Информационная поддержка лечебно диагностического процесса реферат

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

1. Основные составляющие лечебно-диагностического или оздоровительно-профилактического процесса

Медицинский технологический процесс — это оздоровительно-профилактический или лечебно-диагностический процесс (ЛДП) управления организмом (изменением структуры и функций), который реализуется в пространстве и времени с целью улучшения его состояния.

Конечной целью оздоровительно-профилактического процесса является ликвидация отклонений в состоянии здоровья пациента (при пограничных, донозологических состояниях и ранних проявлениях болезни), а целью ЛДП — ликвидация патологии (в случае острого заболевания) или перевод пациента в ремиссию (в случае хронического заболевания). Далее при рассмотрении ЛДП будем иметь в виду и оздоровительно-профилактический процесс.

Лечебно-диагностический процесс является частным случаем процесса управления в любой технологической системе. В клинической медицине объектом исследования и управления является организм пациента и внешняя по отношению к нему среда, субъектом управления — врач.

По отношению к состоянию пациента врач является лицом, принимающим решения (ЛПР).

Процесс управления включает в себя четыре этапа:

1) сбор и обработка информации о состоянии объекта управления;

2) диагностика, т.е. отнесение состояния объекта к одному из известных классов состояний;

3) принятие решения о воздействии на объект;

4) реализация принятого решения.

Эти этапы представляют собой контур управления. Реальные системы управления сложнее, однако, в целом такой контур управления применим к любой предметной области, в том числе к медицинскому технологическому процессу. Схема контура управления для задач клинической медицины приведена на рис. 3.

Задачи, которые решает врач любого лечебного отделения, однотипны и сводятся к сбору информации, решению диагностических и лечебных тактических вопросов, ведению медицинской документации. Несколько особняком стоят задачи, решаемые врачами диагностических и ряда других специализированных отделений, но в большинстве случаев они являются частным случаем задач, стоящих перед врачом лечебного отделения.

Для решения задач медицинского технологического процесса врач использует различную клинико-диагностическую информацию: жалобы больного, данные анамнеза, осмотра и физикального обследования (пальпация, перкуссия, аускультация), результаты инструментальных и лабораторных методов исследования. При этом, за исключением ознакомления с медицинскими документами других учреждений, врач получает информацию тремя способами:

вербальным — из беседы с больным;

сенситивным — с помощью органов чувств врача и медицинских приборов (фонендоскопа, тонометра и т.д.);

объективизированным, основанным на результатах лабораторных и инструментальных исследований.

(Данное деление несколько условно, так как, например, современные приборы для измерения давления относятся к третьему способу получения информации.)

Процесс получения врачом информации может быть достаточно продолжительным, так как зависит от сроков поступления результатов дополнительных исследований.

Рис. 3. Контур управления для задач клинической медицины

Рассмотрим это на примере типовой ситуации в стационаре. Сведения о жалобах и данные осмотра врач получает при первом контакте с больным и в процессе наблюдения за пациентом в отделении, данные общих анализов крови и мочи — в течение 1-х суток пребывания больного в стационаре, результаты электрокардиографии — обычно на 1 —2-е сутки, рентгенографии, УЗИ — на 3 —4-е сутки и т.д.

Диагностические задачи включают распознавание текущего состояния организма пациента, постановку развернутого нозологического диагноза, оценку тяжести состояния больного. Кроме того, в процессе наблюдения за больным врач решает задачи оценки динамики состояния пациента и прогнозирования развития патологического процесса, включая возможность и характер осложнений, исход заболевания.

В приемном отделении пациента осматривает врач приемного отделения, выставляющий предварительный диагноз, назначающий план обследования и лечения и направляющий в лечебное отделение.

Диагноз, поставленный в приемном отделении, является для врача лечебного отделения стационара одной из диагностических гипотез, которую необходимо подтвердить или опровергнуть. При этом последовательность диагностических исследований в зависимости от получаемых в процессе обследования результатов может подвергаться коррекции, а иногда и коренной трансформации.

На основе диагностической рабочей гипотезы врач принимает лечебные и тактические решения при каждом контакте с больным. В ходе обследования и лечения такие гипотезы возникают, сменяя друг друга, до тех пор, пока последняя, выдержав ряд проверок, не станет окончательным и обоснованным клиническим диагнозом.

Диагностический процесс можно условно подразделить на три взаимосвязанных этапа:

1) постановка первичного диагноза (предварительная гипотеза);

2) построение дифференциально-диагностического ряда (выдвижение дополнительных гипотез);

3) окончательный диагноз (обоснование окончательной гипотезы).

Общим является то, что диагностический процесс, построенный на рассуждениях о признаках и их сочетаниях, обосновывающих или отвергающих определенную диагностическую гипотезу, опирается на логику аргументации.

Лечебные задачи включают в себя принятие решений о медикаментозных и немедикаментозных воздействиях на выявленное патологическое состояние с учетом индивидуальных особенностей организма пациента и на основе оценки динамики его состояния.

Среди тактических решений врача лечебного отделения можно выделить:

1. решения о прекращении диагностического поиска, если тяжесть состояния больного такова, что не позволяет провести сложные диагностические процедуры;

2. решения о переводе пациента в отделение интенсивной терапии, если его состояние ухудшилось (осложнилось течение основного заболевания или остро возникло новое, требующее проведения интенсивной терапии);

3. решения о переводе в другое лечебное отделение, если впервые выявляется заболевание другого профиля (инфекционное, хирургическое, гинекологическое и др.), проявления которого становятся ведущими в клинической картине, или на передний план выходит сопутствующая патология. В этом случае врач может принять решение самостоятельно или пригласить врача-консультанта и принять совместное решение;

4. решение о выписке больного под наблюдение участкового врача.

Итак, в медицинском технологическом процессе на первом этапе управления осуществляется сбор и обработка информации о пациенте и его состоянии с помощью всех имеющихся в арсенале современной медицины методов. На втором диагностируется состояние организма — это может быть нозологическая диагностика, синдромальная диагностика, наконец, диагностика некоего состояния пациента, на которое необходимо реагировать. На третьем осуществляется выбор управляющих воздействий на основе прогнозирования возможных результатов их применения: выбор лечебных и профилактических мероприятий, оценка риска, связанного с их проведением, выбор тактических решений и т.д. На четвертом этапе осуществляются управляющие воздействия. После реализации выбранного комплекса управляющих воздействий вновь начинается сбор информации о состоянии пациента и(или) внешней среды для контроля состояния и своевременного внесения корректив в ЛДП. Таким образом, медицинский технологический процесс является циклическим. Все этапы управления в ЛДП осуществляются субъектом управления — врачом (ЛПР).

На современном этапе развития информационных технологий обеспечение нужной информацией (информационное обеспечение деятельности) невозможно без компьютеризации учреждения и автоматизации работы персонала.

Информационное обеспечение является важным фактором в работе как врачей ЛПУ, так и руководителей всех уровней здравоохранения. Своевременное получение нужной информации позволяет не только облегчить работу медицинских работников, но и повысить качество оказываемой населению медицинской помощи.

В ходе ЛДП в деятельности медицинского персонала и в первую очередь врача можно выделить множество элементов, обусловливающих необходимость работы непосредственно с медицинской информацией.

Работа по информатизации медицинского технологического процесса начинается с формулирования (формального уточнения) функций медицинского персонала в зависимости от должности по отношению к больному в течение всего периода времени от обращения пациента за медицинской помощью в ЛПУ до завершения лечения (табл. 2). Таблица не претендует на полноту; в ней не рассмотрены особенности хирургических и других отделений. Она призвана проиллюстрировать, что процесс деятельности медицинского работника можно рассматривать как объект информатизации.

Интегральная оценка информатизации врачебной деятельности может основываться на двух базовых характеристиках: полноте информатизации и характере используемых информационных систем. Об используемых во врачебной деятельности ИМС речь пойдет в следующей главе.

Полнота информатизации дает возможность оценить долю функций медицинского персонала, при реализации которых используются информационные технологии, в списке потенциально автоматизируемых функций. Полнота информатизации деятельности медицинского работника может быть представлена тремя уровнями: информатизацией основных функций, информатизацией части функций и начальным

Должность медицинского работника

Функции медицинского работника

Фиксация в истории болезни времени поступления пациента в отделение. Размещение в палате и фиксация номера палаты в истории болезни

Первичный осмотр в отделении. Описание результатов осмотра в истории болезни. Занесение в историю болезни предварительного диагноза, назначение консультаций, исследований, лечения, питания, режима

Осмотр в нерабочее для штатного медицинского персонала лечебного отделения время. Знакомство с записями в истории болезни. Описание результатов осмотра, занесение предварительного диагноза, назначение экстренных консультаций, терапии, питания, исследований

В лечебном отделении

Выполнение назначений. Формирование заявок на консультации, направлений на исследования. Подготовка больного к проведению исследований, сбор биоматериалов

Забор материала для лабораторных анализов

В диагностическом отделении

Врачи и медицинские сестры диагностических отделений

В лечебном отделении

Проведение текущего осмотра. Изменения в диагнозе, схеме обследования, лечении, питании, режиме

Осмотр больного, требующего наблюдения, в нерабочее для лечащего врача время. Назначение экстренного обследования и лечения. Запись в истории болезни

Должность медицинского работника

Функции медицинского работника

В лечебном отделении

Проведение консультаций. Запись в истории болезни

На процедуре в специализированном подразделении

Врачи и медицинские сестры соответствующих подразделений

Проведение специфических лечебных пособий. Запись в истории болезни

В лечебном отделении

Выписка больного из лечебно-профилактического учреждения. Перевод в другое отделение (лечебно-профилактическое или реабилитационное учреждение). Оформление медицинской документации

уровнем информатизации. К последнему можно отнести ситуацию, когда при выполнении должностных функций медицинские работники используют на компьютере только стандартные приложения (текстовый редактор, электронные таблицы) и статистические пакеты для обработки данных (см. гл. 3). Фактически в этом случае речь идет об использовании лишь отдельных функций процесса автоматизации.

Информатизация любой функции врача может быть реализована на разных уровнях:

ввод в компьютер произвольной информации с ее последующим хранением и использованием в процессе деятельности;

использование шаблонов, справочников и БД;

автоматизация сбора и обработки регистрируемой физиологической и лабораторной информации;

интеллектуальная поддержка деятельности врача при принятии решений на разных этапах оказания пациенту медицинской помощи.

Реализация алгоритмов информатизации более высокого уровня не исключает возможности использования алгоритмов информатизации относительно простых функций.

Модель — это создаваемое человеком подобие изучаемого объекта (макет, изображение, схема, карта, словесное описание, математическое представление и т.п.). Метод моделирования состоит в исследовании объекта, явления или процесса путем построения моделей и их изучения. Модель всегда проще реального объекта, но она позволяет выделить главное, не отвлекаясь на детали. Необходимость моделирования объясняется принципиальной невозможностью исследования многих объектов или большой ресурсоемкостью их изучения.

Различают биофизические, физические, электрические, ситуационные, информационные, математические и другие модели.

Информационная модель — модель объекта, процесса или явления, в которой представлены информационные аспекты моделируемого объекта, процесса или явления. Среди информационных моделей особое место занимают модели представления знаний (см. подразд. 7.3.2). Математическая модель — приближенное описание объекта, явления или процесса с помощью математической символики. Эта модель представляет собой систему математических соотношений: формул, функций, уравнений, систем уравнений, описывающих те или иные стороны изучаемого объекта, явления или процесса. Математическое моделирование — мощное средство познания, прогнозирования и управления. Анализ математической модели помогает проникнуть в суть изучаемого объекта или явления.

Математические модели строятся на основе данных эксперимента или умозрительно, описывают гипотезу, теорию или закономерность того или иного феномена и требуют дальнейшей проверки на практике. Различные варианты проводимых экспериментов выявляют границы применения математической модели и создают условия для ее дальнейшей коррекции. Математическое моделирование часто позволяет предвидеть характер изменения исследуемого процесса в условиях, трудно воспроизводимых в эксперименте, а в отдельных случаях позволяет предсказать ранее неизвестные явления и процессы.

Процесс математического моделирования принято делить на несколько этапов.

1. Постановка задачи. Необходимо отметить, что построение модели подразумевает наличие у специалиста хорошего уровня знаний предметной области, в рамках которой осуществляется моделирование. В постановку задачи входят определение цели исследования, выделение объекта исследования, определение параметров исследуемого объекта, выявление взаимосвязей между параметрами. Этап завершается записью модели в математическом виде.

При математическом моделировании разных процессов и явлений может использоваться один и тот же математический аппарат. Это упрощает задачу моделирования, дает возможность выбора из полученных вариантов.

3) Оценка реализованной модели. Выясняют, удовлетворяет ли созданная математическая модель критерию практики, т.е. согласуются ли результаты наблюдений с теоретическими (гипотетическими, модельными) данными в пределах заданной точности. Достижение такого результата означает, что положения, лежащие в основе модели, правильны и модель пригодна для исследования выбранного объекта или явления.

4) Анализ модели на основе накопленных данных об изучаемом объекте, модернизация первоначально построенной модели. С получением новых научных данных знания об исследуемом объекте уточняются, и наступает момент, когда результаты, получаемые на основании существующей модели, перестают им соответствовать. Возникает необходимость уточнения данной модели или построения новой. Между моментами построения исходной и последующей моделей проходят разные промежутки времени в зависимости от сути изучаемого явления, уровня и скорости исследования данной предметной области, характера полученных новых знаний и данных.

В медицине модели применяются для исследования структур, функций и процессов на разных уровнях организации живого организма: атомарно-молекулярном, субклеточном, клеточно-тканевом, органно-системном, организменном, биоценотическом.

В медицине, как и в биологи, используются в большинстве случаев биологические, физико-химические, математические модели. Исторически сложилось, что в медицине до сих пор широко распространены словесные описания объектов и процессов (например, заболеваний), а в последние десятилетия все чаще применяются информационные модели.

Биологические модели в медицине применяются для воспроизводства на лабораторных животных заболеваний или состояний, встречающихся у человека. Таким образом, в эксперименте исследуются механизмы возникновения заболевания, его этиология, патогенез, течение, изучаются варианты воздействия на протекание болезни, сравнивается эффективность применения различных лечебных пособий. В эксперименте, например, моделируются ишемические нарушения и гипертоническая болезнь, злокачественные новообразования и генетические заболевания, инфекционные процессы и др.

Для реализации биологических моделей экспериментальным животным вводят токсины, заражают их микробами, перевязывают сосуды, исключают из пищи определенные вещества, помещают в искусственно создаваемую среду обитания и др. Подобные экспериментальные модели применяются в нормальной и патологической физиологии, генетике, фармакологии, хирургии, реаниматологии. Физико-химические модели имитируют сложные акты поведения, например формирование условного рефлекса.

Удачным следует признать опыт построения электронных схем, моделирующих биоэлектрические потенциалы в нервной клетке и синапсе на основе данных электрофизиологических исследований.

В настоящее время в медицине самое широкое распространение получили математические модели. Они используются практически во всех ее областях. Математические модели применяются для изучения сложных физиологических процессов, диагностики патологических состояний, исследования взаимодействия систем организма в норме и патологии, при изучении эпидемических процессов, в клинической иммунологии, фармакокинетике.

Из математических моделей, известных в физиологии, следует упомянуть модель возбуждения нервного волокна, предложенную А.Ходжкином и А.Хаксли.

Модель сердечной деятельности Ван дер Пола и Ван дер Марка, основанная на теории релаксационных колебаний, позволила предсказать возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека.

Ярким примером использования математической модели для обобщения накопленных экспериментальных знаний является модель кровообращения Ф. Гродинза. Построением и исследованием моделей кровообращения, применяющихся в практике российской сердечно-сосудистой хирургии, занимается В.А.Лищук.

В медицинской информатике широко используется моделирование, особенно часто математическое и информационное. Математические модели используются для расчета клинически значимых показателей при обработке сигналов и изображений, для описания заболеваний и состояний при вычислительной диагностике и прогнозировании. Информационное моделирование все чаще применяется при описании деятельности ЛПУ и их подразделений. И информационное, и математическое моделирование применяется в задачах, связанных с управлением здравоохранением.

Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура и конечно же медицина.

Содержание

1. Введение.
2. Медицинская информатика.
3. Классификация медицинских информационных систем.
4. Медицинские приборно-компьютерные системы.
5. Медицинская диагностика.
6. Системы для проведения мониторинга.
7. Системы управления лечебным процессом.
8. Пути развития медицинских ИТ.
9. Телемедицина.
10. Компьютер в стоматологии.
11. Компьютерная томография.
12. Использование компьютеров в медицинских лабораторных исследованиях.
13. Компьютерная флюрография.
14. Заключение.
15. Список использованной литературы.

Работа содержит 1 файл

Информационные технологии в медицине1.doc

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

доцент Кусмарцева Наталья Викторовна

группы 10 – Э – 5 Краснова Е. О.

  1. Введение.
  2. Медицинская информатика.
  3. Классификация медицинских информационных систем.
  4. Медицинские приборно-компьютерные системы.
  5. Медицинская диагностика.
  6. Системы для проведения мониторинга.
  7. Системы управления лечебным процессом.
  8. Пути развития медицинских ИТ.
  9. Телемедицина.
  10. Компьютер в стоматологии.
  11. Компьютерная томография.
  12. Использование компьютеров в медицинских лабораторных исследованиях.
  13. Компьютерная флюрография.
  14. Заключение.
  15. Список использованной литературы.

Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура и конечно же медицина.

Компьютер все больше используется в области здравоохранения, что бывает очень удобным, а порой просто необходимым. Благодаря этому медицина, в том числе и нетрадиционная, приобретает сегодня совершенно новые черты. Во многих медицинских исследованиях просто не возможно обойтись без компьютера и специального программного обеспечения к нему. Этот процесс сопровождается существенными изменениями в медицинской теории и практике, связанными с внесением корректив к подготовке медицинских работников.

Жизненный путь каждого человека в той или иной степени пересекается с врачами, которым мы доверяем свое здоровье и жизнь. Но образ медицинского работника и медицины в целом в последнее время претерпевает сильные изменения, и происходит это во многом благодаря развитию информационных технологий.

Медицинская информатика.

Информационные процессы присутствуют во всех областях медицины и здравоохранения. От их упорядоченности зависит четкость функционирования отрасли в целом и эффективность управления ею. Информационные процессы в медицине рассматривает медицинская информатика. В настоящее время медицинская информатика признана как самостоятельная область науки, имеющая свой предмет, объект изучения и занимающая место в ряду медицинских дисциплин. Медицинская информатика – это прикладная медико-техническая наука, являющаяся результатом перекрестного взаимодействия медицины и информатики: медицина поставляет комплекс задача – методы, а информатика обеспечивает комплекс средства – приемы в едином методическом подходе, основанном на системе задача – средства – методы – приемы.

Предметом изучения медицинской информатики при этом будут являться информационные процессы, сопряженные с методико- биологическими, клиническими и профилактическими проблемами. Объектом изучения медицинской информатики являются информационные технологии, реализуемые в здравоохранении. Основной целью медицинской информатики является оптимизация информационных процессов в медицине за счет использования компьютерных технологий, обеспечивающая повышение качества охраны здоровья населения.

Классификация медицинских информационных систем.

Ключевым звеном в информатизации здравоохранения является информационная система.

Классификация медицинских информационных систем основана на иерархическом принципе и соответствует многоуровневой структуре здравоохранения. Различают:

  1. медицинские информационные системы базового уровня, основная цель которых – компьютерная поддержка работы врачей разных специальностей; они позволяют повысить качество профилактической и лабораторно-диагностической работы, особенно в условиях массового обслуживания при дефиците времени квалифицированных специалистов. По решаемым задачам выделяют:

- информационно-справочные системы (предназначены для поиска и выдачи медицинской информации по запросу пользователя),

- консультативно-диагностические системы (для диагностики патологических состояний, включая прогноз и выработку рекомендаций по способам лечения, при заболеваниях различного профиля),

- приборно-компьютерные системы (для информационной поддержки и/или автоматизации диагностического и лечебного процесса, осуществляемых при непосредственном контакте с организмом больного),

- автоматизированные рабочие места специалистов (для автоматизации всего технологического процесса врача соответствующей специальности и обеспечивающая информационную поддержку при принятии диагностических и тактических врачебных решений);

  1. медицинские информационные системы уровня лечебно-профилактических учреждений. Представлены следующими основными группами:

- информационными системами консультативных центров (предназначены для обеспечения функционирования соответствующих подразделений и информационной поддержки врачей при консультировании, диагностике и принятии решений при неотложных состояниях),

- банками информации медицинских служб (содержат сводные данные о качественном и количественном составе работников учреждения, прикрепленного населения, основные статистические сведения, характеристики районов обслуживания и другие необходимые сведения),

- персонифицированными регистрами (содержащих информацию на прикрепленный или наблюдаемый контингент на основе формализованной истории болезни или амбулаторной карты),

- скрининговыми системами (для проведения доврачебного профилактического осмотра населения, а также для выявления групп риска и больных, нуждающихся в помощи специалиста),

- информационными системами лечебно-профилактического учреждения (основаны на объединении всех информационных потоков в единую систему и обеспечивают автоматизацию различных видов деятельности учреждения),

- информационными системами НИИ и медицинских вузов (решают 3 основные задачи: информатизацию технологического процесса обучения, научно-исследовательской работы и управленческой деятельности НИИ и вузов);

  1. медицинские информационные системы территориального уровня. Представлены:

- ИС территориального органа здравоохранения;

- ИС для решения медико-технологических задач, обеспечивающие информационной поддержкой деятельность медицинских работников специализированных медицинских служб;

- компьютерные телекоммуникационные медицинские сети, обеспечивающие создание единого информационного пространства на уровне региона;

  1. федеральный уровень, предназначенные для информационной поддержки государственного уровня системы здравоохранения.

Медицинские приборно-компьютерные системы.

Важной разновидностью специализированных медицинских информационных систем являются медицинские приборно- компьютерные системы (МПКС).

В настоящее время одним из направлений информатизации медицины является компьютеризация медицинской аппаратуры. Использование компьютера в сочетании с измерительной и управляющей техникой в медицинской практике позволило создать новые эффективные средства для обеспечения автоматизированного сбора информации о состоянии больного, ее обработки в реальном масштабе времени и управление ее состоянием. Этот процесс привел к созданию МПКС, которые подняли на новый качественный уровень инструментальные методы исследования и интенсивную терапию. МПКС относятся к медицинским информационным системам базового уровня. Основное отличие систем этого класса – работа в условиях непосредственного контакта с объектом исследования и в реальном режиме времени. Они представляют собой сложные программно-аппаратные комплексы. Для работы МПКС помимо вычислительной техники, необходимы специальные медицинские приборы, оборудование, телетехника, средства связи.

Типичными представителями МПКС являются медицинские системы мониторинга за состоянием больных, например, при проведении сложных операций; системы компьютерного анализа данных томографии, ультразвуковой диагностики, радиографии; системы автоматизированного анализа данных микробиологических и вирусологических исследований, анализа клеток и тканей человека.

В МПКС можно выделить три основные составляющие: медицинское, аппаратное и программное обеспечение.

Применительно к МПКС медицинское обеспечение включает в себя способы реализации выбранного круга медицинских задач, решаемых в соответствии с возможностями аппаратной и программной частей системы. К медицинскому обеспечению относятся наборы используемых методик, измеряемых физиологических параметров и методов их измерения, определение способов и допустимых границ воздействия системы на пациента.

Под аппаратным обеспечением понимают способы реализации технической части системы, включающей средства получения медико-биологической информации, средства осуществления лечебных воздействий и средства вычислительной техники.

К программному обеспечению относят математические методы обработки медико- биологической информации, алгоритмы и собственно программы, реализующие функционирование всей системы.

Медицинская диагностика.

Разработка и внедрение информационных систем в области медицинских технологий является достаточно актуальной задачей. Анализ применения персональных ЭВМ в медицинских учреждениях показывает, что компьютеры в основном используются для обработки текстовой документации, хранения и обработки баз данных, статистики. Часть ЭВМ используется совместно с различными диагностическими и лечебными приборами. В большинстве этих областей использования ЭВМ применяют стандартное программное обеспечение – текстовые редакторы, СУБД и др. Поэтому создание информационной организационно-технической системы, способной своевременно и достоверно установить диагноз больного и выбрать эффективную тактику лечения, является актуальной задачей информатизации.

Задачу диагностики в области медицины можно поставить как нахождение зависимости между симптомами (входными данными) и диагнозом (выходными данными). Для реализации эффективной организационно- технической системы диагностики необходимо использовать методы искусственного интеллекта. Целесообразность такого подхода подтверждает анализ данных, используемых при медицинской диагностике, который показывает, что они обладают целым рядом особенностей, таких как качественный характер информации, наличие пропусков данных; большое число переменных при относительно небольшом числе наблюдений. Кроме того, значительная сложность объекта наблюдения (заболеваний) нередко не


Реферат
Компьютерные технологии в поддержке лечебно- диагностического процесса.

Выполнил: студент 1 курса
Стоматологического факультета
101группы
Лукин. В. И.

Введение
1. Состояние научных исследований в области телемедицины
2. Экспертные системы
3. Международные информационные сети
4. Выводы
5. Список литературы

Среди современных медицинских технологий, находящихся на страже здоровья человека ведущее место принадлежит телемедицине. Главной задачейкоторой является реализация права человека на получение квалифицированной медицинской помощи в любом месте, в любое время.
Телемедицина - логическое развитие первых консультаций по телефону, существовавших в начале века и является перспективным направлением информатизации общества.
Телемедицину можно рассматривать как систему, обеспечивающую рядовому пользователю доступ к современным медицинскимресурсам, в том числе, международным. Рассматриваемая система представляет собой совокупность средств и комплексов, реализующих потенциал современных информационных и телекоммуникационных технологий в здравоохранении, а также соответствующее финансовое и правовое обеспечение.
В систему входят:
медицинские организации с их профессиональными и информационными, образовательными ресурсами,медицинскими диагностическими устройствами, базами данных, а также пользователи системы и др.,
технические средства доступа в телекоммуникационные сети,
каналы связи и сетевые средства,
датчики и другие преобразователи медицинской информации в цифровые электрические сигналы для передачи по каналам связи.
Области применения телемедицины:
диагностика и консультирование удаленных субъектов, включая как пациентов,так и младший медперсонал;
дистанционное обучение студентов (преддипломное) и медперсонала (последипломное).
Задачи телемедицины:
Профилактическое обслуживание населения.
Снижение стоимости медицинских услуг.
Обслуживание удаленных субъектов, устранение изоляции.
Повышение уровня обслуживания.
С введением в России с 1991 г. государственного обязательного медицинского страхования проблемыповышения эффективности медицины заставили обратиться к вопросу более интенсивного развития телемедицинских систем. Однако разработка и внедрение телемедицины в России требует концентрации множества ресурсов.
В настоящее время существует значительное отставания в развитии российских телемедицинских систем, в том числе и потому, что в России на телемедицину тратится 3-4% валового дохода, а в США, например,13-14%. С учетом бюджетов это несоизмеримые цифры (75 дол. и 3000 дол., соответственно, на человека). При этом следует отметить, что при реализации конкретных технологий телемедицины, конкретных телемедицинских проектов существует так называемая критическая масса финансовых средств, определяющих реализуемость проекта. Поэтому для России в области телемедицины важнейшим становится вопрос координации иконцентрации ресурсов.
Следует отметить, что за рубежом для координации развития телемедицины созданы общественные и правительственные организации. В Канаде для координации развития программы телемедицины создано Общество телемедицины, объединяющее клиницистов, преподавателей, производителей программно-вычислительных и телекоммуникационных средств, в США активно работает Ассоциация телемедицины(АТА), в Японии для координации работ по телемедицине создан директорат при Минздравоохранения.
Для объединения финансовых ресурсов в России также создаются акционерные общества, в частности, на базе Центрального института травматологии и ортопедии и Научно-исследовательского института сердечно-сосудистой хирургии им. А.В. Вишневского создано ОАО "Телемедицина".

PROBLEMS OF INTRODUCTION MEDICAL INFORMATION SYSTEMS AND APPROACHES OF THEIR SOLUTION

Статья посвящена проблемам внедрения медицинской информационной системы (МИС). В работе рассматриваются, эффективность внедрения и использования МИС. Выделены ключевые фактор, влияющие на эффективность использования медицинских информационных систем в практике здравоохранения.

Приведены наиболее перспективные подходы к внедрению и реализации функционирования основных подсистем прикладного програмного обеспичения в сфере информатизации лечебно – диагностического процесса.

Ключевые слова: медицинские информационные системы, IT-инфраструктура

Постановка проблемы. В ближайшее время процесс внедрения медицинских информационных систем пойдет полным ходом, запись к врачу будет доступна через интернет, а медицинские карты вестись в электронном виде. При этом считается, что указанные задачи будут решены, если будут выделены соответствующие средства и закуплены компьютеры и оргтехника, построены информационные сети, в каждом медицинском учреждении создана соответствующая IT- инфраструктура, разработано и внедрено соответствующее программное обеспечение. Проблемы заключается в том что компании, которые предлагаю медицинские информационные системы не всегда до конца понимают всю сложность внедрения такой системы. Анализ последних исследований проводили такие ученые как: Дмитрий Романов, Андрей Борейко, Инна Лапрун, Гусев А.В. и другие. Цель статьи заключается в определении проблем внедрения медицинских информационных систем в Украине.

Изложение основного материала. Медицинская информационная система (МИС) – комплексная автоматизированная информационная система, в которой объединены электронные медицинские записи о пациентах, данные медицинских исследований в цифровой форме, данные мониторинга состояния пациента с медицинских приборов, средства общения между сотрудниками, финансовая и административная информация. То есть данная информационная система, по сути, и есть связующее звено между статистическими и бухгалтерскими отделами и отделениями медицинской деятельности.

Когда медицинская организация выбирает информационную систему, то как правило, главный акцент делается на свойствах програмного продукта. Свойства програмного продукта – это одни из ключевых факторов успешной автоматизации. Чаще всего подразумевается, что потенциальный покупатель имеет достаточно средств для автоматизации всего лечебно – диагностического процесса и во главе для него стоит учет медицинских услуг и формирования отчетных документов.

Однако, самые лучшие технологические решения не будут востребованы, если большинство потенциальных пользователей останется практически не подготовленными к работе с новыми технологиями или, что еще хуже, не будут понимать, а что это даст непосредственно конечному пользователю.

1. Неудачный опыт внедрения полученный ранее

3. Переоценка или недооценка возможностей МИС

Переоценка возможностей МИС. Иногда руководство ЛПУ или лица, принимающие решения в части внедрения МИС, считают, что стоит закупить соответствующее оборудование и программное обеспечение и научить пользователей нажимать на кнопки – все само собой заработает в лучшем виде.

4. Психологическая проблема

5. Боязнь показаться некомпетентным

Каждый документ электронной медицинской карты становится очень легко читаем любым, даже сторонним пользователем.

В случае бумажной карты не у каждого заведующего отделением или главного врача хватит терпения кропотливо вчитываться в рукописи, сделанные почти нечитаемым почерком. В случае печати электронного документа каждое слово или фраза могут быть легко проанализированы, выявлены любые ошибки и пр

6. Незнание или непонимание возможностей, предоставляемых современными средствами автоматизации.

Любой отчет, статистический талон или журнал учета может быть получен автоматически из данных медицинской карты и не потребует дополнительных усилий, рабочих мест, специальных операторов и т.п.

v7. Не желание пользователей переходить на электронный документооборот Нежелание пользователей переходить на электронный документооборот может оказаться серьезным препятствием на пути проекта. Врачи и медперсонал — главный актив практически для любой клиники. Позиция людей, их готовность принять новые технологии — не менее важный фактор успеха, чем целеустремленность и энергия руководителей.

Наряду с подготовительной и просветительской работой проблему мотивации персонала помогает решить активное вовлечение в проект ключевых специалистов на этапе формирования требований. Хорошо помогают гибкие формы обучения пользователей и настройка системы с учетом особенностей контингента — экранные формы могут быть скомпонованы таким образом, чтобы не сильно отличаться от хорошо знакомых бумажных форм. И, конечно, не последнюю роль в преодолении сопротивления внедрению играет твердая и последовательная позиция руководства ЛМУ.

8. Элементарная лень.

Решение проблем внедрения мПрежде чем рассматривать условия успешного внедрения промышленной информационной системы имеет смысл в общих чертах обрисовать процесс внедрения — из каких этапов и блоков работ он состоит . Понятно, что схема содержит очень обобщенную картину и, конечно, нуждается в уточнении для каждого конкретного случая. мДля успешного осуществления всех этапов и блоков работ руководству ЛПУ необходимо планировать свою деятельность, не полагаясь на то, что результат будет достигнут исключительно в результате работы подрядчика, поставщика системы.

Перечислим в сжатом виде основные моменты, которые руководство ЛПУ должно учесть в процессе подготовки и планирования проекта:

 Формирование предварительных требований в процессе выбор поставщика и программно-технического решения.

 Формирование подробных требований к системе, то есть техническое задание на систему (ТЗ).

 Организационно-кадровые решения, или формирование команды проекта со стороны ЛПУ.

 Политико-административные меры и система мотивации персонала к использованию новой технологии.

 Расстановка приоритетов внедрения, утверждение этапов и итеративное планирование.

 Распределение функций между поставщиком решения и IT-специалистами ЛПУ как для периода внедрения, так и на этапе сопровождения системы.

Успех внедрения во многом обусловлен качеством подготовки и планирования проекта. мПричем речь в данном случаен следует вести не только и не столько о проектных услугах поставщика решения, сколько о тех внутренних задачах и ресурсах, которые, как показывает опыт наиболее успешных в плане автоматизации ЛПУ, должны быть рассмотрены руководством клиники при покупке любой промышленной системы.

Детальный план, конечно, зависит от специфики конкретного решения, но многие задачи и ресурсные потребности являются типичными и будут присутствовать практически в любом крупном проекте.

Конечно, внедрение информационной системы — тема весьма обширная. Существует много факторов, влияющих на успех подобного предприятия. Все факторы невозможно полностью охватить в рамках одной публикации.

По моему мнению, медицинская информационная система должна представлять собой такую схему .

А основные ее модуля должны быть понятными их представление изображено на рисунках .

Создание соответствующей инфраструктуры, поставка самых современных, надежных и хорошо отработанных решений и даже проведение обучения – это не более половины пути в решении задачи полноценного внедрения МИС.

Прежде чем что-либо внедрять, необходимо:

- сделать нормальный рабочий проект, в котором не только указать, в каком помещении какое автоматизированное рабочее место и с каким набором функций будет установлено, но и переосмыслить все попадающие под автоматизацию бизнес-процессы

- подробно сформулировать и описать требуемые изменения в бизнес-процессах, затронутых автоматизацией.

Читайте также: