Химические свойства веществ реферат

Обновлено: 03.07.2024

Различные вещества отличаются друг от друга своими свойствами.

Свойства вещества — это признаки, по которым одно вещество отличается от других веществ или сходно с ними.

Пример. Сходства и отличия между водой и ацетоном на примере трёх свойств:

Свойства Вещества
Вода Ацетон
Температура кипения 100 °C 56 °C
Цвет нет нет
Запах нет есть

Свойства вещества делятся на физические и химические.

Физические свойства вещества — это свойства вещества, которые можно определить наблюдением, измерением или экспериментальным путём, без его превращения в другое вещество.

Пример. Вода не имеет цвета, вкуса, запаха, в зависимости от окружающих условий может находиться в одном из трёх агрегатных состояний — жидком, твёрдом или газообразном. Цвет, запах, вкус, агрегатное состояние при определённых температуре и давлении — физические свойства.

Физические свойства вещества зависят от его агрегатного состояния.

Пример. Плотность льда, воды и водяного пара различна. Газообразный кислород бесцветный, а жидкий — голубой.

Химические свойства вещества — это свойства вещества, которые проявляются в химических реакциях.

Пример. Вода при очень высокой температуре разлагается на водород и кислород. Вода вступает в химическую реакцию с натрием, при этом образуются гидроксид натрия и водород. Железо окисляется при нагревании на воздухе или в токе кислорода, или при высокой влажности воздуха. Способность окисляться, вступать в химическую реакцию с другими веществами и разлагаться — химические свойства.

Для установления свойств вещества необходимо брать его с минимально возможным количеством примесей. Иногда даже очень малое содержание примеси может привести к сильному изменению некоторых свойств вещества.

Пример. Содержание в цинке лишь сотых долей процента железа или меди ускоряет его взаимодействие с соляной кислотой в сотни раз.

Изучить вещество — это значит узнать его свойства, описать из чего и как оно построено.

В настоящее время известно более 500 тысяч неорганических соединений, знать их формулы, названия, а тем более свойства практически невозможно. Для того чтобы легче ориентироваться в огромном многообразии химических веществ, все вещества разделены на отдельные классы, включающие соединения, сходные по строению и свойствам.
Первоначально все химические вещества делятся на простые и сложные.
Простые вещества подразделяются на металлы и неметаллы

Содержимое работы - 1 файл

Химия.doc

Классификация веществ. Химические свойства неорганических соединений основных классов. Основные классы неорганических веществ.

В настоящее время известно более 500 тысяч неорганических соединений, знать их формулы, названия, а тем более свойства практически невозможно. Для того чтобы легче ориентироваться в огромном многообразии химических веществ, все вещества разделены на отдельные классы, включающие соединения, сходные по строению и свойствам.

Первоначально все химические вещества делятся на простые и сложные.

Простые вещества подразделяются на металлы и неметаллы.

Помимо типичных металлов и неметаллов есть большая группа веществ, обладающая промежуточными свойствами, их называют металлоидами.

Сложные вещества подразделяются на четыре класса химических соединений: оксиды, основания, кислоты и соли. Эта классификация разработана выдающимися химиками XVIII–XIX веков Антуаном Лораном Лавуазье, Михаилом Васильевичем Ломоносовым, Йёнсом Якобом Берцелиусом, Джоном Дальтоном

При сравнительно небольшом количестве химических элементов (от­крыто 118 элементов, часть из них получена только искусственным путём) существует бесконечное многообразие химических соединений.
На рис. 1 представлена упрощенная классификация ве­ществ.

Рис. 1. Упрощенная классификация веществ

По составу, свойствам и наличию различных функциональных групп все сложные неорганические и органические вещества делятся на классы. Классификация сложных неорганических соединений представ­лена на рис. 2.

Рис. 2. Классификация основных сложных неорганических соединений

Среди сложных неорганических соединений выделяются следующие основные классы: оксиды, гидроксиды, соли.

Оксиды – это соединения атомов элементов с кислородом. По со­ставу и химическим свойствам оксиды делятся на основные, кислотные и амфотерные.

Основные оксиды – соединения атомов металлов с кислородом (Na2O, CaO, MgO и пр.). Получаются при непосредственном взаимодей­ствии металла с кислородом: 2Na+O2 =2Na2O,либо при термическом разложении солей: CaCO2CaO + CO2.

Основные оксиды взаимодействуют с кислотами и кислотными окси­дами, образуя соли:

1) CaO + H2SO4 = CaSO4 + H2O

CaO + 2H+ + SO42- = Ca2+ + SO42- + H2O

CaO + 2H+ = Ca2+ + H2O,

2) СaO + CO2 = CaCO3.

При взаимодействии некоторых растворимых основных оксидов с во­дой образуются основания (щелочи):

K2O + H2O = K+ + OH-.

Кислотные оксиды взаимодействуют с растворимыми основаниями и основными оксидами с образованием солей:

1) SO2 + 2KOH = K2SO3 + H2O

SO2 + 2K+ + 2OH- = 2K+ + SO32- + H2O

SO2 + 2OH- = SO32- + H2O,

2) SiO2 + CaO CaSiO3,

3) Mn2O7 + 2NaOH = 2NaMnO4 + H2O

Mn2O7 + 2Na+ + 2OH- = 2Na+ + 2MnO4- + H2O

Mn2O7 + 2OH- = 2MnO4- + H2O.

При взаимодействии некоторых кислотных оксидов с водой образуются кислоты:

SO3 + H2O = H2SO4

SO3 + H2O = 2H+ + SO42-.

Амфотерные оксиды – соединения атомов амфотерных элементов с кислородом (Al2O3, ZnO, BeO, Cr2O3, PbO2 и др.). Образуются при непо­средственном окислении атомов элементов кислородом или косвенным путем, проявляют свойства как основных, так и кислотных оксидов:

1) ZnO + H2SO4 = ZnSO4 + H2O

ZnO + 2H+ + SO42- = Zn2+ + SO42- + H2O

ZnO + 2H+ = Zn2+ + H2O,

2) ZnO + 2NaOH Na2ZnO2 + H2O

ZnO + 2Na+ + 2OH- = 2Na+ + ZnO22- + H2O

ZnO + 2OH- = ZnO22- + H2O.

Гидроксиды – это продукты прямого взаимодействия оксидов с во­дой, либо косвенных процессов. Они делятся на кислотные, основные и амфотерные.

Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода (т. е. доноры протонов). По составу молекул кислоты делятся на бескислородные (HCl, H2S, HJ и др.) и кислородсодержащие (HNO3, H2SO4, H3PO4 и др.) (см. названия основных неорганических ки­слот и их солей в табл. 1 приложения). По количеству катионов водо­рода в молекуле кислоты бывают одно- (HNO3, HCl, HJ) и многооснов­ные (H2SO4, H3PO4, H2S). По характеру диссоциации на ионы в растворе кислоты делятся на сильные (HNO3, H2SO4, HCl) и слабые (H3PO4, H2CO3), (см. величины констант диссоциации сильных и слабых элек­тролитов в табл. 2 приложения). При записи ионно-молекулярных урав­нений реакций в растворах слабые кислоты на ионы не расписываются.

Характерными химическими свойствами кислот является способность реагировать с основными оксидами, основаниями, амфотерными оксидами и гидроксидами и солями с образованием солей, как одного из продуктов реакции:

1) 2HCl + CaO = CaCl2 + H2O

2H+ + 2Cl- + CaO = Ca2+ + 2Cl- + H2O

2H+ + CaO = Ca2++ H2O,

2) 2HNO3 + Cu(OH)2 = Cu(NO3)2 + 2H2O

2H+ + 2NO3- + Cu(OH)2 = Cu2+ + 2NO3- + 2H2O

2H+ + Cu(OH)2 = Cu2+ + 2H2O,

3) H2SO4 + BaCl2 = BaSO4↓+ 2HCl

2H+ + SO42+ + Ba2+ + 2Cl- = BaSO4↓+ 2H+ + 2Cl-

SO42+ + Ba2+ = BaSO4↓.

Растворы кислот реагируют с активными металлами (Mg, Zn, Al, Ca и пр.) с образованием солей и выделением газообразного водорода:

H2SO4 + Mg = MgSO4 + H2↑

2H+ + SO42- + Mg0 = Mg2+ + SO42- + H20↑

2H+ + Mg0 = Mg2++ H20↑.

Иначе ведет себя азотная кислота (HNO3). Наличие в ней активного окислителя (N5+) позволяет реагировать даже с малоактивными метал­лами (Cu, Ag и др.), однако водород при этом не выделяется:

4HNO3 + Cu = Cu(NO3)2 +2NO2 + 2H2O.

Более подробно о реакциях кислот различной концентрации и со­става с металлами см. в основной учебной литературе.

Основания – вещества, диссоциирующие в растворах с образование гидроксид-ионов. По числу гидроксид-ионов в молекуле основания делятся на одно- (NaOH, AgOH) и многокислотные (Ca(OH)2, Fe(OH)3). Большинство оснований нерастворимо в воде. Растворимыми являются основания, образован­ные щелочными и щелочноземельными металлами (NaOH, KOH, Ca(OH)2, Ba(OH)2 и др.).

Основания реагируют с кислотами, кислотными и амфотерными ок­сидами, солями:

1) Ba(OH)2 + H2SO4 = BaSO4↓+ 2H2O

Ba2+ + 2OH- + 2H+ + SO42- = BaSO4↓+ 2H2O,

2) Ca(OH)2 + CO2 = CaCO3↓ + H2O

Ca2+ + 2OH- + CO2 = CaCO3↓ + H2O,

3) 2NaOH + BeO + H2O = Na2[Be(OH)4]

2Na+ + 2OH- + BeO + H2O = 2Na+ + [Be(OH)4]2-

2OH- + BeO + H2O = [Be(OH)4]2-,

4) 2KOH + CuSO4 = Cu(OH)2↓ + K2SO4

2K+ + 2OH- + Cu2+ + SO42- = Cu(OH)2↓ + 2K+ + SO42-

2OH- + Cu2+ = Cu(OH)2↓.

Некоторые гидроксиды обладают не только основными, но и кислот­ными свойствами, их называютамфотерными. К ним относятся гидро­ксиды амфотерных металлов: Zn(OH)2, Be(OH)2, Al(OH)3, Pb(OH)2, Sn(OH)2, Cr(OH)3 и др. Например:

1) Zn(OH)2 + 2KOH = K2[Zn(OH)4]

Zn(OH)2 + 2K+ + 2OH- = 2K+ + [Zn(OH)4]2-

Zn(OH)2 + 2OH- = [Zn(OH)4]2-,

2) Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

Zn(OH)2 + 2H+ + 2Cl- = Zn2+ + 2Cl- + 2H2O

Zn(OH)2 + 2H+ = Zn2+ + 2H2O.

Соли – продукты полного или частичного замещения ионов водорода в молекуле кислоты ионами металлов или продукты полного или частич­ного замещения гидроксид-ионов в молекуле основания кислотными ос­татками.

При полном замещении ионов водорода в молекуле кислоты на ионы металлов образуются средние (нормальные) соли:

H2SO4 + 2NaOH = Na2SO4 + 2H2O

2H+ + SO42- + 2Na+ + 2OH- = 2Na+ + SO42- + 2H2O

Na2SO4 – сульфат натрия (средняя соль).

Кислые соли (гидросоли) образуются при неполном замещении
ио­нов водорода в молекуле кислоты на ионы металлов. Это наблюдается при взаимодействии многоосновных кислот с основаниями в тех слу­чаях, когда количество взятого основания недостаточно для образова­ния средней соли:

H2CO3 + KOH = KHCO3 + H2O

H2CO3 + K+ + OH- = K+ + HCO3- + H2O

H2CO3 + OH- = HCO3- + H2O.

KHCO3 – гидрокарбонат калия (кислая соль).

Основные соли (гидроксосоли) образуются при частичном замеще­нии гидроксид-ионов в молекуле основания кислотными остатками.
Ос­новные соли могут быть образованы только многокислотными основа­ниями в тех случаях, когда количества кислоты недостаточно для по­лучения средней соли:

Cu(OH)2 + HNO3 = CuOH(NO3) + H2O

Cu(OH)2 + H+ + NO3- = CuOH+ + NO3- + H2O

Cu(OH)2 + H+ = CuOH+ + H2O.

CuOH(NO3) –нитрат гидроксомеди (II) (основная соль).

Соли вступают в химические реакции с кислотами, растворимыми основаниями и другими солями. Обязательным условием последнего процесса является растворимость обеих солей в воде (см. табл. 3приложения).

Вещества, взаимодействуя друг с другом, подвергаются различным изменениям и превращениям. Например, бериллий взаимодействуя с кислородом воздуха при температуре свыше 500 о С, превращается в оксид бериллия; уголь, сгорая, образует углекислый газ, и т.п.

Явления, при которых одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, и при этом не происходит изменения состава ядер атомов, называются химическими.

Окисление на воздухе, горение, получение металлов из руд, ржавление железа – все это химические явления. Иначе их называют химическими превращениями, химическими реакциями или химическими взаимодействиями.

Целью данной работы является изучение особенностей химических реакций и их классификацию.

Работа состоит из введения, двух глав, заключения и списка литературы. Общий объем работы 17 страниц.

1. Понятие о химических реакциях

Химические свойства веществ выявляются в разнообразных химических реакциях. Превращения веществ, сопровождающиеся изменением их состава и (или) строения и называются химическими реакциями .

Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Реагенты - вещества, вступающие в химическую реакцию.

Продукты - вещества, образующиеся в результате химической реакции.

Реагенты → Продукты

Химические реакции всегда сопровождаются физическими эффектами - поглощением или выделением теплоты, изменениями агрегатного состояния и окраски веществ; по наличию этих эффектов часто судят о протекании реакций (рис.1).


Рисунок 1 – Признаки химических реакций

Химические реакции следует отличать от физических процессов , изменяющих только внешнюю форму или агрегатное состояние вещества (но не его состав). Условия, которые должны выполняться, чтобы произошла химическая реакция:

1. Необходимо, чтобы реагирующие вещества соприкоснулись и чем больше площадь их соприкосновения, тем быстрее произойдет химическая реакция.

2. Некоторые реакции идут без нагревания, для некоторых реакций оно необходимо.

3. Некоторые реакции протекают под действием электрического тока и света

Химические реакции записываются посредством химических уравнений , содержащих формулы исходных веществ и продуктов реакции, например:

H2 + Cl2 = 2HCl
исходные вещества продукт реакции

Рисунок 1 – Признак классификации химических реакций

Рассмотрим более подробно каждый из типов химических реакций.

1. Классификация по числу и составу реагентов и конечных веществ (табл.1).

Таблица 1 - Типы химических реакций и их механизмы

Химические реакции соединения Химические реакции разложения Химические реакции замещения Химические реакции ионного обмена
A + B = AB Из нескольких простых или сложных веществ образуется одно сложное AB = A + B Из сложного вещества образуется несколько простых или сложных веществ A + BC =AC + B Атом простого вещества замещает один из атомов сложного AB+CD = AD+CB Сложные вещества обмениваются своими составными частями

1. Реакции соединения. Д.И.Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Итак, при реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава

A + B + C = D

К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода) на воздухе. Например, углерод горит на воздухе С+О2 =СО2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений - являются экзотермическими.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности

СаСО3 + СО2 + Н2О = Са (НСО3)2

так и относиться к числу окислительно-восстановительных

2FеСl2 + Сl2 = 2FеСl3.

2. Реакции разложения. Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ — большее их число.

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. Примером реакции разложение может служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО3 =СаО+СО2 . Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы — эндотермические, т.е. протекают с поглощением теплоты. Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот

CuSO4 5H2O = CuSO4 + 5H2O,

Cu(OH)2 = CuO + H2O,

H2SiO3 = SiO2 + H2O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления

4HNO3 = 2H2O + 4NO2O + O2O,

2AgNO3 = 2Ag + 2NO2 + O2,

(NH4) 2Cr2O7 = Cr2O3 + N2 + 4H2O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии, в отличие от реакций разложения в неорганической химии, имеют свою специфику. Их можно рассматривать как процессы, обратные присоединению, поскольку в результате чаще всего образуются кратные связи или циклы.

Реакции разложения в органической химии носят название крекинга

С18H38 = С9H18 + С9H20

или дегидрирования C4H10 = C4H6 + 2H2.

В реакциях двух других типов число реагентов равно числу продуктов.

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное А + ВС = АВ + С

Например, опустив стальной гвоздь в раствор медного купороса получаем железный купорос (железо вытеснило медь из её соли) Fe+CuSO4 = FeSO4 +Cu.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным

2Аl + Fe2O3 = 2Fе + Аl2О3,

Zn + 2НСl = ZnСl2 + Н2,

2КВr + Сl2 = 2КСl + Вr2,

2КСlO3 + l2 = 2KlO3 + Сl2.

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны.

Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды

СаСО3+ SiO2 = СаSiO3 + СО2,

Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5.

Иногда эти реакции рассматривают как реакции обмена

СН4 + Сl2 = СН3Сl + НСl.

4. Реакции обмена (в том числе и нейтрализации). Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями

АВ + СD = АD + СВ

Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью

Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями

ZnO + Н2SО4 = ZnSО4 + Н2О,

AgNО3 + КВr = АgВr + КNО3,

СrСl3 + ЗNаОН = Сr(ОН)3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации

НСl + КОН = КСl + Н2О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения

NаНСО3 + НСl = NаСl + Н2О + СО2↑,

Са(НСО3)2 + Са(ОН)2 = 2СаСО3↓ + 2Н2О,

СН3СООNа + Н3РО4 = СН3СООН + NаН2РО4.

К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разложения и соединения, в которых участвует хотя бы одно простое вещество. В более обобщенном варианте (уже с учетом и органической химии), все реакции с участием простых веществ. И, наоборот, к реакциям, идущим без изменения степеней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции:

2. Реакции в растворах:

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н2О(ж).

3. Реакции между твердыми веществами:

СаО(тв) +SiO2(тв) = СаSiO3(тв).

3. Классификация реакций по числу фаз

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса.

1. Гомогенные (однофазные) реакции . К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2. Гетерогенные (многофазные) реакции . К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

CO2(г) + NaOH(p-p) = NaHCO3(p-p),

СO2(г) + СаО (тв) = СаСO3(тв),

Na2SO4(р-р) + ВаСl3(р-р) = ВаSО4(тв)↓ + 2NaСl(p-p),

Са(НСО3)2(р-р) + Н2SО4(р-р) = СО2(г)↑ +Н2О(ж) + СаSО4(тв)↓.

1. Протолитические реакц ии

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием - вещество, способное присоединять протон, например

CH3COOH+ H2O = CH3COO- + H3O+

кислотаI основаниеI основаниеII кислотаII,

NH3 + H2O = NH4+ + OH-

основаниеI кислотаII кислотаII основаниеII.

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H+ → Zn2+ + H2↑,

FeS2 + 8HNO3(конц) = Fe(NO3)3 + 5NO↑ + 2H2SO4 + 2H2O.

3. Лиганднообменные реакции

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO3)2 + 4NH3 = [Cu(NH3)4](NO3)2,

Al(OH)3 + NaOH = [NaAl(OH)4].

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом А + В АВ.

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например

СН3СООН + С2Н5ОН СН3СООС2Н5 + Н2О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании

2КСlО3 → 2КСl + ЗО2↑,

или окисление глюкозы кислородом воздуха

С6Н12О6 + 6О2 → 6СО2 + 6Н2О.

6. Знак теплового эффекта

Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо-эффектом - выделение энергии в форме теплоты (Q>0, ∆H 0):

Такие реакции относят к термохимическим.

Химическая реакция - это процесс превращения одних веществ в другие, отличающиеся от них по составу и (или) строению. При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами.

Признаки химических реакций: выделяется газ, выпадет осадок, происходит изменение окраски веществ, выделяется или поглощается тепло, свет и др.

Химические реакции записываются посредством химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Уравнение химической реакции - это представление химического процесса с помощью знаков, химических формул и коэффициентов перед ними.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки. В работе рассмотрена следующая классификация химических реакций.

I. По числу и составу исходных веществ и продуктов реакции:

1) Реакции соединения - это реакции, в ходе которых из двух или нескольких веществ образуется одно вещество более сложного состава. Реакции соединения простых веществ всегда являются окислительно-восстановительными реакциями. В реакциях соединения могут участвовать и сложные вещества.

2) Реакции разложения - реакции, при протекании которых из одного сложного вещества образуются два или несколько более простых веществ. Продуктами разложения исходного вещества могут быть как простые, так и сложные вещества. Реакции разложения обычно протекают при нагревании веществ и являются эндотермическими реакциями. Как и реакции соединения, реакции разложения могут протекать с изменением или без изменения степеней окисления элементов;

3) Реакции замещения - это реакции между простыми и сложными веществами, при протекании которых атомы простого вещества замещают атомы одного из элементов в молекуле сложного вещества. В результате реакции замещения образуются новое простое и новое сложное вещество. Эти реакции почти всегда являются окислительно-восстановительными реакциями.

4) Реакции обмена - это реакции между двумя сложными веществами, молекулы которых обмениваются своими составными частями. Реакции обмена всегда протекают без переноса электронов, т. е. не являются окислительно-восстановительными реакциями. В результате реакций обмена обычно образуются: осадок, газ, слабый, электролит (вода).

II. По признаку изменения степени окисления

1) Реакции, которые идут без изменения степени окисления - реакции нейтрализации.

III. В зависимости от присутствия катализатора

1) Некаталитические (идут без присутствия катализатора)

2) Каталитические (идут с присутствием катализатора)

IV. По признаку теплового эффекта

1) Экзотермические (с выделением теплоты)

2) Эндотермические (с поглощением теплоты)

V. По признаку обратимости

1) Необратимые (протекают только в одном направлении)

2) Обратимые (протекающие одновременно в прямом и обратном направлении)

VI. По признаку однородности

1) Гомогенные (протекающие в однородной системе)

2) Гетерогенные (протекающие в неоднородной системе)

Список используемой литературы

1. Габриелян О.С. Химия. 11 класс: Учебник для общеобразовательных учреждений / О.С.Габриелян. - М.: Дрофа.- 304 с.

2. Иванова Р.Г. Химия. Учебник для 10 кл. общеобразовательных учреждений / Р.Г.Иванова, А.А.Каверина. – М.: Просвещение, 2001. – 287 с.

3. Кузнецова Н.Е. Химия. Учебник. 8 класс / Н.Е.Кузнецова, И.М.Титова, Н.Н.Гара, А.Ю.Жегин М.: Вентана-Граф, 2005. – 224 с.

За последние 200 лет человечество изучило свойства веществ лучше, чем за всю историю развития химии. Естественно, количество веществ так же стремительно растет, это связано, прежде всего, с освоением различных методов получения веществ.

В повседневной жизни мы сталкиваемся с множеством веществ. Среди них – вода, железо, алюминий, пластмасса, сода, соль и множество других. Вещества, существующие в природе, например, кислород и азот, содержащиеся в воздухе, вещества, растворенные в воде, и имеющие природное происхождение, называются природными веществами. Алюминия, цинка, ацетона, извести, мыла, аспирина, полиэтилена и многих других веществ в природе не существует.

Их получают в лаборатории, и производит промышленность. Искусственные вещества не встречаются в природе, их создают из природных веществ. Некоторые вещества, существующие в природе, можно получить и в химической лаборатории.

Так, при нагревании марганцовки выделяется кислород, а при нагревании мела – углекислый газ. Ученые научились превращать графит в алмаз, выращивают кристаллы рубина, сапфира и малахита. Итак, наряду с веществами природного происхождения существует огромное множество и искусственно созданных веществ, не встречающихся в природе.

Вещества, не встречающиеся в природе, производятся на различных предприятиях: фабриках, заводах, комбинатах и т.п.

В условиях исчерпания природных ресурсов нашей планеты, сейчас перед химиками стоит важная задача: разработать и внедрить методы, при помощи которых можно искусственно, в условиях лаборатории, или промышленного производства, получать вещества, являющиеся аналогами природных веществ. Например, запасы топливных ископаемых в природе на исходе.

Может настать тот момент, когда нефть и природный газ закончатся. Уже сейчас ведутся разработки новых видов топлива, которые были бы такими же эффективными, но не загрязняли окружающую среду. На сегодняшний день человечество научилось искусственно получать различные драгоценные камни, например, алмазы, изумруды, бериллы.

Агрегатное состояние вещества

Таким образом, можно сделать важный вывод. Вещество при переходе из одного агрегатного состояния в другое не превращается в другие вещества. Сам процесс некоего изменения, превращения, называется явлением.

Физические явления. Физические свойства веществ.

Явления, при которых вещества изменяют агрегатное состояние, но при этом не превращаются в другие вещества, называют физическими. Каждое индивидуальное вещество обладает определенными свойствами. Свойства веществ могут быть различными или сходными друг с другом. Каждое вещество описывают при помощи набора физических и химических свойств. Рассмотрим в качестве примера воду. Вода замерзает и превращается в лед при температуре 0°С, а закипает и превращается в пар при температуре +100°С. Данные явления относятся к физическим, так как вода не превратилась в другие вещества, происходит только изменение агрегатного состояния. Данные температуры замерзания и кипения – это физические свойства, характерные именно для воды.

Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими

Испарение спирта, как и испарение воды – физические явления, вещества при этом изменяют агрегатное состояние. После проведения опыта можно убедиться, что спирт испаряется быстрее, чем вода – это физические свойства этих веществ.

К основным физическим свойствам веществ можно отнести следующие: агрегатное состояние, цвет, запах, растворимость в воде, плотность, температура кипения, температура плавления, теплопроводность, электропроводность. Такие физические свойства как цвет, запах, вкус, форма кристаллов, можно определить визуально, с помощью органов чувств, а плотность, электропроводность, температуру плавления и кипения определяют измерением. Сведения о физических свойствах многих веществ собраны в специальной литературе, например, в справочниках. Физические свойства вещества зависят от его агрегатного состояния. Например, плотность льда, воды и водяного пара различна.

  • цвет – бесцветная (в небольшом объеме)
  • запах – без запаха
  • агрегатное состояние – при обычных условиях жидкость
  • плотность – 1 г/мл,
  • температура кипения – +100°С
  • температура плавления – 0°С
  • теплопроводность – низкая
  • электропроводность – чистая вода электричество не проводит

Кристаллические и аморфные вещества

При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная соль – хрупкие, их легко разрушить. Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения

Химические явления. Химическая реакция.

Если при физических явлениях вещества, как правило, лишь изменяют агрегатное состояние, то при химических явлениях происходит превращение одних веществ в другие вещества. Приведем несколько простых примеров: горение спички сопровождается обугливанием древесины и выделением газообразных веществ, то есть, происходит необратимое превращение древесины в другие вещества. Другой пример: со временем бронзовые скульптуры покрываются налетом зеленого цвета. Дело в том, что в состав бронзы входит медь. Этот металл медленно взаимодействует с кислородом, углекислым газом и влагой воздуха, в результате на поверхности скульптуры образуются новые вещества зеленого цвета Химические явления – явления превращений одних веществ в другие Процесс взаимодействия веществ с образованием новых веществ называют химической реакцией. Химические реакции происходят повсеместно вокруг нас. Химические реакции происходят и в нас самих. В нашем организме непрерывно происходят превращения множества веществ, вещества реагируют друг с другом, образуя продукты реакции. Таким образом, в химической реакции всегда есть реагирующие вещества, и вещества, образовавшиеся в результате реакции.

  • Химическая реакция – процесс взаимодействия веществ, в результате которого образуются новые вещества с новыми свойствами
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образовавшиеся в результате химической реакции

Химическая реакция изображается в общем виде схемой реакции РЕАГЕНТЫ -> ПРОДУКТЫ

  • реагенты – исходные вещества, взятые для проведения реакции;
  • продукты – новые вещества, образовавшиеся в результате протекания реакции.

Любые химические явления (реакции) сопровождаются определенными признаками, при помощи которых химические явления можно отличить от физических. К таким признакам можно отнести изменение окраски веществ, выделение газа, образование осадка, выделение тепла, излучение света.

Многие химические реакции сопровождаются выделением энергии в виде тепла и света. Как правило, такими явлениями сопровождаются реакции горения. В реакциях горения на воздухе вещества реагируют с кислородом, содержащимся в воздухе. Так, например, металл магний вспыхивает и горит на воздухе ярким слепящим пламенем. Именно поэтому вспышку магния использовали при создании фотографий в первой половине ХХ века. В некоторых случаях возможно выделение энергии в виде света, но без выделения тепла. Один из видов тихоокеанского планктона способен испускать ярко-голубой свет, хорошо заметный в темноте. Выделение энергии в виде света – результат химической реакции, которая протекает в организмах данного вида планктона.

Читайте также: