помощью специальных сенсорных средств. При этом все природные нам ощущения, такие как слуховые или зрительные, заменяются их имитацией.

Заключение

Компьютерное моделирование – инструмент, без которого не обходится ни одна область человеческой деятельности. За 50 лет методология сделала огромный скачок в технологическом развитии. Став более доступной и простой, она дает возможность людям концентрироваться на моделировании и экспериментах. И это только начало: с каждым днем моделирование открывает себя в совершенно новых отраслях нашей жизни. В данной статье описаны лишь некоторые примеры из всего разнообразия применения компьютерного моделирования, ярко подчёркивающие значимость и возможности этой технологии.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х – 1960х годах.

Первый пример практического применения управляющей ЭВМ относится к 1959 го­ду; он связан с работой нефтехимического завода компании "Texaco" в городе Порт-Артур, штат Техас. Компания "Texaco" выполнила эту пионерскую работу совместно с производителем ЭВМ – компанией Thomson Ramo Woolridge..

Важный шаг был сделан в 1962 году, когда английская компания ICI (Imperial Chemical Industries) представила концепцию прямого цифрового управления (раз­дел 12.4.3).

Изобретение в 1960-х годах транзистора дало заметный толчок развитию ком­пьютерных приложений. Стоимость единицы вычислительной мощности мини-компьютера на транзисторной элементной базе была на порядок меньше, чем у больших ЭВМ (mainframe), хотя стоимость самого мини-компьютера все еще пре­вышала 100 000 долларов.

Согласованное влияние трех главных факторов – совершенствование технической базы компьютеров, экономи­ческая целесообразность их применения в управлении относительно простыми процессами и развитие теории управления – привело к широкому распростране­нию компьютерного управления.

Современные персональные компьютеры намного превосходят мини-компь­ютеры 1960-х и 1970-х годов – типичная конфигурация, как правило, включает 16-или 32-разрядный центральный процессор (ЦП), несколько мегабайт оперативной памяти (оперативное запоминающее устройство – ОЗУ), гигабайты дисковой памя­ти, – а стоят несравнимо дешевле первых моделей ЭВМ.

Необходимо иметь в виду, что чрезмерное и одностороннее увлечение компь­ютерными технологиями может заслонить собой фундаментальные проблемы. Сегодня, после сорока лет применения компьютеров, существует достаточный опыт, чтобы задаться вопросом о реальных преимуществах, которые они принес­ли в промышленность и административное управление. В западных странах в 1950-60-х годах, еще до широкого распространения ЭВМ, один работающий мог содержать целую семью, включая выплату кредита за дом. В типичной совре­менной семье, по крайней мере, уже двое должны работать, чтобы поддержать стиль жизни, удовлетворяющий средним запросам, уровень которых продолжает повышаться. То, что два десятилетия назад представлялось золотым веком, обус­ловленным повсеместным внедрением компьютеров и автоматизации, сильно по­тускнело сегодня благодаря новым проблемам – от безработицы до загрязнения окружающей среды. То же самое может произойти с сегодняшней чрезмерно вы­сокой оценкой Интернета и компаний, основной бизнес которых построен на интернет технологиях (виртуальные магазины и т. д.). Нисколько не принижая их достоинства и преимущества, следует отметить, что они не дают надежных и эф­фективных способов решения реальных проблем.

МОДЕЛИ И МОДЕЛИРОВАНИЕ, КАКИМИ ОНИ БЫВАЮТ?

Слово МОДЕЛЬ происходит от латинского modulus – мера, образец.

1. Образец (эталон, стандарт) для массового изготовления какого-либо изделия или конструкции: а) тип, марку, наименование изделия или его номер в модельном ряду; б) изделие (иногда из легкообрабатываемого материала), с которого снимается форма для воспроизведения (например, посредством литья) в другом материале; разновидности таких моделей – лекала, шаблоны. В литье по выплавляемым моделям используется модель из воска ("восковка"). в) в конструировании, промышленном дизайне – изделие или деталь изделия которое воспроизводит форму и/или другие характеристики сложного изделия или детали.

2. Устройство, имитирующее строение и действие какого-либо другого (моделируемого) устройства в научных, образовательных, производственных (при испытаниях) или спортивных целях:а) в моделизме – выполненная в определённом (обычно уменьшенном) масштабе машина, сооружение или комплекс сооружений. Модели сооружений также называют макетами.

3. Любой образ, аналог (мысленный или условный: изображение, описание, схема, чертеж, график, карта и т. п.) какого-либо объекта, процесса или явления, "оригинала" данной модели:а)в науке – описание объекта (предмета, процесса или явления) на каком-либо формализованном языке, составленное с целью изучения его свойств. Такое описание особенно полезно в случаях, когда исследование самого объекта затруднено или физически невозможно; б) модель какой-либо системы аксиом – в математике и логике – любая совокупность (абстрактных) объектов, свойства которых и отношения между которыми удовлетворяют данным аксиомам, служащим тем самым совместным (неявным) определением такой совокупности; в) полигональная модель в компьютерной графике.

4. В индустрии моды – это человек, демонстрирующий модели одежды на показах: а)фотомодель в рекламном бизнесе; б) Позирующий художнику, скульптору, фотографу натурщик или изображаемые предметы ("натура").

В лингвистике – абстрактное понятие эталона или образца какой-либо системы (фонологической, грамматической и т.п.), представление самых общих характеристик какого-либо языкового явления; общая схема описания системы языка или какой-либо его подсистемы.

В общем случае, модель – это объект, в достаточной степени повторяющий свойства моделируемого объекта (прототипа), существенные для целей конкретного моделирования, и опускающий несущественные свойства, в которых он может отличаться от прототипа.

Моделирование – исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

Можно выделить следующие виды моделирования: компьютерное моделирование; математическое моделирование; математико-картографическое моделирование; психологическое моделирование; статистическое моделирование; структурное моделирование; экономико-математическое моделирование; имитационное моделирование; схемотехническое моделирование.

Модель процесса – основа управления. Любая стратегия управления базируется на некотором понимании того, как физический процесс реагирует на входной сигнал. Поэтому умение анализировать и моделировать динамику системы является основ­ной предпосылкой для успешного управления.

ПРИНЦИПЫ МОДЕЛИРОВАНИЯ СИСТЕМ, УЧИТЫВАЮЩИХ БАЛАНС МАССЫ И КОНЦЕНТРАЦИИ КОМПОНЕНТОВ.

Для многих промышленных процессов существенным является моделирование баланса массы различных компонентов. В открытой системе, где происходит обмен с внешним миром, все уравнения баланса массы имеют одинаковую структуру

приращение массы = приход массы - расход массы

Такое уравнение можно сформулировать как для каждого отдельного компонента, так и для всей массы в целом. Приход (расход) массы может быть следствием как входного (выходного) потока, так и химических реакций или биологического роста.

Можно составлять уравнения баланса:

Общей массы и массы компонента.

Интуитивно ясно, что концентрация будет меняться медленнее, если рас­ход жидкости во входном потоке мал по сравнению с объемом V (это соответ­ствует большому значению Т). То есть баланс массы компоненты имеет такие же динамические свойства, что и низкочастотный фильтр.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ СИСТЕМЫ MATLAB, ЕЁ НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ.

Система MatLab специально создана для проведения именно инженерных расчетов: математический аппарат, который используется в ней, предельно приближен к современному математическому аппарату инженера и учёного и опирается на вычисления, производимые с матрицами, векторами и комплексными числами; графическое представление функциональных зависимостей здесь организовано в форме, которую требует именно инженерная документация.

Язык программирования системы MatLab весьма прост, он содержит лишь несколько десятков операторов; незначительное количество операторов здесь компенсируется большим числом процедур и функций, содержание которых понятно пользователю, имеющему соответствующую математическую и инженерную подготовку.

В отличие от большинства математических систем, MatLab, является открытой системой: практически все процедуры и функции доступны не только для использования, но и для модификации. Почти все вычислительные возможности системы можно применять в режиме чрезвычайно мощного научного калькулятора, а также составлять собственные программы, предназначенные для многоразового применения; это делает MatLab незаменимым средством проведения научных исследований. По скорости выполнения задач MatLab опережает многие другие подобные системы.

Впервые система MatLab (Matrix Laboratory) начала использоваться в конце 1970-х годов, но широкое распространение она получила в конце 1980-х годов, в особенности после появления на рынке версии 4.0. Система MatLab поддерживает возможность обращения к программам, написанным на языках FORTRAN, C и С++.

Основной объект системы MatLab – прямоугольный числовой массив (матрица), в котором допускается применение комплексных элементов. Использование матриц не требует явного указания их размеров. [1]

MatLab может работать в двух основных режимах:

После запуска программы MatLab 6.5 на экране появится окно MatLab, показанное на рисунке 8.1 (смотри след. стр.).

В нём могут отображаться несколько окон, главным из них является Окно команд (Command Window). Признаком того, что программа MatLab готова к восприятию и выполнению очередной команды, является наличие в последней строке командного окна знака ">>", справа от которого расположен мигающий курсор.

Для работы в режиме научного калькулятора используется Окно команд.

Программирование в системе MatLab осуществляется с помощью собственного языка программирования – т.н. М-язык. Программы, написанные на нём, пишутся в Редакторе М-файлов и оформляются в виде М-файлов с расширением *.m.

Важным понятием системы MatLab является понятие Рабочего пространства.

Рабочее пространство – это область памяти, в которой сохраняются все переменные, используемые программами MatLab в течение текущего сеанса работы. Благодаря этому может осуществляться обмен данными между различными компонентами системы MatLab.


11-12.

13-14.

15-16.

17-19.

20-24.

29-30

35-36.

Как выделить, или снять выделение элемента схемы? Как при этом изменяется внешний вид элемента, курсора? Как открыть окно настройки свойств выбранного элемента в программе Electronics Workbench 5.12с?

Для выделения элемента необходимо навести на него курсор, и произвести однократный щелчок левой кнопкой мыши. Что бы снять выделение, необходимо щелкнуть по рабочему полю, либо на другой элемент схемы. При выделении элемент становится принимает красный цвет.

Что бы открыть окно настройки свойств элемента, возможны следующие способы:

· Навести курсор на интересующий вас элемент, и произвести двойной щелчок левой кнопкой мыши.

· Навести курсор на интересующий вас элемент, и произвести однократный щелчок правой кнопкой мыши. В открывшемся ниспадающем меню выбрать пункт "Component properties".

· Навести курсор на интересующий вас элемент, и произвести однократный щелчок левой кнопкой мыши (выделить элемент). Выбрать пункт "Component properties", расположенный в меню "Analysis", "панели Меню".

41-44

45-48

49-50.

53-54

Баланс массы.

Для многих промышленных процессов существенным является моделирование баланса массы различных компонентов. В открытой системе, где происходит обмен с внешним миром, все уравнения баланса массы имеют одинаковую структуру

приращение массы = приход массы - расход массы

Такое уравнение можно сформулировать как для каждого отдельного компонента, так и для всей массы в целом. Приход (расход) массы может быть следствием как входного (выходного) потока, так и химических реакций или биологического роста.

Можно составлять уравнения баланса:

55-57

55. Расскажите все, что знаете о функции "единичное ступенчатое воздействие".

Единичным ступенчатым воздействием называется воздействие, описываемое единичной ступенчатой функцией


Реакция представляет собой функцию времени, в соответствии с которой изменяется выходной сигнал. Ступенчатое единичное воздействие это функция времени, равная нулю при отрицательных значениях времени и единице при положительных.

60-63

67-68

71-72.

73-77.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ – ИСТОРИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х – 1960х годах.

Первый пример практического применения управляющей ЭВМ относится к 1959 го­ду; он связан с работой нефтехимического завода компании "Texaco" в городе Порт-Артур, штат Техас. Компания "Texaco" выполнила эту пионерскую работу совместно с производителем ЭВМ – компанией Thomson Ramo Woolridge..

Важный шаг был сделан в 1962 году, когда английская компания ICI (Imperial Chemical Industries) представила концепцию прямого цифрового управления (раз­дел 12.4.3).

Изобретение в 1960-х годах транзистора дало заметный толчок развитию ком­пьютерных приложений. Стоимость единицы вычислительной мощности мини-компьютера на транзисторной элементной базе была на порядок меньше, чем у больших ЭВМ (mainframe), хотя стоимость самого мини-компьютера все еще пре­вышала 100 000 долларов.

Согласованное влияние трех главных факторов – совершенствование технической базы компьютеров, экономи­ческая целесообразность их применения в управлении относительно простыми процессами и развитие теории управления – привело к широкому распростране­нию компьютерного управления.

Современные персональные компьютеры намного превосходят мини-компь­ютеры 1960-х и 1970-х годов – типичная конфигурация, как правило, включает 16-или 32-разрядный центральный процессор (ЦП), несколько мегабайт оперативной памяти (оперативное запоминающее устройство – ОЗУ), гигабайты дисковой памя­ти, – а стоят несравнимо дешевле первых моделей ЭВМ.

Необходимо иметь в виду, что чрезмерное и одностороннее увлечение компь­ютерными технологиями может заслонить собой фундаментальные проблемы. Сегодня, после сорока лет применения компьютеров, существует достаточный опыт, чтобы задаться вопросом о реальных преимуществах, которые они принес­ли в промышленность и административное управление. В западных странах в 1950-60-х годах, еще до широкого распространения ЭВМ, один работающий мог содержать целую семью, включая выплату кредита за дом. В типичной совре­менной семье, по крайней мере, уже двое должны работать, чтобы поддержать стиль жизни, удовлетворяющий средним запросам, уровень которых продолжает повышаться. То, что два десятилетия назад представлялось золотым веком, обус­ловленным повсеместным внедрением компьютеров и автоматизации, сильно по­тускнело сегодня благодаря новым проблемам – от безработицы до загрязнения окружающей среды. То же самое может произойти с сегодняшней чрезмерно вы­сокой оценкой Интернета и компаний, основной бизнес которых построен на интернет технологиях (виртуальные магазины и т. д.). Нисколько не принижая их достоинства и преимущества, следует отметить, что они не дают надежных и эф­фективных способов решения реальных проблем.


При создании человеком чего-либо нового (новая модель самолета, автомобиля, орбитального спутника, книги, учебника и т. д.) информационные модели используются повсеместно. Руководствуясь исключительно теоретическими знаниями, не проводя экспериментов с моделями исследуемого или создаваемого объекта, невозможно определить наверняка, как он будет себя вести в тех или иных ситуациях. Наличие модели объекта позволяет определить наиболее слабые стороны в объекте и учесть полученные данные непосредственно при создании этого объекта. С подробным описанием всех видов информационных и компьютерных моделей, а также алгоритмом их создания можно будет ознакомиться на данном уроке.

Введение компьютерного моделирования

Родителем данной методологии является математическое моделирование. Они прочно связаны между собой, а существование компьютерного моделирования не может невозможно без математического. Появление точных наук дало начало активному использованию математического моделирования. Вычислительные методы, названые в честь столь известных ученых, как Эйлер и Ньютон, активно используются и в наше время.

В середине прошлого века ведущие страны мира, участвовавшие в научной борьбе, требовали технологически новую методологию. Такие проекты, как ракетно-ядерный щит, взрывы ядерных боеголовок, запуск космических ракет и спутников, не могли обрабатываться старыми методами. Решением стало изобретение электронных вычислительных машин. Они не только уменьшили время на выполнение большого количества рутинной работы, но и дали толчок для основания новой методологии – компьютерного моделирования.

Введение

Как мы знаем, информатика изучает реальные и абстрактные объекты. Для изучения реальных объектов и процессов создаются специальные компьютерные модели, т. е. формализованные модели объектов и процессов.

Развитие компьютерного моделирования

Первые применения данного моделирования осуществлялись в области физики. Оно помогало решать задачи гидравлики, фильтрации, теплопереноса и теплообмена, механики твердого тела и т.д. Фактически на первых этапах своего развития моделирование работало только с нелинейными задачами математической физики. Это делало его в большей степени математическим. Полученное доверие после успешных работ в области физики позволило компьютерному моделированию распространиться и на другие науки: химия, биология, электроэнергетика и т.д. А границы изучений этой методологии ограничивались исключительно возможностями ЭВМ. Уже в 70-ых годах прошлого столетия каждый успешный в области экологии или экономики проект разрабатывался с помощью моделирования.

Информационная модель

Информационная модель – описание объектов или процессов с помощью набора величин и/или изображений, содержащих необходимую информацию об исследуемых объектах или процессах. Информационные модели представляют объекты и процессы в образной или знаковой форме.

Формами представления информационной модели могут быть: любое словесное описание (в том числе описание алгоритма), таблица, рисунок, схема, чертеж, формула, компьютерная программа и т. д.

Примерами информационной модели могут служить, к примеру, библиотечный каталог, географическая карта, схема метрополитена, любой чертеж или математическая формула и т. д. Чертеж должен быть очень точным, на нем указываются все необходимые размеры. Например, чертеж болта нужен для того, чтобы, глядя на него, токарь мог выточить болт на станке (рис. 1).


Рис. 1. Инженерная схема как пример информационной модели. (Источник)


Рис. 2. Пример информационной модели

Среди множества видов информационных моделей выделяют:

  • математические;
  • графические;
  • табличные;
  • словесные.

Компьютерное моделирование в современном мире

В наше время моделирование активно проникает во все структуры информационного общества. Развитие данной технологии позволяет проектировать и изучать по-настоящему сложные процессы. Примером таких будет моделирование систем различной физической природы, включающих большое количество различных изменяющихся во времени параметров, структурных элементов и связей между ними.
Моделирование в медицине также довольно распространено. Мы имеем возможность изучать влияние тысяч молекул возможного препарата на белки, чтобы найти потенциально необходимое лекарство.

Каждое средство передвижения, архитектурное строение, производственный аппарат и т.д. не разрабатываются без помощи компьютерного моделирования.

Виртуальная реальность – плод данной технологии. Революционно новое направление с каждым днем набирает популярность. Она позволяет человеку попасть в виртуальный мир и управлять происходящим с помощью специальных сенсорных средств. При этом все природные нам ощущения, такие как слуховые или зрительные, заменяются их имитацией.

Заключение

Компьютерное моделирование – инструмент, без которого не обходится ни одна область человеческой деятельности. За 50 лет методология сделала огромный скачок в технологическом развитии. Став более доступной и простой, она дает возможность людям концентрироваться на моделировании и экспериментах. И это только начало: с каждым днем моделирование открывает себя в совершенно новых отраслях нашей жизни. В данной статье описаны лишь некоторые примеры из всего разнообразия применения компьютерного моделирования, ярко подчёркивающие значимость и возможности этой технологии.

Компьютерная модель


Рис. 6. Интерфейс виртуальной лаборатории LiveChem

Опыты в виртуальных лабораториях удобно проводить, если в реальных условиях они, например, связаны с риском для жизни (подразумевается работа с кислотами, щелочами, взрывчатыми веществами) или если они требуют дорогостоящего оборудования для проведения.

Виртуальный мир (виртуальная реальность) – созданный техническими средствами мир, передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и пр. Объекты виртуальной реальности обычно ведут себя близко к поведению аналогичных объектов материальной реальности.


Рис. 7. Симулятор вождения автомобиля


Графическая модель

Графическая модель – это представление объектов и процессов в виде их изображений. Примером графической модели может служить план зрительного зала в театре, изображение какой-либо детали, географическая карта (рис. 4). На примере географических карт можно увидеть, как один и тот же объект может быть представлен различными способами, как при помощи модели могут быть выделены только определенные свойства этого объекта. К примеру, существуют карты физические, административного деления, политическая и т. д. На физической карте мы видим горы, равнины, леса; на административной карте перечисленные вещи не показываются, но зато на них присутствуют границы между территориальными областями. На карте почв видны кривые зимних и летних температур. Получается, что для каждой модели выделяются те свойства, которые интересны для изучения.


Рис. 4. Политическая карта мира как пример графической модели (Источник)

Табличная модель

Табличная модель – это представление свойств объектов и процессов в виде таблиц. Например, процесс сжатия газа под поршнем: зависимость давления газа от объема можно представить в виде таблицы. Таким образом, создается табличная модель этого процесса. Одним из наиболее наглядных примеров табличной модели является периодическая система химических элементов Д.И. Менделеева (рис. 5).


Рис. 5. Табличная модель представления данных – периодическая система химических данных (Источник)

Кол-во блоков: 16 | Общее кол-во символов: 10239
Количество использованных доноров: 3
Информация по каждому донору:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам


Оглавление

Построение и использование компьютерных моделей

Пути построения компьютерных моделей

Компьютерное моделирование начинается как обычно с объекта изучения, в качестве которого могут выступать: явления, процесс, предметная область, жизненные ситуации, задачи. После определения объекта изучения строится модель. При построении модели выделяют основные, доминирующие факторы, отбрасывая второстепенные. Выделенные факторы перекладывают на понятный машине язык. Строят алгоритм, программу.

Когда программа готова, проводят компьютерный эксперимент и анализ полученных результатов моделирования при вариации модельных параметров. И уже в зависимости от этих выводов делают нужные коррекции на одном из этапов моделирования: либо уточняют модель, либо алгоритм, либо точнее, более корректнее определяют объект изучения.

Компьютерные модели проходят очень много изменений и доработок прежде, чем принимают свой окончательный вид. Этапы компьютерного моделирования можно представить в виде схемы:

Объект - Модель - Компьютер - Анализ - Информац. модель

!______! !_____! !____________! !______!

модел-е прогр-е к.эксперимент знание

В методе компьютерного моделирования присутствуют все важные элементы развивающего обучения и познания: конструирование, описание, экспериментирование и т.д. В результате добываются знания об исследуемом объекте-оригинале.

Однако важно не путать компьютерную модель (моделирующую программу) с самим явлением. Модель полезна, когда она хорошо согласуется с реальностью. Но модели могут предсказывать и те вещи, которые не произойдут, а некоторые свойства действительности модель может и не прогнозировать. Тем не менее, полезность модели очевидна, в частности, она помогает понять, почему происходят те или иные явления.

Современное компьютерное моделирование выступает как средство общения людей (обмен информационными, компьютерными моделями и программами), осмысления и познания явлений окружающего мира (компьютерные модели солнечной системы, атома и т.п.), обучения и тренировки (тренажеры), оптимизации (подбор параметров).

Компьютерная модель - это модель реального процесса или явления, реализованная компьютерными средствами.

Компьютерные модели, как правило, являются знаковыми или информационными. К знаковым моделям в первую очередь относятся математические модели, демонстрационные и имитационные программы.

Информационная модель - набор величин, содержащий необходимую информацию об объекте, процессе, явлении.

- Главной задачей компьютерного моделирования выступает построение информационной модели объекта, явления.

- Самое главное и сложное в компьютерном моделировании - это построение или выбор той или иной модели.

При построении компьютерной модели используют системный подход, который заключается в следующем. Рассмотрим объект - солнечную систему. Систему можно разбить на элементы - Солнце и планеты. Введем отношения между элементами, например, удаленность планет от Солнца. Теперь можно рассматривать независимо отношения между Солнцем и каждой из планет, затем обобщить эти отношения и составить общую картину солнечной системы (принципы декомпозиции и синтеза).

Некоторые характеристики моделей являются неизменными, не меняют своих значений, а некоторые изменяются по определенным законам. Если состояние системы меняется со временем, то модели называют динамическими, в противном случае - статическими.

Построение компьютерной модели. Моделирование

При построении моделей используют два принципа: дедуктивный (от общего к частному) и индуктивный (от частного к общему).

При первом подходе рассматривается частный случай общеизвестной фундаментальной модели. Здесь при заданных предположениях известная модель приспосабливается к условиям моделируемого объекта. Например, можно построить модель свободно падающего тела на основе известного закона Ньютона ma = mg-F сопр и в качестве допустимого приближения принять модель равноускоренного движения для малого промежутка времени.

Второй способ предполагает выдвижение гипотез, декомпозицию сложного объекта, анализ, затем синтез. Здесь широко используется подобие, аналогичное моделирование, умозаключение с целью формирования каких-либо закономерностей в виде предположений о поведении системы. Например, подобным способом происходит моделирование строения атома. Вспомним модели Томсона, Резерфорда, Бора.

Технология построения модели при дедуктивном способе:

1. Теоретический этап:

2. Знания, информация об объекте (исходные данные об объекте).

3. Постановка задачи для целей моделирования.

4. Выбор модели (математические формулировки, компьютерный дизайн).

Технология построения модели при индуктивном способе:

1. Эмпирический этап:

2. Постановка задачи для моделирования.

3. Оценки.Количественное и качественное описание

4. Построение модели.

Этапы решения задачи с помощью компьютера (построение модели — формализация модели — построение компьютерной модели — проведение компьютерного эксперимента — интерпретация результата).

Основные этапы разработки и исследования моделей на компьютере

1. описательная информационная модель

2. формализованная модель

3. компьютерная модель

4. компьютерный эксперимент

5. Анализ полученных результатов и корректировка исследуемой модели

1 этап - описательная информационная модель : такая модель выделяет существенные (с точки зрения целей проводимого исследования ) параметры объекта, а несущественными параметрами пренебрегает

2 этап - Описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

3 этап - компьютерная модель

Описательная информационная модель записывается с помощью какого-либо формального языка.

В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Пути построения компьютерной модели

- Построение алгоритма решения задачи и его кодирование на одном из языков программирования;

- Построение компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и пр.)

4 этап – компьютерный эксперимент

- Если компьютерная модель существует в виде программы на одном из языков программирования, её нужно запустить на выполнение и получить результаты.

- Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график.

5 этап – анализ полученных результатов и корректировка исследуемой модели

- В случае различия результатов, полученных при исследовании информационной модели, с измеряемыми параметрами реальных объектов можно сделать вывод, что на предыдущих этапах построения модели были допущены ошибки или неточности.

- Провести корректировку модели .

Метод имитационного моделирования (метод Монте-Карло)

Теоретическая основа метода была известна давно. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную - очень трудоемкая работа.

Само название “Монте-Карло” происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом. Дело в том, что одним из механических приборов для получения случайных величин является рулетка. Для вычисления площади круга единичного радиуса проведем эксперимент.

Список литературы:

Читайте также: