Эксперименты с магнитной жидкостью реферат

Обновлено: 02.07.2024

Прочитав в 11-м номере журнала за прошлый год статью "Магнитная жидкость", очень заинтересовался этим, изготовил жидкость и проделал с ней несколько опытов.

При изготовлении магнитной жидкости я несколько отклонился от предлагаемого рецепта. Вместо олеината натрия использовал моющее средство "Fаiry". Полученный дисперсный раствор поставил на магнит на несколько часов, а затем слил жидкую часть, придерживая магнитом осевшую на дне гущу. Эту гущу немного подсушил и приступил к испытаниям.

(Все опыты с магнитной жидкостью надо делать осторожно, не оставлять ее рядом с магнитами - не успеешь и глазом моргнуть, как вся расползется.)

Если налитую в чашу Петри магнитную жидкость поднести к магниту так, чтобы магнитные линии входили в нее вертикально, то на ее поверхности "вырастают" шипы, жидкость становится похожей на ежа.

Думаю, данную форму можно объяснить тем, что она стабилизирует возмущения, вызванные магнитным полем, и силы поверхностного натяжения и тяжести.

Опущенный в магнитную жидкость постоянный магнит не тонет, а находится во взвешенном состоянии. Магнит располагается на одинаковом расстоянии от стенок сосуда. Магнит, притянутый к стенке сосуда другим магнитом, отталкивается от нее, после того как другой магнит убирают.

Думаю, это можно объяснить тем, что магнитное поле неоднородно и у поверхности магнита оно более напряженное, поэтому давление жидкости вблизи магнита намного больше. Если сила давления, действующая на поверхность магнита, превысит силу тяжести, то магнит всплывет. А расположение магнита в центре объясняется тем, что давление, возникшее вокруг магнита, отталкивает его от стенок сосуда.

Попробуйте руками вытащить магнит, опущенный в магнитную жидкость. А что если использовать магнитную жидкость как смазку? Детали, подверженные сильному трению, изготавливать из магнитов или вставлять в них магниты, а вместо обычной смазки использовать магнитную жидкость. Думаю, эффективность будет намного выше.

Площадь сечения струи магнитной жидкости в магнитном поле уменьшается.

Полагаю, этот опыт показывает, что магнитное поле ускоряет движение частиц, с которыми взаимодействует (или замедляет, в зависимости от направления), так как для неразрывности потока жидкости ее скорость в узкой части потока должна быть больше, чем в широкой.

Мне 16 лет, учусь в 10-м классе средней школы города Клайпеды (Литва). Увлекаюсь химией, биологией и физикой.

Ваш журнал выписываю второй год. Узнаю много нового, интересного и практического. Читаю все, кроме "Для тех, кто вяжет", "Поделки из бисера" и т.п. Хотелось бы чаще видеть на страницах журнала "Физпрактикум" и "Лабораторию любителей науки". Хорошо, если бы после статей (особенно в разделах "Наука на марше", "Вести из институтов, лабораторий и экспедиций", БНТИ и БИНТИ) печатались адреса в Интернете для более подробного ознакомления. Чаще печатайте заметки о различных конкурсах (лучше заранее, чтобы можно было принять в них участие).

Благодаря журналу я поступил во Всероссийскую заочную многопредметную школу - открытый лицей ВЗМШ при МГУ им. М. В. Ломоносова на отделения биологии и химии.

Магнитные жидкости представляют собой взвесь однодоменных микрочастиц ферро- и ферримагнетиков в жидкой среде (керосине, воде, толуоле, минеральных и кремнийорганических маслах и т.п.). В качестве магнетика используется высокодисперсное железо, ферромагнитные окислы g Fe2O3, Fe3O4, ферриты никеля, кобальта. Дисперсные частицы, вследствие малости их размеров (около 10 нм), находятся в интенсивном броуновском движении. Агрегативная устойчивость коллоидных систем с магнитными частицами обеспечивается адсорбционными слоями, препятствующими сближению частиц на такие расстояния, при которых энергия притяжения будет больше, чем разупорядочивающая энергия теплового движения. С этой целью, т.е. для устойчивости по отношению к укрупнению частиц вследствие их слипания, в коллоид вводится определенное количество стабилизатора - поверхностно-активного вещества (ПАВ). Как правило, в качестве ПАВ используют вещества, состоящие из полярных органических молекул, которые и создают на поверхности дисперсных частиц адсорбционно-сольватные слои. Намагниченность насыщения концентрированных магнитных жидкостей может достигать 100 кА/м в магнитных полях напряженностью 105 А/м при сохранении текучести МЖ. Магнитная восприимчивость магнитных жидкостей на несколько порядков выше, чем у гомогенных парамагнитных жидкостей и достигает значения 10-15. Ее величина зависит от размера частиц и их объемной концентрации. Однако, увеличение размера частиц ограниченно из-за возможности слипания частиц за счет их большого магнитного момента или нарушения условия однодоменности. Поэтому, в устойчивых коллоидах обычно размер частиц не превышает 10-15 нм. Максимальная концентрация магнитного вещества в магнитной жидкости зависит от диаметра частиц и минимально возможного расстояния между ними. Кроме этого, на ее величину влияет и распределение частиц по размерам. Обычно максимальная объемная концентрация твердой фазы в МЖ не превышает 0,25. Наиболее распространенной магнитной жидкостью является МЖ типа магнетит в керосине с олеиновой кислотой в качестве стабилизатора. Впервые методика получения стабилизированного коллоидного раствора магнетита была предложена В.Элмором [4]. В последнее время такие жидкости получают методом конденсации при осаждении магнетита щелочью из водного раствора солей двух- и трехвалентного железа. Подробное описание большинства подобных методик приведено в работе [5]. В результате получают МЖ, вязкость которой при намагниченности насыщения 50-60 кА/м может быть сравнима с вязкостью воды. Полидисперсность магнетитовых частиц, полученных описанным способом, определяется колоколообразной функцией распределения частиц с шириной распределения порядка среднего размера частиц (10 нм). В столь малых частицах при сохранении в них самопроизвольной намагниченности возрастает вероятность тепловых флуктуаций магнитного момента [6]. В результате этого возможна хаотическая переориентация момента частицы относительно ее кристаллографических направлений с характерным временем неелевской релаксации tN = t0·exp(g), где g = Ea/kT, - эффективная энергия магнитной анизотропии, t0=10-9с [7]. Такие частицы, вследствие их специфики, получили название "суперпарамагнитные " [8].


В жидкой среде возможна также вращательная диффузия самих частиц. В этом случае может проявиться броуновский механизм релаксации магнитного момента, при этом, преобладание броуновского или неелевского механизма релаксации зависит от соотношения времен релаксации tN и вращательной (h - вязкость дисперсионной среды).

Основным средством управления магнитными жидкостями является магнитное поле. Например, с помощью воздействия на них неоднородного магнитного поля можно достичь объемных пондеромоторных сил на несколько порядков превышающих силу тяжести. Эти силы используются в магнитожидкостных сепараторах, датчиках ускорений и т.д. Вследствие возможности локализации МЖ полем были разработаны магнитожидкостные уплотнения, управляемые смазочные материалы, магниточувствительные жидкости для дефектоскопии и др. На практике применяются самые разнообразные магнитные жидкости, среди которых следует выделить МЖ на основе минеральных масел и кремнийорганических сред. Вязкость таких магнитных жидкостей при намагниченности насыщения 20-40 кА/м может достигать величины порядка 104 Па·с, поэтому, их иногда идентифицируют с магнитными пастами. Для нужд медицины разрабатываются МЖ на пищевых растительных маслах.

Магнитная жидкость как однородная намагничивающаяся среда.

На начальном этапе исследования магнитных жидкостей было сформировано представление о них как однородной жидкой намагничивающейся среде с термодинамически равновесной поляризацией. Так в работе Розенцвейга и Нойрингера [9] пондеромоторное воздействие неоднородного магнитного поля на магнитную жидкость рассматривается на основе наличия в ней объемной плотности сил и объемной плотности импульсов сил.

Представление магнитной жидкости в виде однородного дипольного газа, в котором элементарным носителем магнитного момента является дисперсная частица позволяет применить для описания намагничивания такой системы закон Ланжевена [10], выведенный им для ансамбля молекул парамагнитного газа. В этом случае выражение для намагниченности магнитной жидкости М в поле Н может быть представлено в виде:


(1.1)


где МS - намагниченность насыщения исходного диспергированного вещества, Q - объемная концентрация твердой фазы, М¥ - намагниченность насыщения коллоида, m - магнитный момент дисперсной частицы.

В слабых полях, когда, функция Ланжевена может быть представлена первым членом разложения в ряд Тейлора . В этом случае выражение для начальной магнитной восприимчивости имеет вид:


(1.2)

Предполагая, что форма дисперсных частиц близка к сферической, с учетом m = MSV (V - объем частицы) получаем:


(1.3)

где M¥ = nm - намагниченность насыщения МЖ, d - диаметр частицы, n - числовая концентрация.

В достаточно сильных магнитных полях, когда, функция Ланжевена может быть представлена в виде и уравнение (1.1) принимает вид:


(1.4)

На основе ланжевеновской зависимости намагниченности от поля возник метод магнитной гранулометрии [11]. С его помощью возможно определение диаметра d частицы по измерениям магнитной восприимчивости в слабых полях и по измерениям намагниченности в сильных полях, т.е. в области, близкой к насыщению. Соответствующие расчеты проводятся по формулам:

; (1.5)

где в области линейной зависимости .

В первых экспериментальных работах было получено хорошее согласие кривых намагничивания с функцией Ланжевена [10,12]. Некоторое отклонение хорошо устраняется учетом распределения частиц по размерам. Так, использование в качестве функции распределения формулы Гаусса дало возможность представить зависимость намагниченности от поля в виде [10]:


(1.6)

где n - полное число частиц в объеме, n(a) - число частиц, диаметр которых удовлетворяет d - усреднение с функцией распределения направлений n; с - объемная концентрация частиц). В равновесном состоянии для тензора анизотропии магнитного коллоида в магнитном поле, что также показано в, следует выражение:


,

а разность коэффициентов преломления света, поляризованного вдоль и поперек направления намагничивающего поля


Это выражение без множителя (n2 - 2)/3 рассматривалось в работах, а для малых значений параметра эффективной магнитной анизотропии - в. Согласно результатам некоторых экспериментальных работ, в которых разность n|| - n^ определялась по сдвигу фаз d=2пl(n||- n^)/l между поляризованными перпендикулярно внешнему магнитному полю и вдоль него лучами при прохождении света через образец коллоида толщиной l, магнитное двулучепреломление хорошо описывается ориентационной моделью для независимых частиц. В работах исследовано двойное лучепреломление в магнитных жидкостях в электрическом и магнитном поле, где также интерпретация полученных результатов построена на основе одночастичной модели. Анализ полученных результатов позволил из условия компенсации эффектов Керра и Котона-Мутона определить магнитный момент частицы, которому соответствует радиус ее магнитного керна около 5 нм. Это может указывать, что ориентационная модель пригодна и для описания эффектов двулучепреломления при совместном действии электрического и магнитного полей. Вместе с тем, ряд экспериментальных результатов оказалось затруднительным объяснить на основе этой модели. Например, в работе проведен анализ применимости ориентационной модели для описания магнитооптических эффектов широкого класса коллоидов, где указано, что для коллоидов магнетита в углеводородных средах интерпретация указанных эффектов на основе ориентационной модели для независимых частиц вполне приемлема, однако для образцов на водой основе становится затруднительной. Было предположено, что это связано с существованием в коллоиде анизотропных цепочечных агрегатов, типа димеров, тримеров и т.п. Подобная модель использована для объяснения двулучепреломления и в работах [58, 59], где для разности фаз обыкновенного и необыкновенного лучей при прохождении образца толщиной l получено выражение:


(Q - объемная концентрация дисперсных частиц, e - отношение диэлектрических проницаемостей частицы и растворителя, - усредненное значение деполяризующего фактора цепочечных кластеров.

Информация о причинах двулучепреломления и механизме его релаксации может быть получена методом вращающейся кюветы. Сущность этого метода состоит в том, что ячейка с коллоидом, помещенная в магнитное поле, поперечное лучу света, вращается между скрещенными поляризаторами. По углу поворота жестко связанных поляризатора и анализатора регистрируется изменение направления оптической оси образца. Как следует из выводов и анализа указанных работ для ряда исследованных образцов подтверждается применимость ориентационной модели независимых частиц. Однако существуют образцы, для которых метод вращающейся кюветы дает результаты, не согласующиеся с этой моделью. По-видимому, в этом случае необходимо построение моделей, учитывающих возникновение в магнитном поле анизотропных по форме агрегатов и гидродинамические эффекты их деформации и разрушения.

В работах с целью изучения агрегирования исследовано влияние сдвигового течения на магнитные свойства дисперсных магнетиков. Указано, что намагниченность крупнодисперсных суспензий существенно зависит от приложения вязких напряжений (уменьшается на 30-40% при скорости сдвига порядка 104 с-1), тогда как для магнитной жидкости, представляющей собой коллоидный раствор магнетита в керосине (объемная концентрация 6%), такой зависимости не обнаружено во всем исследованном диапазоне скоростей сдвига и напряженностей магнитного поля. По мнению авторов, полученные результаты соответствуют теории образования цепочечных агрегатов в однородном магнитном поле [33]. Большое внимание исследованию агрегирования магнитных жидкостей уделено в работах Чеканова В.В. и др.62. В работе [62] отмечена возможность образования в МЖ на основе керосина агрегатов двух типов: каплеподобных, изменяющих свою форму при наложении поля, и квазитвердых, которые в некоторых случаях при выключении поля остаются намагниченными. С возникновением, при некотором пороговом значении напряженности магнитного поля, вытянутых вдоль поля капельных структур авторами [63] связывается обнаруженный ими изгиб на кривой намагничивания магнитной жидкости на основе керосина с объемной концентрацией магнетита Q = 15%.

Экспериментальному и теоретическому исследованию каплеподобных агрегатов посвящен ряд работ Бакри и др.[64,65]. В основном, эти исследования посвящены гидростатике межфазной поверхности микрокапельного агрегата в магнитном поле. В частности установлена нестабильность формы эллипсоидального агрегата для некоторых значений его эксцентриситета: с увеличением магнитного поля, при некотором пороговом значении его напряженности, происходит скачкообразное увеличение вытянутости агрегата вдоль поля. При последующем уменьшении поля скачкообразное уменьшение вытянутости агрегата происходит при меньшем значении пороговой напряженности. Отметим, что в этих работах не ставилось цели изучения влияния микрокапельных агрегатов на магнитные свойства магнитной жидкости. Этой проблеме уделялось внимание в работах Пшеничникова А.Ф. и др. [66,67]. В работе [66] для исследования дисперсного состава капельных агрегатов была выделена обогащенная агрегатами тяжелая фракция. Для этого коллоидный раствор магнетита помещался в неоднородное магнитное поле. Агрегаты скапливались в зоне с наибольшей напряженностью поля и отбирались из нее с помощью шприца. По полученным кривым намагничивания исследуемых образцов были найдены намагниченность насыщения М¥, начальная восприимчивость c, числовая концентрация частиц n и средний магнитный момент частицы . Дополнительная информация о магнитных параметрах агрегатов была получена при исследовании магнитофорезадвижения агрегатов в неоднородном магнитном поле. Полученные результаты позволили авторам сделать выводы, что основную роль в агрегировании играют наиболее крупные частицы, при этом, процесс расслоения жидкостей протекает с характерным временем в несколько минут. Образовавшиеся капельные агрегаты представляют собой предельно концентрированные магнитные жидкости, отдельные дисперсные частицы в которых сохраняют поступательные и вращательные степени свободы, при этом намагниченность насыщения и начальная магнитная восприимчивость агрегатов близки к максимально возможным значениям для ультрадисперсных смесей. Сделан также вывод, что среди известных моделей, позволяющих получить аналитическое выражение для намагниченности с учетом взаимодействия частиц наиболее приемлемо среднесферическое приближение. Оно хорошо описывает начальную магнитную восприимчивость магнитных жидкостей при температурах 290-320 К, при понижении температуры расхождение между расчетными и экспериментальными данными увеличивается.

Таким образом можно заключить, что в последнее время стали развиваться экспериментальные и теоретические исследования агрегирования и взаимодействия частиц в магнитных жидкостях. Однако, к моменту начала работы над настоящей диссертацией единой точки зрения на характер этих явлений не было. Одной из причин этого являлась недостаточность накопленных в этой области экспериментальных данных. Отсутствовало систематическое исследование взаимосвязи процессов структурирования и оптических свойств магнитных жидкостей, а также влияния различного типа структурных образований и их превращений на эффекты светорассеяния в магнитных жидкостей, которое привело бы к развитию физики магнитных жидкостей с учетом агрегирования и взаимодействия частиц.

Проведенный обзор теоретических и экспериментальных работ, посвященных структурным и оптическим свойствам магнитных жидкостей показал, что первоначально, во многих исследованиях допускалась возможность представления магнитной жидкости в виде однородного дипольного газа, в котором элементарным носителем магнетизма является дисперсная частица. Однако, в последующих работах показана ограниченность этой модели, связанная с проявлением межчастичных взаимодействий, в результате которых в магнитных жидкостях возможно появление структурных образований, оказывающих существенное влияние на физические свойства таких систем. Эффекты взаимодействия частиц и связанные с ними процессы агрегирования привлекли интерес широкого круга исследователей, однако до момента начала работы над настоящей диссертацией оставались слабо изученными.

В ряде работ сообщается о существовании различных типов структурных образований, однако вопрос о преобладающих механизмах структурирования, об экспериментальном распознании образований того или другого типа оставался открытым. Иными словами, недостаточно были исследованы структурные образования различных типов, их трансформация в магнитном поле и под воздействием сдвиговых напряжений. Очевидна необходимость целенаправленных исследований свойств агрегированных МЖ, которые должны иметь ряд особенностей, связанных с наличием в МЖ различного типа структурных образований. В частности, необходимость моделирования различных типов структурно-динамических образований и изучения их характерного поведения в тех или иных условиях.

Развитие исследований структурированных магнитных жидкостей и появление возможности их практического использования, (в частности МЖ с микрокапельной структурой) привело к идее искусственного создания многофазных намагничивающихся сред – магнитных жидкостей с немагнитным наполнителем. Такие жидкости могут получить широкое применение в качестве магниточувствительной среды, что указывает на перспективы их применения для решения некоторых задач химической технологии, приборостроении и т.п. В связи с этим, актуальными становятся исследования свойств магнитных жидкостей с немагнитным наполнителем, в частности образование анизотропной структуры и связанные с этими процессами особенности оптических свойств таких систем. Подобные исследования могли бы быть полезными и при теоретическом описании жидких многофазных намагничивающихся сред.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




Физика.Ферромагнитная жидкость


Автор работы награжден дипломом победителя I степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Цель:приготовить ферромагнитную жидкость и изучить её свойства.

Задачи:

Узнать о ферромагнитной жидкости (вид неньютоновской жидкости).

Приготовить ферромагнитную жидкость.

Провести эксперименты для изучения её свойств.

Узнать её применение.

Гипотеза: в домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Область применения результатов: участие в научно-исследовательских конкурсах

Актуальность: Магнетизм – это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Планета Земля имеет два магнитных полюса и собственное магнитное поле. Магниты – важная часть нашей повседневной жизни. Магниты являются существенными компонентами таких устройств, как электрические двигатели, динамики, компьютеры, проигрыватели компакт-дисков, микроволновые печи и, конечно, автомобили. Магниты используются в датчиках, приборах, производственном оборудовании, научных исследованиях. Ферромагнитная жидкость – один из видов неньютоновской жидкости. Это искусственно созданная жидкость. Эта жидкость меняет свойства при определенных условиях которыми может управлять человек.

ОСНОВНАЯ ЧАСТЬ

2.1 Теоретическая часть

Магнитные жидкости – это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами.

В 1963 году сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение — добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

Минимальный состав ферромагнитой жидкости: ферромагнетик (например, мелкие частицы магнитного металла) и растворитель (например, различные масла). Но такая жидкость будет оседать. Чтобы этого не происходило, необходимо добавить модификатор поверхности (вещество, которое не даёт ферромагнетику слипаться, например лимонная кислота). Ферромагнитные жидкости изучает раздел науки коллоидная химия.

Магнитная жидкость обладает всеми преимуществами жидкого материала – малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

2.2 Практическая часть:

В практической части работы я пробовал сделать ферромагнитную жидкость и посмотреть как она изменяется в присутствии магнита.

2.2.1 Материалы и инструменты:

- тонер-порошок, девелопер, железная стружка, магнитный порошок;

- машинное масло, подсолнечное масло;

- неодимовые магниты: из обычного жесткого диска для компьютера, из звукового динамика, приобретенный в специализированном магазине неодимовое магнит-кольцо;

- флакон, воронка, разные поверхности, полиэтиленовый пакет, перчатки, палочка;

- блокнот для записей, ручка, фотоаппарат, ноутбук.

2. 2.2 Опыт № 1 Получение ферромагнитной жидкости из тонер-порошка и машинного масла

В глобальной сети Интернет есть множество сайтов, на которых описан способ получения ферромагнитной жидкости из тонер-порошка и машинного масла в пропорции одна третья тонер порошка, остальное машинное масло. Я взял тонер-порошок для лазерных принтеров brother и машинное масло. Смешал в пластиковой бутылке. После смешивания, я поднес магнит и ничего не произошло. Жидкость получилась, но она не обладала магнитными свойствами. Если бы жидкость обладала магнитными свойствами, она бы затвердела и изменила свою форму при движении магнита. Опыт завершился неудачей.

2.2.3 Опыт № 2 Получение ферромагнитной жидкости из тонер-порошка, девелопера и машинного масла

Из первого опыта я сделал вывод о том, что используемый тонер не является ферромагнетиком. В современных лазерных принтерах для намагничивания краски используется девелопер – специальный магнитный порошок. В получившуюся в первом опыте жидкость я добавил треть объема девелопера. Когда я поднес магнит, жидкость образовала почти незаметный холмик и не затвердела. Получилась жидкость со слабыми ферромагнитными свойствами. Опыт завершился неудачей.

2.2.4 Опыт № 3 Получение ферромагнитной жидкости из железной стружки и машинного масла

После первых двух неудавшихся опытов, я задумался о силе магнита. С помощью которого проверяю наличие магнитных свойств. Для проверки жидкости я использовал два магнита: магнит от звукового динамика и неодимовый магнит из уже не работающего жестко диска для компьютера (HDD). Для того чтобы убедится, что ферромагнитная жидкость не получается из за свойств ферромагнетика в жидкости, а не магнита я добавил в получившийся раствор обычные железные опилки (отходы от работы на слесарном станке). Магнит притянул к стенке все железные элементы жидкости! Магнитные свойства появились, но все то что я смешал уже сложно назвать жидкостью. Опыт снова завершился неудачей.

2.2.5 Опыт № 4 Получение ферромагнитной жидкости из магнитного порошка и подсолнечного масла

Итак, для получения ферромагнитной жидкости нужен хороший ферромагнетик! В специализированном магазине Мир магнитов я приобрел специальный железный магнитный порошок для опытов.

Магнитный порошок

Подсолнечное масло

На фотографиях вы видите исходные вещества которые я перемешал в пропорции: 1 часть магнитного пороша и 2 части подсолнечного масла и получил ферромагнитную жидкость.

2.2.6 Опыт № 5 Получение ферромагнитной жидкости из магнитного порошка, лимонной кислоты и подсолнечного масла.

Для того чтобы ферромагнитная жидкость не расслаивалась в нее добавляют ПАВ (поверхностно активное вещество). В качестве ПАВ я выбрал лимонную кислоту.

Лимонная кислота

Ферромагнитная жидкость после отстаивания

Через несколько часов моя ферромагнитная жидкость расслоилась, это вы можете увидеть на фотографии. Я добавил одну четвертую ложки лимонной кислоты в качестве ПАВ. Но через несколько часов эта смесь тоже расслоилась.

Эксперимент по созданию не расслаивающейся ферромагнитной жидкости завершился неудачей.

2.2.7 Опыт № 6 Изучение свойств феррмагнитной жидкости. Магнитоуправляемость.

Для изучения свойств полученной жидкости я использовал неодимовый магнит.

Магниты и инструментарий

Когда я поднес магнит к стенке пузырька с ферромагнитной жидкость часть жидкости примагнитилас к стенке, затвердела и изменила свою форму (см. фото)

Когда я положил магнит на дно и перевернул пузырек, все его содержимое стало твердым и не стекало сверху вниз.

Когда я убрал магнит, твердая вещество стало превращаться в жидкость и стекло сверху вниз

С помощью пипетки я перелил часть ферромагнитной жидкости на пластиковый диск

Обратите внимание – это жидкость.

Вот что произошло с жидкостью на которую воздействует магнит. Форма похожа на иголки ежика.

При перемещении магнита часть твердой жидкости переместилась вместе с ним, оставшаяся стала принимать жидкую форму.

Моя младшая сестра захотела сделать ферромагнитного котика у которого может пониматься шерсть дыбом.

На фанерке, оклеенной фольгой, с помощью пластилина я сделал очертания кота и заполнил его с помощью пипетки моей ферромагнитной жидкостью

Вот что получилось при поднесении магнита снизу

Мой ферромагнитный ежик

2.2.8 Опыт № 7 Изучение свойств феррмагнитной жидкости. Способность проникать в микрообъемы(закупорка отверстия)

В последнем эксперименте я пытался понять, как можно с помощью внешнего магнита закрывать отверстия от течи. Для этого я сначала налил мою жидкость в пластмассовую колбу с большим отверстием внизу. Потом поднес магнит к стенке рядом с отверстием и поднял колбу. Затвердевшая под действием магнита жидкость препятствовала вытеканию остальной жидкой части. Как только я убрал магнит, все вытекло из колбы.

Нажмите, чтобы узнать подробности

Текст исследовательской работы на научно-практическую конференцию "Старт в науку".

Глава I ВВЕДЕНИЕ с.3

Цель и задачи работы с.3

Актуальность работы с.4

Глава II ИЗ ГЛУБИНЫ ВЕКОВ с.4

Наноистория и нанореволюция с.4

Глава III ЗАГАДКА НАНОМИРА. МАГНИТНАЯ ЖИДКОСТЬ с.5

История открытия ферромагнитной жидкости с.5

Получение магнитной жидкости в школьной лаборатории с.5-7

Изучение свойств магнитной жидкости с.8

Эксперимент №1 Взаимодействие МЖ с магнитным полем с.8

Эксперимент № 3 Эффект Тиндаля с.9

Эксперимент № 4 Исследование поведения МЖ в этаноле с.9

Эксперимент № 5 Удаление с поверхности воды загрязнений из машинного масла с.10

Эксперимент № 6 Разрушение магнитной жидкости кислотами с.10

5. Применение магнитной жидкости с.11

Глава IV ЗАКЛЮЧЕНИЕ с.12-13

Литература и интернет источники с.14

Приложение 1 с. 15

Приложение 2 с.16

Приложение 3 с.17

«Нанотехнологии – это ворота,

Глава I. ВВЕДЕНИЕ

Конец прошлого и начало нынешнего века ознаменовались бурным ростом интереса к нанотехнологиям. О нанотехнологиях говорится очень много и на самых различных уровнях. Тема развития нанотехнологий часто поднимается в средствах массовой информации и в выступлениях политиков. При этом говорится о начале новой нанотехнологической революции и XXI век называют веком нанотехнологий .В природе нанороботы и нанофабрики работают уже миллиарды лет. Никого не удивляет то, что всего из одной яйцеклетки вырастает человек. Сегодня в промышленных масштабах производятся такие изделия, что по сравнению с ними гвозди, которыми Левша подковал блоху, все равно, что египетские пирамиды рядом с детскими кубиками.

Цель работы

Получить и изучить свойства ферромагнитной жидкости в школьной лаборатории

Задачи работы

Изучить историю развития нанотехнологий

Разработать методику получения ферромагнитной жидкости в школьной лаборатории

Изучить свойства ферромагнитной жидкости

Ознакомится с новейшими достижениями в области наножелеза и примерами использования его в повседневной жизни.

Актуальность работы

Нанотехнология – без сомнения самое передовое и многообещающее направление развития науки и техники на сегодняшний день. Возможности её поражают воображение, мощь – вселяет страх.

Технологии получения магнитных жидкостей и применения их в различных областях современной науки и техники, биологии и медицины являются, безусловно, актуальными. Они представляют большой интерес для специалистов в физике, химии, технике, биологии и медицине. Перспективы применения магнитной жидкости неисчерпаемы.

Глава II . ИЗ ГЛУБИНЫ ВЕКОВ

Дедушкой нанотехнологий можно считать греческого философа Демокрита. 2400 лет назад он впервые использовал слово “атом” для описания самой малой частицы вещества.

1974 году Японский физик Норио Танигучи ввел в научный оборот слово “нанотехника”, предложив называть так механизмы размером менее 1 микрона. Открытие фуллеренов, нанотрубок, графена стало настоящей революцией в нанотехнологии.

В переводе с латыни нано означает маленький, а с греческого “ nanos”- гном (карлик). В настоящее время “нано” используется как приставка, обозначающая размерность 10 -9 метра. Это одна миллиардная часть!

Глава III. ЗАГАДКА НАНОМИРА. МАГНИТНАЯ ЖИДКОСТЬ

Магнитная жидкость - жидкость, притягиваемая магнитом, то есть реагирующая на магнитное поле. Она представляет собой коллоидный раствор мельчайших частиц магнитного материала (обычно магнетита Fe3O4 или феррита), устойчивую взвесь твёрдых частиц в жидкости.

История открытия ферромагнитной жидкости

Магнитные жидкости были почти одновременно синтезированы в США и России в середине 60-х годов двадцатого века. Первые магнитные жидкости были получены американцем Пайпеллом, в результате механического измельчения частиц магнетита в шаровых мельницах. В России родоначальником магнитожидкостных технологий был Дмитрий Васильевич Орлов.

Получение магнитной жидкости в школьной лаборатории

Для получения магнитной жидкости в школьной химической лаборатории мы использовали метод химической конденсации высокодисперсного магнетита, этод метод разработали отечественные учёные М.А. Лунина, Е.Е. Бибик и Н.П. Матусевич.

В основе метода лежит реакция солей железа (II) и (III) в щелочной среде:

Оборудование

Аптечные весы с набором разновесов.

Колбы, химические стаканы, фарфоровые стаканы.

Фильтровальная бумага, индикаторная бумага, воронка.

Сильный магнит, желательно кольцевой (из динамика).

Электроплитка и термометр.

Реактивы

Соли двух- и трёхвалентного железа (хлорные или сернокислые).

Аммиачная вода 25%-ной концентрации, дистиллированная вода

Экспериментальная часть

1. Растворите в 500 мл дистиллированной воды (можно при слабом подогреве и несильном помешивании) 24 грамма трехвалентной соли хлорида железа и 12 граммов двухвалентной соли сульфата железа.

2. Полученный раствор отфильтруйте на воронке в другую колбу через фильтровальную бумагу для отделения механических примесей.

3. В первую колбу, предварительно промыв её водой, залейте (осторожно!) около 100–150 мл аммиачной воды (работу лучше проводить под тягой или на открытом воздухе).

4. Очень осторожно, тонкой струёй вливайте из второй колбы отфильтрованный раствор в первую, содержащую аммиачную воду, и интенсивно взбалтывайте её. Коричневый раствор мгновенно превратится в суспензию чёрного цвета. Долейте немного дистиллированной воды и поставьте колбу с образовавшейся смесью на постоянный магнит на полчаса.

6. После того, как последней промывной раствор на две трети слит, загущённую суспензию отфильтруйте через бумажный фильтр на воронке и полученный осадок чёрного цвета смешайте с 7.5 грамма натриевой соли олеиновой кислоты. Вместо олеиновой кислоты можно использовать моющее средство „Fаiry“.

7. Смесь поместите в фарфоровый стаканчик и прогрейте до 80°С на электрической плитке, хорошо перемешивая, в течение часа.

9. Хранить водную магнитную жидкость желательно в светонепроницаемой таре в прохладном месте.

Свойства магнитной жидкости

Все экспернименты с магнитной жидкостью надо делать осторожно, не оставлять её рядом с магнитами.

Эксперимент № 1. Взаимодействие магнитной жидкости с магнитным полем

Нанесите каплю магнитной жидкости на предметное стекло или налейте магнитную жидкость в химический стакан, колбу, чашку Петри. Поднесите магнит. Перемещайте магнит по предметному стеклу или по колбе, сделайте рисунок.

Вывод. Магнитная жидкость взаимодействует с магнитным полем: если поднести магнит сбоку, то жидкость полезет на стенку и может подняться за магнитом как угодно высоко. Меняя направление движения магнитной жидкости, можно создать рисунок на стенке сосуда. Магнитная жидкость, налитая в чашку Петри, заметно вспучивалась при поднесении магнита. Образуются силовые лини магнитного поля: частицы магнетита выстраиваются в упорядоченные линии.

Фильтровальную бумагу пропитайте магнитной жидкостью и высушите. Поднесите магнит к фильтровальной бумаге.

Эксперимент № 3. Эффект Тиндаля

Добавьте в дистиллированную воду немного магнитной жидкости и тщательно перемешайте раствор. Пропустили через стакан с дистиллированной водой и через стакан с полученным раствором луч света от лазерной указки. Лазерный луч проходит через воду, не оставляя следа, а в растворе магнитной жидкости оставляет светящуюся дорожку.

Вывод. Основа появления конуса Тиндаля – рассеяние света коллоидными частицами, в данном случае частицами магнетита. Если размер частицы меньше длины полуволны падающего света, то наблюдается дифракционное рассеяние света. Свет огибает частицы и рассеивается в виде волн, расходящихся во все стороны.

В коллоидных системах размер частиц дисперсной фазы составляет
10 -9 - 10 -7 м, т.е. лежит в интервале от нанометров до долей микрометров. Эта область превосходит размер типичной малой молекулы, но меньше размера объекта, видимого в обычном оптическом микроскопе.

Эксперимент №4. Исследование поведения магнитной жидкости в этаноле

В этиловый спирт добавили небольшое количество полученной нами магнитной жидкости. Тщательно перемешали. Наблюдали за скоростью оседания частиц магнетита.

Вывод. Частицы магнетита осели за 2-3 минуты вне магнитного поля. Магнетит осел в этаноле компактно в виде сгустка, перемещается вслед за магнитом, не оставляет следа на стенке пробирки. Оставленный в таком положении магнитная жидкость сохраняется в течение длительного времени вне магнитного поля.

Эксперимент №5. Удаление с поверхности воды загрязнений из машинного масла

В воду налили немного машинного масла, затем добавили небольшое количество магнитной жидкости. После тщательного перемешивания дали смеси отстояться.

Вывод. Магнитная жидкость растворилась в машинном масле. Под действием магнитного поля пленка из машинного масла с растворенной в нем магнитной жидкостью начинает стягиваться к магниту. Поверхность воды постепенно очищается.

Эксперимент № 6. Разрушение магнитной жидкости кислотами

Добавьте в магнитную жидкость раствор серной или соляной кислот, нагрейте над пламенем спиртовки.

Вывод. Поскольку магнитная жидкость представляет собой коллоидный раствор магнетита, она разрушается под действием сильных минеральных кислот. Наблюдается постепенное растворение магнетита в кислотах.

Применение магнитной жидкости

Сейчас для магнитных жидкостей придумали множество полезных применений: Магнитные жидкости находят широкое применение в технике в качестве магнитных смазок, она снижает трение на 20 % эффективнее. Применение магнитной жидкости для уплотнения вращающихся валов позволяют существенно увеличить ресурс механизмов и снизить уровень шума.

Магнитные жидкости используют для обогащение полезных ископаемых.

Магнитную жидкость можно применять для сбора нефтепродуктов на поверхности морей, океанов, озер. Магнитные жидкости находят широкое применение в медицине: в хирургии, в качестве контрастного средства при рентгеноскопии, так как частицы активно поглощают рентгеновские лучи, при лечении раковых заболеваний. Противоопухолевые препараты, к примеру, вредны для здоровых клеток. Но если их смешать с магнитной жидкостью и ввести в кровь, а у опухоли расположить магнит, магнитная жидкость, а вместе с ней и лекарство сосредоточиваются у пораженного участка, не нанося вреда всему организму.

Глава IV.ЗАКЛЮЧЕНИЕ

Магнитные жидкости – это уникальный искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами с широкими перспективами применения в технике, медицине, экологии.

Мы думаем, что решили проблему своей работы, так как была изучена история становления нанонауки, проведен эксперимент по получению магнитной жидкости.

В настоящее время развитие нанотехнологий и разработка методик создания и изучения нановещества может быть названа одной из важнейших областей науки XXI века. Как говорил знаменитый физик Фейнман, проникновение в наномир – это бесконечный путь человека, на котором он практически не ограничен материалами, но следует лишь за собственным разумом. Когда учёные смогут ещё точнее управлять химическими и физическими свойствами наночастиц, миру откроются самые невероятные чудеса, которые придут в каждый дом!

Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. Остается только надеяться, что люди разумно распорядятся потенциалом нанотехнологий и направят их энергию во благо человечества

А.И. Еремин В.В., Дроздов А.А. Нанохимия и нанотехнологии. 10-11 классы. Профильное обучение. Учебное пособие – М.:Дрофа, 2009

Гусев Наноматериалы, наноструктуры, нанотехнологии. М., Физматлит, 2005.

Роснано. Список терминов.

Контарев А.В., Стадник С.В., Лешуков В.А. Применение магнитных жидкостей // Успехи современного естествознания. – 2006. – № 10 – с. 67

Разумовская И.В. Нанотехнология. 11 класс. Учебное пособие. – М.:Дрофа, 2009

Ратнер М., Ратнер Д. Нанотехнология: простое объяснение очередной гениальной идеи. / Пер. с англ. – М.: Вильямс, 2004. С. 20–22.

Сенатская И.И., Байбуртский Ф.С. Жидкость, которая твердеет в магнитном поле// Химия и жизнь. – 2002. – №10.

Слабкова Галина Петровна

Моя работа посвящена ферромагнитной жидкости, которая уникальна тем, что сочетает в себе несколько, казалось бы, взаимоисключающих свойств. Эта удивительная жидкость, с одной стороны, обладает текучестью, а с другой, способны взаимодействовать с магнитным полем и резко повышать свою вязкость (вплоть до полного затвердевания), легко меняя форму и принимая самые причудливые очертания. “Умная ” жидкость активно реагирует на изменения окружающей среды и изменяет свои свойства в зависимости от обстоятельств. Главное, ею можно управлять, заранее программировать её поведение.

ВложениеРазмер
ivanov_aleksandr_fmzh.pptx 2.99 МБ
ivanov_aleksandr_fmzh.docx 2.77 МБ
Предварительный просмотр:

Подписи к слайдам:

Цель работы: получение ферромагнитной жидкости в лабораторных условиях и исследование её свойств. Задачи: Узнать историю создания ФМЖ. Получить ФМЖ в лабораторных условиях. Исследовать её свойства. Выявить область применения ФМЖ. Провести анкетирование школьников. 2

Тип проекта: информационно-исследовательский Методы исследования: 1.Изучение литературных источников и Интернет-ресурсов 2.Опытно-экспериментальная работа 3. Наблюдение 4.Анализ полученных результатов 3

Первые магнитные жидкости были получены американцем Соломоном Стивеном Пайпеллом патент на изобретение 1963-й и 1965 год. В СССР родоначальник магнитожидкостных технологий - Дмитрий Васильевич Орлов. История открытия ФМЖ 4

5 Свойства ФМЖ не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля; высокая магнитная восприимчивость; способность изменять состояние под воздействием магнитного поля; твердые частицы не слипаются и не выделяются в отдельную фазу даже в очень сильном магнитном поле.

6 Области применения То, что сегодня наука, –завтра техника. (Эдвард Теллер , американский физик) В автомобильной промышленности В экологии В современном искусстве В медицине В производстве игрушек В акустических динамиках В технике В компьютерных технологиях

7 Главная роль ФМЖ в медицине Лекарственная терапия: магнитные наночастицы - курьеры для поставки частиц лекарства к больному органу; магнитные наночастицы - курьеры для поставки диагностического агента; магнитные наночастицы - курьеры для поставки частиц железа для разрушения раковых клеток ( метода противораковой терапии); магнитные наночастицы –курьеры для более точного введения в организм больного различных инструментов.

Анкетирование школьников 8

9 Знаете ли вы что такое ферромагнитная жидкость? 92% 8%

10 2. Если да, то назовите области применения ? В медицине В аудиосистемах В амортизаторах

11 Получение ФМЖ в лабораторных условиях 2 FeCl 3 +2 NH 3 +6 NH 3 N 2 +2 Fe +6 NH 4 Cl

Читайте также: