Гипотеза де бройля реферат

Обновлено: 05.07.2024

Квантовая природа света. Волновые свойства света, обна­руживаемые в явлениях интерференции и дифракции, и корпуску­лярные свойства света, проявляющиеся при фотоэффекте и эф­фекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классиче­ской физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является

объяснение всех явлений, в том числе и тех, ко­торые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве. Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество

современной квантовой теории в объяснении всех световых явле­ний не означает, что никаких волн в природе нет. Волновые свойства электрона. Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное

проявление корпускулярных и волновых свойств присуще не только свету, но и любому дру­гому материальному объекту. Эта идея была лишь теоретиче­ской гипотезой, так как в то время наука не располагала экспери­ментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом зак­лючалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о

существовании фото­нов света, выдвинутой им после открытия явления фотоэффекта. Гипотеза де Бройля существовании волн материи была детально разработа­на, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, ка­ким связаны

Волновые свойства света, обнаруживаемые в явлениях интерференции и дифракции, и корпускулярные свойства света, проявляющиеся при фотоэффекте и эффекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классической физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, которые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.

Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явлений не означает, что никаких волн в природе нет.

Волновые свойства электрона.

Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.

Гипотеза де Бройля существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света . Импульс фотона определяется формулой:



можно определить массу фотона:

Учитывая это, можно формулу преобразовать так:

Отсюда получаем для длины световой волны формулу:

Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью v, может быть найдена так:

Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа — Брэггов

вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вы

численной по известному ускоряющему напряжению U:

Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.

Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума.

Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.

Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:

Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.



При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.

Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим:

Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:

Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля.

Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.

Взаимные превращения света и вещества. Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.

Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.

Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0c2 пары электрон — позитрон, может превратиться в такую пару.

Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.

Согласно квантовой теории света А. Эйнштейна, волновые характеристики фотонов света (частота колебаний v и длина волна л = c/v) связаны с корпускулярными характеристиками (энергией εф, релятивистской массой mф и импульсом рф) соотношениями:

Описание: i_002

По идее де Бройля, любая микрочастица, в том числе и с массой покоя ш0 Ц 0, должна обладать не только корпускулярными, но и волновыми свойствами. Соответствующие частота v и длина волны л определяются при этом соотношениями, подобными эйнштейновским:

Отсюда длина волны де Бройля —

Таким образом, соотношения Эйнштейна, полученные им при построении теории фотонов в результате гипотезы, выдвинутой де Бройлем, приобрели универсальный характер и стали одинаково применимыми как для анализа корпускулярных свойств света, так и при исследовании волновых свойств всех микрочастиц.

5. Опыты Резерфорда. Модель атома Резерфорда А. Опыты Резерфорда

В 1911 г. Резерфорд провел исключительные по своему значению эксперименты, доказавшие существование ядра атома. Для исследования атома Резерфорд применил его зондирование (бомбардировку) с помощью α-частиц, которые возникают при распаде радия, полония и некоторых других элементов. Резерфордом и его сотрудниками еще в более ранних опытах в 1909 г. было установлено, что α-частицы обладают положительным зарядом, равным по модулю удвоенному заряду электрона q =+2e, и массой, совпадающей c массой атома гелия, то есть mа = 6,62 · 10 -27 кг, что примерно в 7300 раз больше массы электрона. Позже было установлено, что α-частицы представляют собой ядра атомов гелия. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут изменить траекторию α-частαицы. Их рассеяние (изменение направления движения) может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда, а значит, и массы внутри атома.

Было известно, что α-частицы, излученные полонием, летят со скоростью 1,6-107 м/с. Полоний помещался внутрь свинцового футляра, вдоль которого высверлен узкий канал. Пучок α-частиц, пройдя канал и диафрагму, падал на фольгу. Золотую фольгу можно сделать исключительно тонкой – толщиной 4-10 -7 м (в 400 атомов золота; это число можно оценить, зная массу, плотность и молярную массу золота). После фольги α-частицы попадали на полупрозрачный экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), обусловленной флуресценцией, которая наблюдалась в микроскоп.

При хорошем вакууме внутри прибора (чтобы не было рассеяния частиц от молекул воздуха) в отсутствие фольги на экране возникал светлый кружок из сцинтилляций, вызываемых тонким пучком α-частиц. Когда на пути пучка помещалась фольга, то подавляющее большинство α-частиц все равно не отклонялось от своего первоначального направления, то есть проходило сквозь фольгу, как если бы она представляла собой пустое пространство. Однако имелись α-частицы, которые изменяли свой путь и даже отскакивали назад.

Марсден и Гейгер, ученики и сотрудники Резерфорда, насчитали более миллиона сцинтилляций и определили, что примерно одна из 2 тысяч α-частиц отклонялась на углы, большие 90°, а одна из 8 тысяч – на 180°. Объяснить этот результат на основе других моделей атома, в частности Томсона, было нельзя.

Расчеты показывают, что при распределении по всему атому положительный заряд (даже без учета электронов) не может создать достаточно интенсивное электрическое поле, способное отбросить α-части-цу назад. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Рассеяние α-частиц на большие углы происходит так, как если бы весь положительный заряд атома был сосредоточен в его ядре – области, занимающей весьма малый объем по сравнению со всем объемом атома.

Вероятность попадания α-частиц в ядро и их отклонение на большие углы очень мала, поэтому для большинства α-частиц фольги как бы не существовало.

Резерфорд теоретически рассмотрел задачу о рассеянии α-частиц в кулоновском электрическом поле ядра и получил формулу, позволяющую по плотности потока α-частиц, налетающих на ядро, и измеренному числу частиц, рассеянных под некоторым углом, определить число N элементарных положительных зарядов +е, содержащихся в ядре атомов данной рассеивающей фольги. Опыты показали, что число N равно порядковому номеру элемента в периодической системе Д. И. Менделеева, то есть N = Z (для золота Z = 79).

Таким образом, гипотеза Резерфорда о сосредоточении положительного заряда в ядре атома позволила установить физический смысл порядкового номера элемента в периодической системе элементов. В нейтральном атоме должно содержаться также Z электронов. Существенно, что число электронов в атоме, определенное различными методами, совпало с числом элементарных положительных зарядов в ядре. Это послужило проверкой справедливости ядерной модели атома.

Б. Ядерная модель атома Резерфорда

Обобщая результаты опытов по рассеянию α-частиц золотой фольгой, Резерфорд установил:

♦ атомы по своей природе в значительной мере прозрачны для α-частиц;

♦ отклонения α-частиц на большие углы возможны только в том случае, если внутри атома имеется очень сильное электрическое поле, создаваемое положительным зарядом, связанным с большой и сконцентрированной в очень малом объеме массой.

Для объяснения этих опытов Резерфорд предложил ядерную модель атома: в ядре атома (области с линейными размерами 10 -15 -10 -14 м) сосредоточены весь его положительный заряд и практически вся масса атома (99,9 %). Вокруг ядра в области с линейными размерами ~10-10 м (размеры атома оценены в молекулярно-кинетической теории) движутся по замкнутым орбитам отрицательно заряженные электроны, масса которых составляет лишь 0,1 % массы ядра. Следовательно, электроны находятся от ядра на расстоянии от 10 000 до 100 000 поперечников ядра, то есть основную часть атома составляет пустое пространство.

В 1914 г., через три года после создания планетарной модели атома, Резерфорд исследовал положительные заряды в ядре. Бомбардируя электронами атомы водорода, он обнаружил, что нейтральные атомы превратились в положительно заряженные частицы. Так как атом водорода имеет один электрон, Резерфорд решил, что ядро атома является частицей, несущей элементарный положительный заряд +е. Эту частицу он назвал протоном.

Планетарная модель хорошо согласуется с опытами по рассеиванию α-частиц, но она не может объяснить устойчивость атома. Рассмотрим, например, модель атома водорода, содержащего ядро-протон и один электрон, который движется со скоростью v вокруг ядра по круговой орбите радиуса r. Электрон должен по спирали падать на ядро, и частота его обращения вокруг ядра (следовательно, и частота излучаемых им электромагнитных волн) должна непрерывно изменяться, то есть атом неустойчив, и его электромагнитное излучение должно иметь непрерывный спектр.

В действительности оказывается, что:

а) атом устойчив;

б) атом излучает энергию лишь при определенных условиях;

в) излучение атома имеет линейчатый спектр, определяемый его строением.

Таким образом, применение классической электродинамики к планетарной модели атома привело к полному противоречию с экспериментальными фактами. Преодоление возникших трудностей потребовало создания качественно новой – квантовой – теории атома. Однако, несмотря на свою несостоятельность, планетарная модель и сейчас принята в качестве приближенной и упрощенной картины атома.

Для получения пучка электронов с достаточной энергией, который можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (5.3) находим Я, = 0,4 * 10~10 м, что соответствует длине волны рентгеновского излучения. В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ… Читать ещё >

  • специальные приемы микроскопии биологических объектов

Гипотеза де Бройля ( реферат , курсовая , диплом , контрольная )

Опыты по дифракции электронов и других частиц

Важным этапом в создании квантовой механики явилось установление волновых свойств микрочастиц.

Идея о волновых свойствах частиц была первоначально высказана как гипотеза французским физиком Луи де Бройлем (1924) 1 . Эта гипотеза появилась благодаря следующим предпосылкам.

Гипотеза де Бройля была сформулирована до опытов, подтверждающих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «…не можем ли мы предположить, что и электрон так же двойственен, как и свет?

На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динамики.

Электрон никогда не проявлял волновых свойств, таких, скажем, какие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспериментальных доказательств, могла выглядеть как ненаучная фантазия".

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и др. стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц — фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотонэлементарная частица, движущаяся со скоростью света, обладающая волновыми свойствами и имеющая энергию е = hv, где v — частота световой волны.

Логично считать, что и другие частицы — электроны, нейтроны также обладают волновыми свойствами.

Выражение для импульса фотона рф получается из известной формулы Эйнштейна е = тс 2 и соотношений е = hv и р. = тс:

где с — скорость света в вакууме, л, — длина световой волны. Эта формула была использована де Бройлем и для других микрочастицмассой т, движущихся со скоростью и:

По де Бройлю, движение частицы, например электрона, описывается волновым процессом с характеристической длиной волны Я, в соответствии с формулой (5.2). Эти волны называют волнами де Бройля.

Гипотеза де Бройля была столь необычной, что многие крупные физики-современники не придали ей какого-либо значения. Несколькими годами позже эта гипотеза получила экспериментальное подтверждение: была обнаружена дифракция электронов.

Найдем зависимость длины волны электрона от ускоряющего напряжения U электрического поля, в котором он движется. Изменение кинетической энергии электрона равно работе сил поля:

Выразим отсюда скорость v и, подставив ее в (5.2), получим.

(5.3)

Для получения пучка электронов с достаточной энергией, который можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (5.3) находим Я, = 0,4 * 10~ 10 м, что соответствует длине волны рентгеновского излучения.

Дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для дифракции электронов необходимо также использовать кристаллы.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж. П. Томсон и независимо от него П. С. Тартаковский — на металлической фольге (поликристаллическое тело). На рис. 5.1 изображена электронограмма — дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой. Можно заметить сходство дифракции электронов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтроны, атомы, молекулы). Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для оценки степени упорядоченности расположения атомов и молекул вещества, а также для измерения параметров кристаллических решеток. В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов). Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

Читайте также: