Фильтры на переключаемых конденсаторах реферат

Обновлено: 04.07.2024

Описанный ниже фильтр может быть полезен для выделения сигналов даже тогда, когда задача усложняется тем, что частота полезного сигнала отличается от частоты помехи всего на несколько процентов. Предположим, что частота интересующего нас сигнала равна 10 кГц. Ожидаемое отклонение частоты, обусловленное разбросом характеристик генераторов, изменением температуры и старением составляет ±200 Гц.

Усложним ситуацию, добавив помеху на частоте 11 кГц. Для того чтобы удалить из спектра пик на частоте 11 кГц, не затронув полезный сигнал 10 кГц, необходим фильтр с очень крутыми срезами и плоской характеристикой в полосе пропускания от 9.8 кГц до 10.2 кГц. На первый взгляд может показаться, что здесь не обойтись без цифрового фильтра на основе сигнального процессора. Но он нам не потребуется.

Очень крутые спады АЧХ в полосе от 9 кГц до 11 кГц можно получить с помощью микросхемы полосового фильтра на коммутируемых конденсаторах, такой, например, как LTC1068 компании Linear Technology (Рисунок 1). Два маркера показывают, что на частоте 10.1 кГц затухание равно 2.9 дБ, а на частоте 10.6 кГц – 46.7 дБ. Однако полоса пропускания этого фильтра очень узка и составляет примерно ±100 Гц по уровню 3 дБ.

Рисунок 1. Полоса пропускания фильтра Бесселя восьмого
порядка формируется за счет схемы на коммутируемых
конденсаторах, обеспечивающей требуемую крутизну спада.
Однако полоса пропускания оказывается слишком узкой для
типичных приложений.

Центральная частота фильтра в 50 раз ниже тактовой частоты, и, согласно справочным данным, может отличаться от расчетного значения на ±0.9%. Если мы сможем обеспечить управление смещением полосы прозрачности фильтра для сканирования области от 9.7 кГц до 10.3 кГц, то будут покрыты наихудшие условия (неопределенность центральной частоты фильтра 90 Гц и отклонения частоты сигнала на 200 Гц). При этом подавление пика на частоте 11 кГц останется на уровне лучше 50 дБ. Одно предупреждение: появится задержка реакции длительностью в несколько миллисекунд (Рисунок 1).

Рисунок 2. Полоса прозрачности фильтра может быть сделана плоской путем
добавления генератора треугольных импульсов, управляющего входом ПНЧ,
который смещает центральную частоту фильтра вперед и назад.

Усовершенствованная конструкция фильтра содержит генератор треугольных импульсов (Рисунок 2). Его выходное напряжение, приложенное к входу преобразователя напряжение-частота (ПНЧ) микросхемы LTC1068, смещает центральную частоту очень узкополосного фильтра вперед и назад на ±5%. Резкие спады АЧХ фильтра создают почти вертикальную характеристику ослабления.

Рисунок 3. Практическая схема генератора треугольных импульсов с
выходным напряжением 2.500 В ±0.125 В.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Реферат на тему:

Устройства выборки - хранения

При сборе информации и ее последующем преобразовании часто бывает необходимо зафиксировать значение аналогового сигнала в некоторый момент времени. Некоторые типы аналогово-цифровых преобразователей, например, последовательного приближения, могут давать совершенно непредсказуемые ошибки, если их входной сигнал не зафиксирован во время преобразования. При смене входного кода цифро-аналоговых преобразователей из-за неодновременности установления разрядов наблюдаются выбросы выходного напряжения. Для устранения этого явления на время установления также следует зафиксировать выходной сигнал ЦАП. Устройства выборки - хранения (УВХ) (слежения - хранения), выполняющие эту функцию, должны на интервале времени выборки (слежения) повторять на выходе входной аналоговый сигнал, а при переключении режима на хранение сохранять последнее значение выходного напряжения до поступления сигнала выборки. Схема простейшего УВХ приведена на рис. 1а.

Рис. 1. Устройство выборки - хранения

Простейшая схема УВХ имеет ряд недостатков:

При замкнутом ключе источник входного сигнала имеет значительную емкостную нагрузку. Если источником является ОУ, это обычно приводит к его самовозбуждению.

ОУ с полевыми транзисторами на входе, применяемые в качестве буферных повторителей, имеют значительное смещение нуля.

Эти недостатки во многом устранены в ИМС устройства выборки - хранения LF398 (отечественный аналог - 1100СК2), которая в течение многих лет была по существу промышленным стандартом. Функциональная схема этой ИМС приведена на рис. 2. Здесь схема имеет общую отрицательную обратную связь, охватывающую всю схему - с выхода усилителя ОУ2 на вход усилителя ОУ1.

Рис. 2. Функциональная схема УВХ 1100СК2

Время выборки мкс

Апертурная задержка, нс

- до точности 0,01%;

- встроенный конденсатор хранения

Устройства на переключаемых конденсаторах

В последнее время наблюдается исключительно быстрый рост производства и применения МОП-структур, имеющих много преимуществ перед биполярными схемами. У МОП-структур большой входной импеданс, и они управляются напряжением (в отличие от биполярных схем, управляемых по существу током). Комплементарные МОП-структуры практически не потребляют мощности в статическом режиме. Технология МОП-структур обеспечивает большую плотность упаковки, чем биполярных. Наконец, эта технология позволяет простым способом реализовать в ИМС конденсаторы относительно большой емкости. Такие МОП-конденсаторы в сочетании с МОП-ключами позволяют заменить резисторы в некоторых типах ИМС и построить аналоговые вычислительные схемы со значительно лучшими точностными и эксплуатационными характеристиками. Замена резисторов конденсаторами, в частности, позволяет повысить точность аналоговых и аналого-цифровых устройств и уменьшить количество внешних элементов, подключаемых к микросхеме. В табл. 2 представлены сравнительные характеристики интегральных резисторов и МОП-конденсаторов.

Температурный коэффициент 10 -6 К -1

Коэффициент влияния напряжения 10 -6 В -1

Ионная имплантация с шириной 40 мкм

МОП с толщиной диэлектрика 0,1 мкм

Высокая точность изготовления интегральных МОП-конденсаторов и их стабильность способствовали тому, что в последние годы получили развитие способы обработки сигналов, использующие явление дискретного переноса зарядов. Один из путей реализации этих способов состоит в применении схем с переключаемыми конденсаторами.

Рассмотрим реализацию аналогового интегратора с применением переключаемого конденсатора. На рис. 3а приведена схема обычного аналогового интегратора.

Передаточная функция этой схемы имеет вид

а частотная характеристика

Рис. 3. Схемы интеграторов: а) - на RC-цепи, б) - с коммутируемым конденсатором

На рис. 3 б показан интегратор, в котором резистор R1 имитируется с помощью схемы с переключаемым конденсатором. Этот интегратор работает следующим образом. Коммутатор периодически переключается из положения 1 в положение 2 и обратно с периодом Т. В момент nT конденсатор С1 заряжается до напряжения uвх(nT), поэтому накопленный на нем заряд составляет С1uвх(nT). После переключения коммутатора из положения 1 в положение 2 в момент nТ+Т/2 конденсатор С1 разряжается на вход ОУ с конденсатором С2 в обратной связи. Поскольку входное дифференциальное напряжение и входные токи идеального ОУ равны нулю, конденсатор С1 разрядится полностью и его заряд суммируется с зарядом, накопленным на конденсаторе С2. В результате в момент (n+1)Т справедливо следующее уравнение зарядов:

С2uвых[(n+1)T] = С2uвых(nT) - С1uвх(nT). (3)

Здесь знак "-" обусловлен отрицательной обратной связью. Применив к обеим частям уравнения (3) z-преобразование, получим уравнение

2Uвых(z) = С2Uвых(z) - С1Uвх(z). (4)

Определенная из этого уравнения передаточная функция имеет вид

Представляет интерес сравнение свойств интеграторов, показанных на рис. 3. Перейдем к частотным харктеристикам, подставив в (5) z=exp(j?T). Получим

При ?T стремящемся к 0 выражение в скобках в знаменателе правой части уравнения (6) неограниченно приближается к j?T. Таким образом, для частот входного сигнала, низких относительно частоты переключения коммутатора f=1/T, можно приближенно записать

Сравнивая выражения (2) и (7), находим, что в схеме на рис. 3 б коммутируемый конденсатор имитирует входной резистор схемы на рис 3 а, с сопротивлением, равным T/С1. Поэтому, увеличивая частоту переключения коммутатора, мы уменьшаем эквивалентную постоянную времени интегрирования интегратора.

Теперь о недостатках фильтров на переключаемых конденсаторах. Такие фильтры имеют два неприятных свойства, которые обусловлены присутствием периодического тактового сигнала. Первое, это сквозное прохождение сигнала тактовой частоты, а именно наличие некоторого выходного сигнала (с напряжением приблизительно от 10 до 25 мВ) с частотой тактового колебания, напряжение которого не зависит от прикладываемого входного сигнала. Чаще всего это не имеет существенного значения, поскольку этот сигнал значительно удален от полосы, занимаемой обрабатываемым сигналом (обычно разработчики ИМС задают частоту коммутации в 100 раз (реже в 50 раз) больше характеристической частоты фильтров). Если же такое сквозное прохождение тактового сигнала нежелательно, то для его подавления обычно используют простой ФНЧ первого или второго порядка. В состав ИМС фильтров на переключаемых конденсаторах обычно включают неинвертирующий повторитель, на котором может быть построен такой фильтр.

Вторая проблема более тонкого свойства связана с наложением спектров. Любые компоненты входного сигнала, которые отстоят по частоте от частоты тактового сигнала на величину, соответствующую частотам полосы пропускания, не будут подавлены. Например, при использовании ИМС MAX291 в качестве ФНЧ с частотой среза 1 кГц (при тактовой частоте в 100 кГц) все спектральные компоненты входного сигнала в диапазоне от 99 до 101 кГц будут преобразованы в полосу частот от постоянного тока до частоты 1 кГц. Поэтому в случае, если в спектре входного сигнала есть заметные компоненты частот, близких к тактовой частоте, перед входом фильтра следует включить простой предварительный фильтр нижних частот.

Линейные стабилизаторы напряжения

Почти любая электронная схема - от простых схем на транзисторах и операционных усилителях и до сложнейших цифровых и микропроцессорных систем - требует для своей работы одного или нескольких стабильных источников постоянного тока. Простые нерегулируемые источники питания типа "трансформатор - неуправляемый выпрямитель - фильтр нижних частот" во многих случаях не годятся, так как их выходное напряжение зависит от тока нагрузки и напряжения в сети. К счастью, легко построить источник стабильного питания, используя отрицательную обратную связь и сравнивая выходное напряжение с некоторым постоянным эталонным (опорным) напряжением. Такие стабилизированные источники питания универсальны и могут быть изготовлены в виде интегральных микросхем стабилизаторов напряжения.

Как правило, регулирующим элементом ИМС стабилизаторов напряжения является биполярный либо полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным (непрерывным), а если регулирующий транзистор работает в ключевом режиме - импульсным.

Схемотехника линейных стабилизаторов напряжения

Микросхемы источников питания относятся к так называемым интеллектуальным силовым приборам, то-есть к таким, у которых на кристалле помимо силовых транзисторов расположена более или менее сложная схема управления ими. Принципиальная трудность создания таких приборов заключается в том, что силовые транзисторы рассеивают значительную энергию, вызывая тем самым нагрев кристалла с существенным градиентом температур. Это резко ухудшает стабильность узлов схемы управления, таких как источник опорного напряжения и дифференциальный каскад усилителя ошибки.

Монолитный линейный интегральный стабилизатор напряжения был впервые разработан Р. Видларом (США) в 1967 году. Эта микросхема (?А723) содержит регулирующий транзистор, включаемый последовательно между источником нестабилизированного напряжения и нагрузкой, усилитель ошибки и термокомпенсированный источник опорного напряжения. Схема оказалась настолько удачной, что в начале 70-х годов выпуск ее доходил до 2 млн. штук в месяц! По массовости применения среди аналоговых ИМС линейные интегральные стабилизаторы напряжения стоят на втором месте после операционных усилителей.

Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2001 г. – 383 с.

Цапенко М.П. Измерительные информационные системы. -. – М.: Энергоатом издат, 2005. – 440 с.

Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.

В последнее время наблюдается исключительно быстрый рост производства и применения МОП-структур, имеющих много преимуществ перед биполярными схемами. У МОП-структур большой входной импеданс, и они управляются напряжением (в отличие от биполярных схем, управляемых по существу током). Комплементарные МОП-структуры практически не потребляют мощности в статическом режиме. Технология МОП-структур обеспечивает большую плотность упаковки, чем биполярных. Наконец, эта технология позволяет простым способом реализовать в ИМС конденсаторы относительно большой емкости. Такие МОП-конденсаторы в сочетании с МОП-ключами позволяют заменить резисторы в некоторых типах ИМС и построить аналоговые вычислительные схемы со значительно лучшими точностными и эксплуатационными характеристиками. Замена резисторов конденсаторами, в частности, позволяет повысить точность аналоговых и аналого-цифровых устройств и уменьшить количество внешних элементов, подключаемых к микросхеме. В табл. 3 представлены сравнительные характеристики интегральных резисторов и МОП-конденсаторов.

Элемент Технология изготовления Точность изготовления, % Температурный коэффициент 10 -6 К -1 Коэффициент влияния напряжения 10 -6 В -1
Резистор Ионная имплантация с шириной 40 мкм +/-0,12 400 800
Конденсатор МОП с толщиной диэлектрика 0,1 мкм +/-0,06 26 10

Высокая точность изготовления интегральных МОП-конденсаторов и их стабильность способствовали тому, что в последние годы получили развитие способы обработки сигналов, использующие явление дискретного переноса зарядов. Один из путей реализации этих способов состоит в применении схем с переключаемыми конденсаторами.

Рассмотрим реализацию аналогового интегратора с применением переключаемого конденсатора. На рис. 17а приведена схема обычного аналогового интегратора.

Передаточная функция этой схемы имеет вид

а частотная характеристика

Рис. 17. Схемы интеграторов: а) - на RC-цепи, б) - с коммутируемым конденсатором

На рис.17 б показан интегратор, в котором резистор R1 имитируется с помощью схемы с переключаемым конденсатором. Этот интегратор работает следующим образом. Коммутатор периодически переключается из положения 1 в положение 2 и обратно с периодом Т. В момент nT конденсатор С1 заряжается до напряжения uвх(nT), поэтому накопленный на нем заряд составляет С1uвх(nT). После переключения коммутатора из положения 1 в положение 2 в момент nТ+Т/2 конденсатор С1 разряжается на вход ОУ с конденсатором С2 в обратной связи. Поскольку входное дифференциальное напряжение и входные токи идеального ОУ равны нулю, конденсатор С1 разрядится полностью и его заряд суммируется с зарядом, накопленным на конденсаторе С2. В результате в момент (n+1)Т справедливо следующее уравнение зарядов:

Здесь знак "-" обусловлен отрицательной обратной связью. Применив к обеим частям уравнения (3) z-преобразование, получим уравнение

Определенная из этого уравнения передаточная функция имеет вид

Представляет интерес сравнение свойств интеграторов, показанных на рис. 17. Перейдем к частотным харктеристикам, подставив в (5) z=exp(j w T). Получим

При w T стремящемся к 0 выражение в скобках в знаменателе правой части уравнения (6) неограниченно приближается к j w T. Таким образом, для частот входного сигнала, низких относительно частоты переключения коммутатора f=1/T, можно приближенно записать

Сравнивая выражения (2) и (7), находим, что в схеме на рис. 17 б коммутируемый конденсатор имитирует входной резистор схемы на рис 17 а, с сопротивлением, равным T/С1. Поэтому, увеличивая частоту переключения коммутатора, мы уменьшаем эквивалентную постоянную времени интегрирования интегратора.

Теперь о недостатках фильтров на переключаемых конденсаторах. Такие фильтры имеют два неприятных свойства, которые обусловлены присутствием периодического тактового сигнала. Первое, это сквозное прохождение сигнала тактовой частоты, а именно наличие некоторого выходного сигнала (с напряжением приблизительно от 10 до 25 мВ) с частотой тактового колебания, напряжение которого не зависит от прикладываемого входного сигнала. Чаще всего это не имеет существенного значения, поскольку этот сигнал значительно удален от полосы, занимаемой обрабатываемым сигналом (обычно разработчики ИМС задают частоту коммутации в 100 раз (реже в 50 раз) больше характеристической частоты фильтров). Если же такое сквозное прохождение тактового сигнала нежелательно, то для его подавления обычно используют простой ФНЧ первого или второго порядка. В состав ИМС фильтров на переключаемых конденсаторах обычно включают неинвертирующий повторитель, на котором может быть построен такой фильтр.

Вторая проблема более тонкого свойства связана с наложением спектров. Любые компоненты входного сигнала, которые отстоят по частоте от частоты тактового сигнала на величину, соответствующую частотам полосы пропускания, не будут подавлены. Например, при использовании ИМС MAX291 в качестве ФНЧ с частотой среза 1 кГц (при тактовой частоте в 100 кГц) все спектральные компоненты входного сигнала в диапазоне от 99 до 101 кГц будут преобразованы в полосу частот от постоянного тока до частоты 1 кГц. Поэтому в случае, если в спектре входного сигнала есть заметные компоненты частот, близких к тактовой частоте, перед входом фильтра следует включить простой предварительный фильтр нижних частот.

Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.


Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких.

Фильтры с характеристиками Баттерворта, Чебышева, Золотарева.

При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются и отличаются от рассматриваемых.

Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.

Кварцевые фильтры.

В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.


Магнитострикционные фильтры.

Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000. 4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.


Линии задержки.

В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.


Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

Активные фильтры.


Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

Цепи с переключающими конденсаторами.

Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов.

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

Рассмотрим такую замену на схемах 1 и 2.


Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

Цифровые фильтры.

Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

Читайте также: