Химические и фотохимические превращения вредных веществ в атмосфере экология реферат

Обновлено: 28.06.2024

Воздушная оболочка, окружающая земной шар называется атмосферой.
Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее, выявлены некоторые вероятные изменения ее состава.

Содержание работы

1. Введение.
2. Химические процессы в атмосфере и изменения происходящие под их влиянием.
2.1. Химические загрязнение атмосферы.
2.2. Фотохимический туман (смог).
2.3. Парниковые газы.
2.4.Кислые атмосферные выпады на сушу.
2.5. Озоновая дыра в атмосфере
3. Вывод.
4. Список литературы.

Содержимое работы - 1 файл

Химические процессы.doc

Центрсоюз РФ
Мурманский кооперативный
техникум ОПС

Реферат на тему:

Химические процессы в атмосфере и изменения происходящие под их влиянием

Выполнила: Студентка группы Б-33
Богданова Анна Андреевна
Проверила: Боева И.В
Оценка: __________________

1. Введение.
2. Химические процессы в атмосфере и изменения происходящие под их влиянием.

2.1. Химические загрязнение атмосферы.

2.2. Фотохимический туман (смог).

2.3. Парниковые газы.

2.4.Кислые атмосферные выпады на сушу.

2.5. Озоновая дыра в атмосфере

3. Вывод.
4. Список литературы.

Воздушная оболочка, окружающая земной шар называется атмосферой.

Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее, выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы. Некоторые геологические процессы, как, например, излияния лавы при извержениях вулканов, сопровождались выбросом газов из недр Земли. В их состав, вероятно, входили азот, аммиак, метан, водяной пар, оксид и диоксид углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций.

В атмосфере постоянно происходят разнообразные процессы: химические, физические, биологические и др. В результате данных процессов происходит изменение как нижних, так и верхних слоев атмосферы.

Происходящие в атмосфере процессы происходят закономерно и взаимосвязано. На атмосферу оказывает воздействие космическое пространство, поверхность земли, водоемов, растительного и снежного покрова. Происходит взаимообмен газами, теплом, влагой, жидкими и твердыми частицами. Солнечное излучение является основным источником энергии для атмосферных частиц. В атмосфере, благодаря происходящим в ней различным процессам, происходят некоторые химические реакции, которые изменяют ее состав. Развиваются движения воздушных масс, образуются облака, осадки, наблюдаются электрические, акустические и оптические явления. Состояние атмосферы постоянно изменяется во времени и в пространстве.

Атмосфера не имеет определенной верхней границы. Она постепенно переходит в межпланетную среду. Условно верхнюю границу атмосферы принято считать на высоте 1000-1200 км. Спутниковые данные изменения плотности воздуха с высотой позволяют считать, что плотность атмосферы приближается к плотности межпланетной среды, начиная с высоты 2000-3000 км.

В настоящее время Земля обладает атмосферой массой примерно 5,27х1018 кг. Половина всей массы атмосферы сосредоточена в слое до 5 км, 75% - до высоты 10 км, 95%- до 20км. Около поверхности она содержит 78,08% азота, 20,95% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5,6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

Атмосфера является одним из необходимых условий возникновения и существования жизни на Земле. Она участвует в формировании климата на планете, регулирует ее тепловой режим, способствует перераспределению тепла у поверхности. Часть лучистой энергии Солнца поглощается атмосферой, а остальная энергия, достигая поверхности Земли, частично уходит в почву, водоемы, а частично отражается в атмосферу.

Атмосфера предохраняет Землю от резких колебаний температуры. При отсутствии атмосферы и водоемов температура поверхности Земли в течение суток колебалась бы в интервале 200 °С. Благодаря наличию кислорода атмосфера участвует в обмене и круговороте веществ в биосфере.

В современном состоянии атмосфера существует сотни миллионов лет, все живое приспособлено к строго определенному ее составу. Газовая оболочка защищает живые организмы от губительных ультрафиолетовых, рентгеновских и космических лучей. Атмосфера предохраняет Землю от падения метеоритов.

В атмосфере распределяются и рассеиваются солнечные лучи, что создает равномерное освещение. Она является средой, где распространяется звук. Из-за действия гравитационных сил атмосфера не рассеивается в мировом пространстве, а, окружая Землю, вращается вместе с ней.

2. Химические процессы в атмосфере и изменения происходящие под их влиянием

2. 1. Химическое загрязнение атмосферы.

Есть много факторов, которые приводят к ухудшению состояния атмосферы. Человек загрязняет атмосферу уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию, сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и не закопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая неизменно обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось еще серьезными последствиями. Так было вплоть до начала девятнадцатого века. Лишь за последние сто лет развитие промышленности "одарило" нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека. В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива. Оксид углерода получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн.т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы, и способствует повышению температуры на планете, и созданию парникового эффекта. Сернистый ангидрид выделяется в процессе сгорания серу- содержащего топлива или переработки сернистых руд (до 170 1млн.т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 165 процентов от общемирового выброса. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. Сероводород и сероуглерод. Они поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида. Окислы азота - основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество окислов азота, поступающих в атмосферу, составляет 120 млн.т. в год. Соединения фтора - источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами. Соединения хлора - поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 11 т. 0передельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода. Аэрозольное загрязнение атмосферы. Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 11-51мкм. В атмосферу Земли ежегодно поступает около 11 куб.км. пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании оста- точных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва ( 1250-3000 тонн взрывчатых веществ) в атмосферу выбрасывается около 12 тыс.куб.м. 0условного оксида углерода и более 1150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 11 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

2.2. Фотохимический туман (смог)

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником, так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной сис- темы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

2.3. Парниковые газы.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), оксид азота.

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние двадцать лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы — той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает экологическую ситуацию на планете.

Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них — газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо- и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

1. Химическое загрязнение биосферы

Человек загрязняет атмосферу уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию и что сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и незакопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая неизмерно обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось еще серьезными последствиями.

1.1. Основные загрязняющие вещества

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений — теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздухоксилы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 70 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 процентов от общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км. от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксилы азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксилов азота, поступающих в атмосферу, составляет 20 млн. т. в год.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений — фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т. предельного чугуна выделяется кроме 2,7 кг. сернистого газа и 4,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

1.2. Аэрозольное загрязнение атмосферы

Аэрозоли — это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км. пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены ниже: ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС ВЫБРОС ПЫЛИ, МЛН. Т./ГОД 1. Сжигание каменного угля 93,60 2. Выплавка чугуна 20,21 3. Выплавка меди (без очистки) 6,23 4. Выплавка цинка 0,18 5. Выплавка олова (без очистки) 0,004 6. Выплавка свинца 0,13 7. Производство цемента 53,37 Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже — оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы — искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м. условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств — измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды — насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия — расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

1.3. Фотохимический туман (смог)

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота — в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжащейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги — нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

1.4. Контроль за выбросами загрязнений в атмосферу (ПДК)

Приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. ПДК — такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО — Главной Геофизической Обсерватории. Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя — индекса загрязнения атмосферы (ИЗА) . Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют. Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (оксилы азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной.

2. Химическое загрязнение природных вод

Всякий водоем или водный источник связан с окружающей его внешней средой. На него оказывают влияние условия формирования поверхностного или подземного водного стока, разнообразные природные явления, индустрия, промышленное и коммунальное строительство, транспорт, хозяйственная и бытовая деятельность человека. Последствием этих влияний является привнесение в водную среду новых, несвойственных ей веществ — загрязнителей, ухудшающих качество воды. Загрязнения, поступающие в водную среду, классифицируют по разному, в зависимости от подходов, критериев и задач. Так, обычно выделяют химическое, физическое и биологические загрязнения. Химическое загрязнение представляет собой изменение естественных химических свойств вода за счет увеличения содержания в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностноактивные вещества, пестициды).

2.1. Неорганическое загрязнение

Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей вод

ной среды. Это соединения мышьяка, свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадает в воду в результате человеческой деятельности. Тяжелые металлы поглощаются фитопланктоном, а затем передаются по пищевой цепи более высокоорганизованным организмам. Токсический эффект некоторых наиболее распространенных загрязнителей гидросферы представлен в таблице №1.

Вещества, загрязняющие атмосферу подразделяют на первичныеи вторичные.Первичные - это те, которые содержатся непосредственно в выбросах предприятий и поступают с ними от различных источников, а вторичные являются продуктами трансформации первичных, или так называемого встречного синтеза, причем эти продукты во многих случаях значительно более опасны, чем первичные вещества. В атмосфере химические соединения подвергаются самым разным превращениям как в результате реакций между собой, так и с уже содержащимися в воздухе веществами, включая пары воды. Превращения зависят от времени пребывания загрязняющих веществ в атмосфере и от интенсивности их облучения солнечным светом В общем случае при поглощении кванта света с частотой v в атмосфере могут происходить следующие процессы:

образование электронно-возбужденных молекул: А + hv → A*; дезактивация этих молекул за счет флуоресценции: А* → А + hv;

дезактивация (тушение) за счет соударения с другими молекулами A*+Q→A + Q';

диссоциация: А* → В + С.

Для атмосферной фотохимии наибольший интерес представляют явления фотохимической диссоциации электронно-возбужденных молекул А*. Возбужденное состояние весьма нестабильно. Поэтому вслед за появлением А* быстро следует реакция образования продуктов В и С. Один или оба из них могут быть очень активными и приводят к началу цепи реакций, в результате которых возникают нежелательные соединения, в том числе служащие основой фотохимического смога.

Химические превращения в тропосфере и стратосфере инициируются, главным образом, продуктами фотолиза таких молекул, как О3, О2, Н2О, NO2 и N2O. Важнейшим компонентом, определяющим химию стратосферы, является озон. Образование атомарного кислорода в атмосфере (выше 80 км) происходит по следующей реакции: О2 + hv → 2O. Атомарный кислород уча­ствует в реакциях возникновения О2 и О3. Озон получается по уравнению: О + О2 + М → O3 + М, где М - третье вещество , принимающее избыток энергии.

Озон подвергается фото химической диссоциации по уравнению: О3 + hv → O2 + О.

В атмосфере также присутствуют пять азотосодержащих газов: N2, NH3, NO, NO2, N2O.

В конденсированной фазе азот присутствует в форме иона аммония (NH4) и нитратного иона (NO3). В атмосфере городов наблюдается значительное количество органических нитратов.

Оксиды азота антропогенного происхождения в большинстве случаев попадают в атмосферу в виде N0. Затем происходят следующие реакции:

Возможны и другие реакции с участием веществ, содержащих азот и кислород:

Цикл соединений азота в тропосфере дополняется образованием азотной кислоты по уравнению: 4NO2 + Н2O + O2 → 4HNO3.

Диоксид азота может также гидролизоваться по уравнению:

Выделяющаяся по этим реакциям азотная кислота далее может реагировать с ионами металлов, образуя нитраты.

Атомарный озон и кислород способны вступать в соединение с различными органическими веществами. В результате получаются органические и неорганические свободные радикалы. Для олефиновых углеводородов возможна следующая реакция:

O3 + RCH = CHRO → RCHO + RO* + НСО*,

где RO* и НСО* ‑ свободные радикалы.

Альдегид RCHO может подвергаться фотодиссоциации по реакции:

RCHO + hv → R + НСО*. Кроме альдегидов фотохимически активны также кетоны, пероксиды и ацилнитраты, которые при поглощении солнечной радиации также образуют свободные радикалы.

Свободные радикалы с молекулярным кислородом образуют пероксидные радикалы (RОО*), т.е. R* + О2 → RОО*.

Пероксидные радикалы способны окислять NО в NО2 по реакции RОО* + NO → NО2 + RO*.

Возможно также возникновение озона по реакции пероксидных радикалов с кислородом, т.е.

Возникают и другие реакции:

Присутствие свободных радикалов приводит к смогу. Основные продукты этих фотохимических реакций - альдегиды, кетоны, СО, СО2, органические нитраты и оксиданты,такие как озон, диоксид азота, соединения типа пероксиацетилнитратов и др.

Пероксиацетилнитрат (ПАН) сильно раздражает слизистую оболочку глаз, отрицательно действует на ассимиляционный аппарат растений. Его формула имеет вид;

Это соединение не очень устойчиво: вступает в дальнейшие реакции с оксидом азота

и распадается в конденсированной фазе:

Другим раздражающим глаза веществом, присутствующим в смоге, является пероксибензоилнитрат (ПБН), имеющий структуру:

Фотодиссоциация диоксида серы невозможна, так как она отмечена лишь при длинах волн короче тех, которые достигают нижних слоев атмосферы. Однако в присутствии NO2 и SO2 происходит фотодиссоциация NO2 с образованием атомарного кислорода и озона. Таким образом, диоксид серы может реагировать с атомами кислорода по реакции SO2 + O + M → SO3 + M.

Эффективность этой реакции возрастает по мере роста отношения концентраций SO2/NO2. кинетические расчеты показывают, что при концентрациях (NO + NO2) и SO2 равных 0,2 млн.-1 (типичных для фотохимического смога), скорость реакции между SО2 и О будет приблизительно в 10 раз ниже скорости реакции между атомарным кислородом и оксидами азота.

В любой загрязненной атмосфере одновременно присутствуют SO2, NO2, NO и углеводороды. В этом случае облучение олефинов и ароматических соединений приводит к образованию значительного количества аэрозолей, а скорость исчезновения SO2 увеличивается. Количество аэрозолей умень­шается с увеличением относительной влажности воздуха.

Антропогенные факторы обусловливают нарушение сложившегося в природе круговорота не только углерода, кислорода, но и других элементов. Это проявляется в форме химического загрязнения компонентов биосферы, в том числе атмосферы, теми или иными ингредиентами.

В одних случаях подобное загрязнение выражается привнесением в среду новых, не характерных для нее ингредиентов, а в других случаях — превышением естественного средне-многолетнего уровня этих ингредиентов в среде. Рассмотрим с химических позиций генезис и поведение соединений серы и азота, а также хлорфторуглеродов (ХФУ) или фреонов, с которыми связаны многие глобальные проблемы биосферы (табл. 3.9).

Оксиды серы и азота.

Оксид серы (IV) поступает в атмосферу в огромных количествах с дымовыми газами предприятий тепловой энергетики. Каменный уголь всегда содержит в виде примесей так называемый углистый колчедан FeS2, при сгорании которого образуется S02:


Серосодержащая примесь в виде меркаптанов — обязательный компонент нефти и мазута. Меркаптаны — это органические производные сероводорода с общей формулой R-SH, где R — углеводородный радикал. Сгорая, меркаптаны также образуют диоксид серы:



Что касается оксидов азота, то причина их появления — в особенностях свойств атмосферного азота. При температурах выше 1300 °С азот — в обычных условиях химически малоактивный — начинает взаимодействовать с другим компонентом атмосферного воздуха — кислородом:



В соответствии с принципом Ле Шателье равновесие этой обратимой реакции смещается вправо по мере повышения температуры, концентрация N0 будет тем больше, чем выше температура. Подобный процесс имеет место как в природе (при газовых разрядах), так и при сжигании органического топлива в топках котельных агрегатов, в цилиндрах двигателей внутреннего сгорания, в домнах при получении чугуна и т. п., с той разницей, что масштабы техногенной генерации N0 несопоставимо больше таковой в природных условиях.

Содержание оксида азота (II) в продуктах сгорания зависит, в основном, от двух факторов: температуры процесса и концентрации кислорода в зоне горения (концентрация азота всегда остается практически неизменной, так как он в отличие от кислорода не расходуется при сгорании топлива).

Механизм химического превращения загрязняющих веществ в атмосфере весьма сложен.

Он может быть гомогенным (газофазным) и гетерогенным, молекулярным и радикальным. Важную роль в зарождении свободных радикалов играют фотохимические реакции, которые протекают под действием солнечного излучения. Любой фотохимический процесс начинается с диссоциации молекул на соответствующие радикалы — структурные фрагменты, этих молекул. Поглощая свет различных длин волн, молекулы переходят в возбужденное состояние, они становятся активными, способными к химическим превращениям разного характера. Согласно закону А. Эйнштейна, один поглощенный квант лучистой энергии вызывает диссоциацию одной молекулы. Энергия кванта, как известно, определяется соотношением:

где h — постоянная Планка и п — частота колебаний.

Возвращаясь к химическому превращению загрязняющих веществ в атмосфере, следует ожидать, что скорость газофазного окисления их существенным образом будет зависеть от времени суток, сезона, географической широты и наличия облачного покрова. Перечисленные параметры влияют на величину кванта лучистой энергии Солнца, воздействующей на молекулы загрязняющих ингредиентов.

Значительная роль в химии атмосферных процессов отводится озону 03, который образуется в нижнем слое стратосферы, на высоте 20-35 км (озоновый слой), и затем, постепенно диффун

дируя сверху вниз, в небольших количествах может оказаться в тропосфере. Именно здесь начинается генерация радикалов-окислителей:



Рассмотрение приведенного ряда реакций указывает на особую важность интенсивности солнечного света и присутствия озона во всей цепочке превращений. С наступлением темноты, естественно, прерываются самая первая и последняя реакции. Остальные реакции, лишенные постоянного источника высокоактивных радикалов, прекращаются за несколько десятков минут.

Таким образом, газофазное окисление соединений серы (S02) и азота (N0) ночью может быть обусловлено только молекулярными реакциями, которые всегда протекают намного медленнее чем радикальные.

Газофазное окисление оксида серы (IV) в атмосфере осуществляется по реакциям:


Наиболее интенсивно проходит взаимодействие с радикалом ОН и гидро-пероксидным радикалом Н02. Скорость молекулярной реакции с озоном на несколько порядков ниже скорости радикальных реакций. Во всех случаях окисление диоксида серы завершается, в конечном итоге, образованием серной кислоты.

Кроме газофазных реакций достаточно эффективным механизмом окисления S02 могут служить гетерогенные реакции, протекающие на поверхности твердых тел, например аэрозоль-

ные частиц. Поверхность частиц промышленной пыли и летучей золы способна адсорбировать как молекулы диоксида серы, так и радикалы окисляющих агентов. Далее протекают процессы, схожие с описанными ранее.

Третьим механизмом окисления диоксида серы является окисление его в жидко-капельной фазе облаков и туманов. При этом возможны следующие реакции:


Перечисленные реакции могут иметь каталитический характер, при этом их скорость возрастает на 1-2 порядка. В качестве катализаторов выступают ионы марганца и железа, концентрация которых в дождевых осадках над промышленными регионами составляет соответственно ЗЮ~7 и 4-10'6 моль/л. Скорость окисления S02 в собственно жидкой фазе весьма высока. Однако скорость выведения диоксида серы из атмосферы (согласно этому механизму) определяется не только химическими реакциями, но и вероятностью попадания молекулы газа в жидко-капельную фазу. Эта вероятность, в свою очередь, зависит от множества факторов: климатических условий региона, времени года, высоты выброса S02 относительно земной поверхности и т. д.

Важнейшие реакции газофазного превращения оксидов азота могут быть представлены следующим рядом:




Характерной особенностью этих реакций является то, что некоторые из них носят циклический характер и по существу не способствуют выведению оксида азота из атмосферы. В результате циклических взаимодействий устанавливается динамическое равновесиехарактерное для данного уровня сол

С наступлением темноты прекращаются фотохимические реакции, и N0 быстро исчезает в ходе продолжающихся других реакций:


Натурные замеры показывают, что ночью отношение объемных концентраций оксида и диоксида азота меньше или равно 0,05, в то время как днем это отношение варьирует в пределах 0,3-0,9.

Гетерогенные и жидкофазные реакции оксидов азота не являются преобладающими механизмами образования азотной кислоты. Диоксид азота, легко растворимый в воде капель или водных пленок, покрывающих частицы промышленной пыли или летучей золы, может окисляться по следующей реакции:


Кроме того, в жидкой фазе возможна реакция:


Согласно расчетам, для условий атмосферы над промышленными регионами в средних широтах летом суммарная скорость превращения оксидов азота в азотную кислоту составляет 0,12 ч1. Среднее время жизни их относительно химических реакций не превышает 7 ч.

Подводя итоги, следует отметить, что основные загрязняющие вещества (ЗВ) — диоксид серы и монооксид азот, поступающие в атмосферу с выбросными газами предприятий тепловой энергетики и промышленных предприятий, претерпевают существенную химическую трансформацию. Превращаясь поначалу в высшие оксиды — триоксид серы и диоксид азота, они затем переходят в конечные продукты окислительного процесса — серную и азотную кислоту соответственно. Эти кислоты в конечном

Галогенпроизводные углеводородов. Галогенпроизводными называют соединения, которые можно рассматривать как продукты замещения одного или нескольких атомов водорода в молекуле углеводорода атомами галогенов. К ним относятся, в частности, производные метана: фтортрихлорметан CFClg (техническое название — фреон-11) и дифтордихлорметан CF2C12 (фреон-12). Эти вещества широко применяются в качестве хладагентов в бытовых холодильниках и кондиционерах, а также в качестве растворителей для образования аэрозолей. После их использования и как хладагентов, и как растворителей в аэрозольных баллончиках, фреоны в конечном итоге оказываются в атмосферном воздухе, выступая теперь уже в качестве ЗВ. Исследования последних двух десятилетий показали, что фреоны оказывают разрушающее воздействие на озоновый слой Земли, причем это воздействие носит общепланетарный характер.

Рассмотрим более детально сущность этого явления. Озон, как известно, образуется на нижнем участке стратосферы, формируя

озоновый слой, расположенный на высоте 20-35 км от поверхности Земли. Решающая роль в этом процессе принадлежит фотохимической диссоциации молекулярного кислорода:


которая протекает под воздействием очень жесткого ультрафиолетового излучения Солнца или космических лучей с длиной волны X до 200 нм и ниже. Атомарный кислород далее взаимодействует с молекулярным кислородом:


Эта реакция сильно экзотермична и может состояться только при одновременном соударении с третьей частицей М, например, молекулой 02 или N2. В противном случае имеет место распад 03 на исходные ингредиенты. Параллельно протекают процессы разрушения озона, один из которых фотохимический:


ством, что все живое на нашей планете в ходе длительной эволюции было адаптировано только к мягкому спектру УФ-излуче- ния Солнца.

Важнейшую роль в разрушении озонового слоя играют фрео- ны. Химически чрезвычайно инертные, они минуют тропосферу практически без изменений. И только достигнув стратосферы, фреоны начинают свое разрушительное действие. Вначале происходит фотохимическая диссоциация фреона:



с образованием двух радикалов, один из которых затем быстро превращается в новый высокореакционный радикал СЮ:


Далее начинается циклический процесс


в котором радикал СЮ служит катализатором. Он способен многократно участвовать в первой стадии цикла, ибо каждый раз вновь образуется (регенерируется) во второй стадии. Как видно, одна из приведенных реакций непосредственно разрушает озон, а другая — выводит из системы атомарный кислород, который необходим для синтеза озона.

Определенную долю ответственности за гибель озона несет и оксид азота N0. Он попадает в атмосферу в основном с выхлопными газами высотных самолетов. И в этом случае осуществляется циклический процесс разрушения озона:


где катализатором служит N0.

Проблема защиты озонового слоя включает международноправовые, экономические и технические аспекты. Ныне признается крайне важным налаживание крупномасштабного производства фреонов нового поколения. Такие фреоны должны быть короткоживущими, способными саморазрушаться в тропосфере, не достигая озонового слоя.

Читайте также: