Белки плазмы крови реферат

Обновлено: 05.07.2024

Плазма крови – это динамическая система, находящаяся в равновесии с окружающими тканями. Она участвует в питании, защите тканей, поддерживает pH и осмотического баланса, участвует в регуляции функции и активности клеток. Эти функции позволяют плазме выполнять содержащиеся в ней белки.

Общее содержание белков плазмы составляет примерно 7%. Плазма человека содержит несколько сотен различных белков. Около 100 из них в настоящее время выделены, структурно и функционально описаны.

Функциональная классификация белков плазмы

Белки плазмы функционально и структурно неоднородны и имеют очень широкий диапазон концентраций в плазме. С клинической и биохимической точки зрения полезно классифицировать белки плазмы в соответствии с их функцией.

1. Транспортные белки

2. Белки острой фазы

3. Белки против острой фазы

4. Факторы комплемента и свертывания крови

6. Антиферменты – ингибиторы протеиназ

9. Белки, функция которых полностью не изучена

Альфа-1 кислотный гликопротеин

В дополнение к этим функциям все белки плазмы, но в основном альбумин, действуют как буферная система и поддерживают онкотическое давление.

Концентрация белка в плазме – динамический параметр. Она зависит от:

  • их биосинтеза;
  • распределения между внутрисосудистыми и внесосудистыми компартментами раствора;
  • выведения – деградация, катаболизм, потеря.

Общий белок

Общий белок – это сумма всех различных белков в сыворотке или плазме. Плазма содержит на 0,2-0,4% больше белка, чем сыворотка за счет фибриногена.

Гипопротеинемия и гиперпротеинемия – это неспецифические индикаторы. Они в основном используются для оценки состояния пациента. Относительная гиперпротеинемия -– не самое частое состояние. На количество общего белка влияет скорость синтеза белка, скорость разложения белка и количество плазмы.

Повышенные значения:

  • обезвоживание;
  • гипергаммаглобулинемия – хронические инфекции;
  • парапротеинемия – миелома, макроглобулинемия Вальденстрема;
  • повышенный синтез белка острой фазы.

Сниженные значения:

  • потеря белка – гастроэнтеропатия, нефротический синдром, ожоги;
  • снижение потребления или синтеза белка – дефицит белка, нарушение расщепления и всасывания белка, хронические заболевания печени, гуморальный иммунодефицит;
  • повышенный метаболизм и утилизация белков – эндокринологические заболевания, такие как тиреотоксикоз; опухоли;
  • повышенная проницаемость капилляров – генерализованная инфекция.

Альбумин

Альбумин составляет более половины всего белка. Это один из самых легких белков плазмы по молекулярной массе. Альбумин – глобулярный белок. Он играет ключевую роль в поддержании онкотического давления. Снижение концентрации альбумина

Основные функции альбумина:

  1. Поддержание коллоидно-осмотического давления – 80% общего коллоидно-осмотического давления обусловлено альбумином.
  2. Транспортный белок – транспортирует билирубин, жирные кислоты, ионы кальция, медь, тироксин, альдостерон, а также другие липофильные соединения и молекулы. Альбумин переносит лекарства: клофибрат, фенилбутазон и др. А препараты, связанные с альбумином, неактивны. У пациентов с гипоальбуминемией даже умеренные дозы препарата могут вызывать токсические эффекты.
  3. Резервный белок – действует как депо, как источник аминокислот.

Повышенные значения:

Причины сниженного значения:

  • Снижение поглощения и синтеза альбумина:
  • недоедание;
  • нарушения распада и всасывания альбумина;
  • нарушения использования аминокислот для синтеза альбумина – цирроз, гепатоцеребральная дистрофия, гепатит, амилоидоз печени;
  • врожденная гипоальбуминемия.
  • Повышенная экскреция и деградация альбумина:
  • потеря альбумина через кожу – термические ожоги, экссудативная дермопатия;
  • потеря альбумина через почки – нефротический синдром;
  • потеря альбумина через желудочно-кишечный тракт – энтеропатия – значение альбумина может быть менее 20 г / л;
  • повышенный катаболизм альбумина – эндокринологические патологии: тиреотоксикоз, синдром Иценко-Кушинга; острые и хронические инфекции, травмы, опухоли;
  • повышенное распределение альбумина – гипергидратация, повышенная проницаемость капилляров – генерализованная инфекция.

Белковые фракции

Фракционирование белков – это ориентировочный количественный метод оценки количества определенных белков. В основном идентифицируются и интерпретируются 5 белковых фракций:

  • альбумин;
  • альфа-1-глобулины;
  • альфа-2-глобулины;
  • бета-глобулины, также можно выделить фракции бета-1-глобулинов и бета-2-глобулинов;
  • гамма-глобулины.

Клиническая интерпретация этих фракций определяется содержащимися в них белками.

Фракция альбумина:

Фракция альфа-1 глобулина:

  • альфа-1-антитрипсин;
  • альфа-1 кислотный гликопротеин – орозомукоид;
  • альфа-1 липопротеин – аполипопротеин А;
  • химотрипсин альфа 1;
  • альфа-фетопротеин.

Фракция альфа-2 глобулина:

  • альфа-2-макроглобулин;
  • гаптоглобулин;
  • церулоплазмин;
  • бета-липопротеин (аполипопротеин B также может находиться в бета-зоне на некоторых электрофореграммах);
  • гемопексин;
  • антитромбин III;
  • Ингибитор с1-эстеразы.

Фракция бета-глобулина:

  • трансферрин (зона бета-1 глобулинов);
  • комплемент C4 (зона бета-1 глобулина);
  • комплемент C3 (зона бета 2 глобулинов);
  • бета-2-микроглобулин (зона бета-2-глобулинов).

Фракция гамма-глобулина:

  • иммуноглобулин А;
  • иммуноглобулин М;
  • иммуноглобулин G;
  • фибриноген (в образцах плазмы);
  • иммуноглобулин Е;
  • иммуноглобулин D;
  • легкие цепи иммуноглобулина;
  • С-реактивный белок;
  • лизоцим (мурамидаза).

Фракция альфа-1-глобулина

Фракция альфа-1-глобулина состоит преимущественно из альфа-1-антитрипсина. Обычно оставшиеся глобулины составляют только 10% фракции альфа-1 глобулинов.

Повышенные значения:

  • острые, подострые, хронические воспалительные процессы, связанные с усилением синтеза белка в острой фазе;
  • некоторые злокачественные новообразования – альфа-фетопротеин может увеличиваться почти в 100 раз и давать отдельное увеличение между фракциями альбумина и альфа-1-глобулина.

Сниженные значения:

  • дефицит антитрипсина альфа-1;
  • липопротеинемия гипоальфа 1 – редко.

Фракция альфа-2-глобулина

Фракция альфа-2-глобулина состоит в основном из гаптоглобулина, альфа-2-макроглобулина и церулоплазмина.

Повышенные значения:

  • подострые, хронические воспалительные процессы;
  • злокачественные новообразования;
  • нефротический синдром.

Сниженные значения:

гемолитическая анемия, связанная со снижением гаптоглобулина.

Фракция бета-глобулина

Фракция бета-глобулина состоит из трансферрина и может содержать бета-липопротеины, компоненты комплемента C3, C4.

Повышенные значения:

  • гиперлипопротеинемия – аномально повышенный уровень липидов или липопротеинов в крови;
  • моноклональные гаммапатии – сборное наименование целого класса заболеваний, при них происходит патологическая секреция аномальных, измененных по химическому строению, молекулярной массе или иммунологическим свойствам иммуноглобулинов;
  • железодефицитная анемия, связанная с повышенным уровнем трансферрина;

Сниженные значения:

гиполипопротеемия – пониженный уровень липидов или липопротеинов в крови.

Фракция гамма-глобулина

Фракция гамма-глобулина состоит в основном из иммуноглобулинов, в основном иммуноглобулина G.

Повышенные значения:

  • хронические инфекции;
  • аутоиммунные патологии;
  • хроническая болезнь печени;
  • моноклональные гаммапатии.

Сниженные значения:

синдром иммунодефицита – в основном связанный с иммуноглобулином G.

Наиболее распространенные патологические виды электрофореза.

Электрофорез белков имеет диагностическое значение. В остальных случаях электрофорез носит исключительно информационный характер.

Шесть наиболее распространенных типов аномального электрофореза

Повышенные значения:

  • альфа-2-глобулины (альфа-2-макроглобулин);
  • бета-глобулины.

Уменьшенные значения:

  • альбумин;
  • альфа-1-глобулины;
  • гамма-глобулины.
  1. Цирроз.

Повышенные значения:

  • гамма-глобулины – диффузная гамма-глобулинемия, слияние фракций бета-глобулинов и гамма-глобулинов;
  • бета-глобулины.

Уменьшенные значения:

  1. Дефицит альфа-1-антитрипсина
  2. Гипогаммарная глобулинемия
  3. Диффузная гипергаммарная глобулинемия
  4. Парапротеинемия.

Парапротеины

Парапротеины в основном характерны для миеломы и макроглобулинемии Вальденстрема, но также обнаруживаются у пациентов с другими лимфопролиферативными заболеваниями: хронический лимфолейкоз, лимфома и т. д.

Характерная особенность этой иммунопатологии – по мере увеличения количества парапротеина количество нормальных иммуноглобулинов уменьшается. Следовательно, заболевание сопровождается различными бактериальными инфекциями.

В зависимости от иммунологического класса IgG или IgA различают миелому G и миелому A. Миелома D и E очень редки, с парапротеинами IgD и IgE соответственно. Парапротеин IgM характерен для макроглобулинемии Вальденстрема, но также наблюдается у пациентов с другими злокачественными лимфомами.

Обнаружение и идентификация парапротеина в крови или моче важны для диагностических целей, так как это помогает выбрать подходящие методы лечения и частично прогнозировать клиническое течение заболевания.

Электрофорез иммунофиксации идентифицирует моноклональный белок – класс иммуноглобулинов, тип легкой цепи– в сыворотке крови и моче человека. Электрофорез иммунной фиксации также используется для подтверждения градиента М, определенного электрофорезом белков.

Легкие цепи иммуноглобулина: κ – каппа, λ – лямбда

Иммуноглобулины синтезируются плазматическими клетками. Каждый иммуноглобулин основан на фрагменте, состоящем из двух идентичных тяжелых полипептидных цепей и двух идентичных легких полипептидных цепей, связанных дисульфидными связями.

Класс и подкласс иммуноглобулинов определяются их тяжелыми цепями. Есть два типа легких цепей иммуноглобулина: κ и λ. Оба варианта легкой цепи присутствуют в каждом классе иммуноглобулинов. Не было обнаружено функциональных различий между иммуноглобулинами с легкими цепями κ или λ. У человека соотношение κ варианты иммуноглобулина к варианту λ составляет 2: 1.

Около 10% легких цепей не связаны с тяжелыми цепями, они свободны. Свободные легкие цепи иммуноглобулина часто встречаются в виде димеров и полимеров. Поскольку антитела к свободным легким цепям часто не реагируют со своими димерными и полимерными формами.

Определение понятия "плазма крови". Значение исследования плазмы крови у пациентов в процессе определения степени и вероятности заболевания. Описание альбумина как важнейшего транспортного белка крови. Характеристика основных функций белков плазмы крови.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 23.05.2012
Размер файла 21,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство сельского хозяйства Чувашской Республики

ФГОУ ВПО Чувашская государственная сельскохозяйственная академия

РефератФункций белков плазмы крови

4. Функции белков плазмы крови

5. Нормы содержания белков плазмы крови

Плазма крови (от греческого нечто сформированное, образованное) -- жидкая часть крови, в которой взвешены форменные элементы. Процентное содержание плазмы в крови составляет 52--60 %. Макроскопически представляет собой однородную прозрачную или несколько мутную желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови. Плазма крови состоит из воды, в которой растворены вещества -- белки (7--8 % от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины -- 4--5 %, глобулины -- 3 % и фибриноген -- 0,2--0,4 %. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические ионы. В среднем 1 литр плазмы человека содержит 900--910 г воды, 65--85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH -- 7,34--7,43.Существует обширная практика собирания донорской плазмы крови. Плазма отделяется от эритроцитов центрифугированием с помощью специального аппарата, после чего эритроциты возвращаются донору. Этот процесс называется плазмаферезом. Плазма с высокой концентрацией тромбоцитов находит все большее применение в медицине в качестве стимулятора заживления и регенерации тканей организма. В настоящее время на основе БоТП российскими врачами разработана многофункциональная медицинская методика плазмолифтинг, используемая в стоматологии и косметологии.

функция белок плазма кровь

Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са 2+ , Cu 2+ , Zn 2+ . Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза. Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока. Однако при недостатке альбумина, который должен удерживать Na+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки. Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин - важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тирок-синсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом - до двух молекул тироксина и трийодтиронина.

Увеличение содержания альфа-глобулинов наблюдается при воспалительных процессах, стрессовых воздействиях на организм (травмы, ожоги, инфаркт миокарда и др.). Это белки, так называемой острой фазы. Степень увеличения альфа-глобулинов отражает интенсивность процесса.

Преимущественное увеличение альфа-2-глобулинов отмечается при острых гнойных заболеваниях, вовлечении в патологический процесс соединительной ткани (ревматизм, системная красная волчанка и др.). Повышение содержания альфа-глобулинов возможно также при некоторых хронических заболеваниях, злокачественных новообразованиях, особенно при их метастазировании. Уменьшение альфа-глобулинов отмечается при угнетении их синтеза в печени, гипотиреозе - пониженной функции щитовидной железы.Бета-глобулины. В этой фракции присутствуют липопротеиды, поэтому количество бета-глобулинов увеличивается при гиперлипопротеидемиях. Это наблюдается при атеросклерозе, сахарном диабете, гипотиреозе, нефротическом синдроме. Повышение содержания гамма-глобулинов (гипергаммаглобулинемия) наблюдается при усилении иммунных процессов. Оно обусловлено повышенной продукцией иммуноглобулинов классов G, A, M, D, Е и наблюдается при острых и хронических вирусных, бактериальных, паразитарных инфекциях, заболеваниях соединительной ткани (коллагенозах), злокачественных заболеваниях крови, некоторых опухолях. Значительная гипергаммаглобулинемия характерна для хронических активных гепатитов, циррозов печени. При некоторых заболеваниях (миеломная болезнь, заболевания крови, злокачественные новообразования) появляются особые патологические белки - парапротеины - иммуноглобулины, лишенные свойств антител. В этих случаях также наблюдается гипергаммаглобулинемия. Уменьшение гамма-глобулинов отмечается при заболеваниях и состояниях, связанных с истощением, угнетением иммунной системы (хронические воспалительные процессы, аллергия, злокачественные заболевания в терминальной стадии, длительная терапия стероидными гормонами, СПИД).

Фибриноген -- бесцветный белок, растворенный в плазме крови. При активации системы свёртывания крови подвергается ферментативному расщеплению ферментом тромбином, образующийся фибрин-мономер под действием активного XIII фактора свёртывания крови полимеризуется и выпадает в осадок в виде белых нитей фибрина-полимера. При взятии биоматериала для анализа фибриногена используется антикоагулянт Цитрат натрия (3,8 %). Фибриноген -- белок, вырабатываемый в печени и превращающийся в нерастворимый фибрин - основу сгустка при свертывании крови. Фибрин впоследствии образует тромб, завершая процесс свертывания крови. Фибриноген является ценным показателем гемостаза (коагулограмма). Анализ фибриногена -- необходимый этап предоперационного обследования, пренатальной диагностики, проводится при воспалительных, сердечно-сосудистых заболеваниях. Содержание фибриногена в крови повышается при возникновении острых воспалительных заболеваний и отмирания тканей. Фибриноген влияет и на скорость оседания эритроцитов (СОЭ).

Норма фибриногена: 2--4 г/л.

Норма фибриногена новорожденных: 1,25--3 г/л.

Нормы фибриногена при беременности несколько выше. В этот период наблюдается постепенное повышение фибриногена и в III триместре беременности уровень фибриногена достигает 6 г/л.

В других случаях повышенный фибриноген в крови человека - симптом следующих заболеваний: острые воспалительные и инфекционные заболевания (грипп, туберкулез),инсульт, инфаркт миокарда, гипотиреоз, амилоидоз, пневмония, злокачественные опухоли (рак легких и др.).

Повышение фибриногена сопровождает ожоги, операционные вмешательства, прием эстрогенов и оральных контрацептивов.

Нормальный уровень фибриногена снижается при таких заболеваниях, как: ДВС-синдром, заболевания печени (гепатит, цирроз);токсикоз беременности, недостаток витамина С и В12,эмболия околоплодными водами (у новорожденных),хронический миелолейкоз, полицитемия. Уровень фибриногена понижается при отравлениях змеиным ядом, при приеме анаболических гормонов, андрогенов и рыбьего жира.

4.Функции белков плазмы крови

1. Питательная функция:

В организме человека содержится около 3 л плазмы, в которой растворено примерно 200 г белка. Это вполне достаточный запас питательных веществ . Обычно клетки захватывают не столько белки, сколько аминокислоты , однако некоторые клетки могут захватывать белки плазмы и расщеплять их при помощи собственных внутриклеточных ферментов. Высвобождающиеся при этом аминокислоты поступают в кровь, где сразу же могут использоваться другими клетками для синтеза новых белков.

2. Транспортная функция:

Многие небольшие молекулы при переносе их от кишечника или депо к месту потребления связываются со специфическими белками плазмы. Все белки плазмы связывают катионы крови и переводят их в недифффундирующую форму. Так, около 2/3 кальция плазмы неспецифически связано с белками. Связанный кальций находится в равновесии со свободно растворенным в плазме ионизированным физиологически активным кальцием.

3. Роль белков в создании коллоидно-осмотического давления .

Вследствие низкой молекулярной концентрации белков вклад их в общее осмотическое давление плазмы крови невелик, но создаваемое ими коллоидно- осмотическое (онкотическое) давление играет важную роль в регулировании распределения воды между плазмой и межклеточной жидкостью . Стенки капилляров свободно пропускают небольшие молекулы, поэтому концентрации этих молекул и создаваемое ими осмотическое давление примерно одинаковы в плазме и в межклеточной жидкости. Крупные молекулы белков плазмы лишь с большим трудом проходят через стенки капилляров (так, период полувыведения меченного альбумина из кровотока составляет примерно 14 часов). Кроме того, белки захватываются клетками и переносятся лимфой . Поэтому между плазмой и межклеточной жидкостью создается градиент концентрации белков, обусловливающий разницу в коллоидно-осмотическом давлении, составляющую примерно 22 мм рт.ст. (3 кПа). Любые изменения осмотически эффективной концентрации белков плазмы приводят к нарушениям обмена веществами и распределения воды между кровью и межклеточной жидкостью.

4. Буфферная функция.

Так как белки плазмы могут взаимодействовать как с кислотами, так и с основаниями с образованим солей, они участвуют в поддержании постоянства рН .

5. Роль белков в предупреждении кровопотери .

Свертывание крови , препятствующее кровотечению, частично обусловлено наличием в плазме фибриногена . Процесс свертывания включает целую цепь реакций, в которых в качестве ферментов участвует ряд белков плазмы, и заканчивается превращением растворенного в плазме фибриногена в сеть из фибрина , образующую сгусток.

Из всего выше сказанного можно сделать вывод, что исследование плазмы крови у пациентов имеет огромное значение, так как можно с большой точностью определить степень и вероятность любого заболевания.

Для того чтобы получить плазму, необходимо кровь подвергнуть центрифугированию или отстаиванию, в результате чего плазма - сыворотка всплывает над плотной массой кровяных телец. Плазма подвергается исследованию на содержание различных ферментов, белков, токсичных веществ, сахаров, жиров, гормонов женских и мужских. Можно определить вероятность заболевания раком. При получении результата анализа лаборатория предоставляет свои нормативы, опираясь которые можно говорить о норме или превышении исследуемого компонента а, следовательно, и о вероятном заболевании.

1. Наглядная биохимия. Автор: Ян Кольцман, Клаус-Генрих Рем, Юрген Вирт. 2004

2. Клиническая биохимия. Автор: Бочков В. Н., Добровольский А. Б.. 2002

3. Биохимия человека. Автор: Р. Марри, Д. Греннер. 2002

Подобные документы

Понятие о системе крови. Органы кроветворения человека. Количество крови, понятия о ее депонировании. Форменные элементы и клетки крови. Функциональное значение белков плазмы. Поддержание постоянной кислотно-щелочного равновесия крови человека.

презентация [3,1 M], добавлен 29.10.2015

Внутренняя среда человека и устойчивость всех функций организма. Рефлекторная и нервно-гуморальная саморегуляция. Количество крови у взрослого человека. Значение белков плазмы крови. Осмотическое и онкотическое давление. Форменные элементы крови.

лекция [108,2 K], добавлен 25.09.2013

Кровь. Функции крови. Состав крови. Плазма крови. Форменные элементы крови. Процесс свертывания крови при ранении сосудов очень сложный и сводится в конечной стадии к тому, что фибриноген плазмы крови превращается в нерастворимый белок фибрин.

реферат [11,7 K], добавлен 12.10.2003

Состав крови человека. Транспорт газов, питательных веществ и конечных продуктов метаболизма. Поддержка водного баланса в организме. Структура защитной системы. Клетки крови: эритроциты, лейкоциты, тромбоциты. Белки плазмы крови: образование, разрушение.

презентация [322,4 K], добавлен 17.03.2013

Объем крови в организме взрослого здорового человека. Относительная плотность крови и плазмы крови. Процесс образования форменных элементов крови. Эмбриональный и постэмбриональный гемопоэз. Основные функции крови. Эритроциты, тромбоциты и лейкоциты.

презентация [4,2 M], добавлен 22.12.2013

Содержание воды в организме человека. Кровь как разновидность соединительных тканей. Состав крови, ее функции. Объем циркулирующей крови, содержание веществ в ее плазме. Белки плазмы крови и их функции. Виды давления крови. Регуляция постоянства рН крови.

презентация [593,9 K], добавлен 29.08.2013

Основные функции крови, ее физиологическое значение, состав. Физико-химические свойства плазмы. Белки крови, эритроциты, гемоглобин, лейкоциты. Группы крови и резус-фактор. Кроветворение и регуляция системы крови, гемостаз. Образование лимфы, ее роль.

Компоненты и препараты крови, кровезаменители

Разработчик сайтов, журналист, редактор, дизайнер, программист, копирайтер. Стаж работы — 25 лет. Область интересов: новейшие технологии в медицине, медицинский web-контент, профессиональное фото, видео, web-дизайн. Цели: максимально амбициозные.

  • Запись опубликована: 04.06.2019
  • Время чтения: 1 mins read

Не будет преувеличением сказать, что выделение отдельных компонентов (составных частей) крови — огромное достижение современной медицины. Широкое внедрение их в практику сыграло большую роль в разработке лечения многих болезней.

Компоненты крови: эритроциты, лейкоциты, тромбоциты

Пациенты, которым требуется переливание крови, часто даже не знают о том, что в медицине часто используются отдельные компоненты.

  • Эритроциты. Прежде всего следует остановиться на выделенных из крови эритроцитах (эритроцитной массе) по возможности лишенных плазмы, содержащей лейкоциты и тромбоциты. Такая эритроцитная масса применяется в борьбе с малокровием у больных, в крови которых содержатся антитела против лейкоцитов и тромбоцитов, наблюдается повышенная чувствительность организма (сенсибилизация) к белкам.
  • Лейкоциты. Другая составная часть крови — лейкоцитная масса используется с хорошим эффектом в случаях резкого уменьшения числа лейкоцитов.
  • Тромбоциты. Тромбоцитная масса переливается при кровотечениях, обусловленных значительным снижением количества тромбоцитов в крови.

Дифференцированное применение отдельных компонентов крови уменьшает возможность образования антител к клеткам крови и предотвращает развитие реакций на переливание.

Кровезаменители: плазма и ее компоненты

Наилучший естественный кровезаменитель — плазма, жидкая часть крови, богатая белками и содержащая вещества, способствующие остановке кровотечения. При шоковых состояниях без кровопотери или при кровотечениях с небольшой потерей крови переливание плазмы может оказать полноценное лечебное действие.

Плазма, заготовленная в условиях строгой стерильности, сохраняется длительное время, не портясь. Высушенная особым способом, она может храниться месяцами и даже годами. Перед переливанием ее разводят дистиллированной водой.

Плазма крови

Плазма крови

Стало возможным приготовление и целенаправленное применение отдельных, белков плазмы, обладающих специфическим, присущим каждому из них, действием.

Альбумин. Наиболее ценный препарат для белкового питания тканей и органов. Он поддерживает так называемое коллоидно-осмотическое давление, удерживающее жидкость в кровяном русле. С этим связано его противоотечное действие.

Привлекая тканевую жидкость в кровяное русло, альбумин повышает кровяное давление, если оно почему-либо падает (например, при шоке). Раствор альбумина является высоко эффективным белковым препаратом при травматических и операционных шоках.

Он весьма полезен при недостатке в организме белка. Белковая недостаточность может явиться следствием многих заболеваний, ведущих к потере белка с мочой, мокротой, гноем, ожоговой жидкостью, либо из-за нарушения всасывания пищевых белков (болезни желудочно-кишечного тракта) или от расстройства белкового обмена (болезни печени).

Вследствие этого протеин является более дешевым и доступным препаратом, чем чистый альбумин. От плазмы же он отличается не только более высоким содержанием альбумина, но и тем, что его, как и альбумин, можно прогревать при высокой температуре для уничтожения вируса гепатита, иногда проникающего в кровь. Протеин применяется и оказывает хорошее действие при тех же заболеваниях, что и альбумин.

Знание механизмов свертывания крови и уточнение факторов, вызывающих их нарушение, позволяет применить переливание отдельных недостающих в организме больного действующих веществ.

Фибриноген. Это тот белок крови, который при ее свертывании переходит в нерастворимый фибрин, образующий основу сгустка. Иногда при некоторых патологических родах возникает сильное кровотечение, вызванное недостаточностью одного из белков, необходимых для свертывания фибриногена. Тогда выручает лечебный препарат фибриноген.

Он быстро останавливает фибринолитическое кровотечение в послеродовом периоде, после операций на внутренних органах, при операциях с искусственным кровообращением.

Фибринная пленка применяется местно, при операциях на органах для предотвращения кровотечений мелких сосудов, а также как рассасывающийся материал при ожогах, нейрохирургических операциях на мозге и др.

Тромбин. Тромбин в виде порошка, растворяемого в физиологическом растворе, применяется только местно, на мелких сосудах: при оперативных вмешательствах на паренхиматозных органах (печени, легких, селезенке и др.), кровотечениях из десен, носа и т. д.

Антигемофильный глобулин. Останавливает кровотечение у больных гемофилией, в организме которых он отсутствует. Он быстро разрушается в консервированной крови и содержится в свежезаготовленной, а также в особо приготовленной антигемофильной плазме и в препаратах фибриногена.

Фибринолизин. Существуют заболевания при которых нарушения свертываемости крови ведут к кровоточивости. Но существуют некоторые болезненные состояния, в возникновении которых играет роль повышенная свертываемость.

Если переливание крови, плазмы и некоторых ее препаратов оказывает хорошее кровоостанавливающее действие, то имеется и такой белковый ферментативный препарат крови, как фибринолизин, который уменьшает свертывание, растворяет свежие фибриновые сгустки и применяется в лечении от тромбозов: при тромбофлебитах, инфаркте, тромбозах, легочной артерии, мозговых и периферических сосудов.

В медицинской практике широко используется отдельно выделенный один из компонентов сывороточных белков — гамма-глобулин, обладающий защитными свойствами: с ним связывают образование антител. Поэтому этот препарат, повышающий сопротивляемость организма, с успехом применяется не только при разнообразных инфекционно-воспалительных процессах, но и профилактически у здоровых людей, соприкасающихся с некоторыми инфекционными больными (корь, гепатит и др.).

Несколько слов о гамма-глобулинах направленного действия

У доноров на введение ослабленных, абсолютно безвредных микробов вырабатываются антитела. Взятая у них в определенные сроки кровь богата такими антителами. Приготовленный из этой крови гамма-глобулин обладает специфической направленностью действия против соответствующих микробов.

И в тех случаях, когда с помощью бактериологического исследования удается распознать возбудителя инфекции наряду с применением антибиотиков с успехом используются специфические гамма-глобулины (противокоревой, противостафилококковый, противогриппозный, противококлюшный и др.). Применение противостафилококкового гамма-глобулина иногда оказывает при стафилококковом сепсисе почти чудодейственный эффект.

Как получают плазму крови: плазмаферез

Необходимость удовлетворения растущих потребностей лечебных учреждений в плазме и ее препаратах заставило ученых искать пути получения больших количеств плазмы без вреда для донора. Теперь широко применяется так называемый плазмаферез. Его сущность заключается в разделении полученной от донора крови на плазму и форменные элементы (путем центрифугирования) и возвращении обратно донору эритроцитов.

Дело в том, что хотя кроветворные органы при взятии крови у донора восполняют потерю эритроцитов, но это занимает известное время и для полной безвредности кроводачи у каждого донора берут кровь не чаще пяти раз в год.

Всего за год можно от одного донора получить не более 1 литра плазмы. Если же вернуть донору эритроциты, то он теряет только плазму, а восстановление ее составных частей (в основном белков) при здоровой печени занимает всего несколько дней (а донорами могут быть только вполне здоровые люди!).

Поэтому процедуру плазмафереза можно повторять каждые 1—2 недели и за год получить 6—7 литров плазмы от одного донора без всякого вреда для его здоровья. Это значительно увеличивает ресурсы для заготовки препаратов из плазмы.

Плазмаферез

Плазмаферез

Искусственные кровезаменители

Большим достижением медицины является открытие и применение искусственных кровезаменителей, т. е. жидкостей, введение которых может в одних случаях заменить переливание крови, а в других временно его отсрочить. Конечно, полностью кровь не может быть заменена ни плазмой, ни каким-либо из кровезамещающих растворов, потому что в них отсутствуют переносчики кислорода — эритроциты.

Однако применение некоторых кровезаменителей может вывести больного или раненого из тяжелого шокового состояния даже при большой кровопотере. Этим устраняется непосредственная угроза для его жизни. Переливание крови, если оно все же требуется, может в таком случае быть отложено.

  • Солевые растворы. Предложенные с этой целью солевые растворы содержат все те соли, которые обычно входят в состав плазмы крови. В связи с тем, что солевые растворы довольно быстро покидают сосудистое русло, для более длительного их пребывания в крови больного к ним прибавляются коллоидные вещества. Исключительно ценным и важным для практики является синтетический, высокомолекулярный кровезаменитель — полиглюкин. Введение полиглюкина повышает кровяное давление и надежно выводит из шокового состояния при травматическом, послеоперационном и ожоговом шоках и при острой кровопотере.
  • Поливинилпирролидон. При интоксикациях, вызванных отравлениями, инфекциями или ядами, хорошее действие оказывает поливинилпирролидон. Препарат поливинилпирролидона — гемодез — применяется при токсических формах острых желудочно-кишечных заболеваний (диспепсии, дизентерии, пищевом отравлении), тяжелых ожогах, непроходимости кишечника, токсикозах беременных, некоторых инфекциях и отравлениях.
  • Белковые гидролизаты. При состояниях белковой недостаточности, о которой мы говорили раньше, переливание плазмы и ее препаратов иногда может быть заменено вливаниями так называемых белковых гидролизатов. Они представляют собой продукты обработки белков различного происхождения не только крови животных, но и, например, белка молока—казеина.

Гидролизаты содержат не целые белки, а полученные путем гидролиза составные их части— аминокислоты. Из них организм строит (синтезирует) собственные белки. Они могут вводиться в больших количествах и покрывать тяжелую недостачу белков или даже на время удовлетворять потребность организма в пищевых белках.

Поэтому гидролизат казеина с успехом применяется при заболеваниях или операциях, повлекших за собой прекращение или затруднение приема пищи через рот (ожоги глотки и пищевода, вмешательства на пищеводе и желудочно-кишечном тракте, челюстно-лицевые операции), а также при подготовке к операциям ослабленных больных, в послеоперационном периоде и др.

Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь

Конечно, ни плазма, ни кровезаменители не могут целиком заменить переливания крови, так как в них не содержатся переносчики кислорода — эритроциты, введение которых раненому, больному необходимо при обильной кровопотере или тяжелом хроническом малокровии.

Идея С. И. Спасокукоцкого оказалась весьма плодотворной, но использование такого источника получения не донорской крови не вошло в широкую практику, встретив некоторые затруднения. М. С. Малиновский в 1933 г. предложил брать для переливания плацентарную кровь, т. е. ту, что можно взять из последа (плаценты) после родов.

Ученые и врачи Санкт-Петербурга (тогда Ленинграда) и других городов страны осуществили множество переливаний плацентарной крови еще в довоенное время, но повсеместного распространения этот метод не получил. Главным образом из-за трудности уберечь плацентарную кровь от попадания в нее инфекции в момент извлечения. Ныне плацентарная кровь весьма широко используется с целью получения весьма ценных лечебных препаратов: протеина, гамма-глобулина и др.

В чем суть такого метода? Кровь, взятая в первые шесть часов после внезапной гибели от несчастного случая (закрытой травмы) или мозгового удара, сохраняет все ценные биологические свойства, по существу является живой. Исходя из этого переливание ее применяется в хирургии, а впоследствии вошло и в терапевтическую практику.

Ученые сделали следующее интересное наблюдение. Такая кровь, набранная в сосуд без противосвертывающего вещества, либо вовсе не свертывается, либо, сначала свернувшись, затем вновь переходит в жидкое состояние. Объясняется это происходящим в ней фибринолизом.

Теперь, когда различные органы погибших современная наука все шире использует для спасения живых, уже не кажется удивительным переливание подобной крови. И следует подчеркнуть, что сама эта идея была впервые осуществлена в нашей стране еще в середине прошлого века.

Как переливание крови явилось первой успешной пересадкой живой ткани другому человеку, так и переливание фибринолизной крови — первым удачным использованием для этой цели тканей и органов умершего.

Как быстро восстанавливается кровь у донора

Обычно к концу первых суток после отбора крови у донора восполняется объем крови. Это происходит в результате перехода в кровяное русло жидкости из тканей и мобилизации крови из резервов.

Переливание крови - донор

Переливание крови – донор

Сразу же после отбора крови усиливается деятельность органов кроветворения: число эритроцитов в крови начинает увеличиваться, а процессы разрушения приостанавливаются. Постоянное обновление красных кровяных клеток способствует сохранению неизменного состава крови.

Обновление эритроцитов — естественный процесс. Каждую минуту из костного мозга в кровь поступает около 115 миллионов молодых красных кровяных клеток. Соответствующее число отживших эритроцитов удаляется из кровеносного русла. Частично они поглощаются клетками селезенки и печени, частично используются костным мозгом при образовании новых красных кровяных клеток.

Компенсаторные возможности костного мозга очень велики. При большой потере крови интенсивность образования эритроцитов возрастает по сравнению с нормой в 6—7 раз.

Если донор сдал 225 миллилитров крови (то есть половинную дозу), процесс восстановления ее состава заканчивается примерно на пятнадцатый день. Если была взята полная доза — 450 миллилитров, то, как показали исследования, число эритроцитов возвращается к исходному уровню через семь-восемь недель. Важно подчеркнуть, что у доноров, сдающих кровь повторно, процессы регенерации (восстановления) происходят быстрее.

Таким образом, здоровый человек без всякого для себя вреда может отдавать кровь 5 раз подряд, соблюдая интервал в 60 дней, потом необходим трехмесячный перерыв.

Тысячи доноров, сохраняя отменное здоровье, имеют стаж двадцать — двадцать пять лет. Они пользуются заслуженным почетом в нашей стране, и каждый из них по праву может гордиться спасением многих и многих жизней.

Донорство должно быть основано на твердом принципе: максимальная польза больному и никакого вреда тому, кто дает свою кровь.

Плазма крови – это динамическая система, находящаяся в равновесии с окружающими тканями. Она участвует в питании, защите тканей, поддерживает pH и осмотического баланса, участвует в регуляции функции и активности клеток. Эти функции позволяют плазме выполнять содержащиеся в ней белки.

Общее содержание белков плазмы составляет примерно 7%. Плазма человека содержит несколько сотен различных белков. Около 100 из них в настоящее время выделены, структурно и функционально описаны.

Функциональная классификация белков плазмы

Белки плазмы функционально и структурно неоднородны и имеют очень широкий диапазон концентраций в плазме. С клинической и биохимической точки зрения полезно классифицировать белки плазмы в соответствии с их функцией.

1. Транспортные белки

2. Белки острой фазы

3. Белки против острой фазы

4. Факторы комплемента и свертывания крови

6. Антиферменты – ингибиторы протеиназ

9. Белки, функция которых полностью не изучена

Альфа-1 кислотный гликопротеин

В дополнение к этим функциям все белки плазмы, но в основном альбумин, действуют как буферная система и поддерживают онкотическое давление.

Концентрация белка в плазме – динамический параметр. Она зависит от:

  • их биосинтеза;
  • распределения между внутрисосудистыми и внесосудистыми компартментами раствора;
  • выведения – деградация, катаболизм, потеря.

Общий белок

Общий белок – это сумма всех различных белков в сыворотке или плазме. Плазма содержит на 0,2-0,4% больше белка, чем сыворотка за счет фибриногена.

Гипопротеинемия и гиперпротеинемия – это неспецифические индикаторы. Они в основном используются для оценки состояния пациента. Относительная гиперпротеинемия -– не самое частое состояние. На количество общего белка влияет скорость синтеза белка, скорость разложения белка и количество плазмы.

Повышенные значения:

  • обезвоживание;
  • гипергаммаглобулинемия – хронические инфекции;
  • парапротеинемия – миелома, макроглобулинемия Вальденстрема;
  • повышенный синтез белка острой фазы.

Сниженные значения:

  • потеря белка – гастроэнтеропатия, нефротический синдром, ожоги;
  • снижение потребления или синтеза белка – дефицит белка, нарушение расщепления и всасывания белка, хронические заболевания печени, гуморальный иммунодефицит;
  • повышенный метаболизм и утилизация белков – эндокринологические заболевания, такие как тиреотоксикоз; опухоли;
  • повышенная проницаемость капилляров – генерализованная инфекция.

Альбумин

Альбумин составляет более половины всего белка. Это один из самых легких белков плазмы по молекулярной массе. Альбумин – глобулярный белок. Он играет ключевую роль в поддержании онкотического давления. Снижение концентрации альбумина

Основные функции альбумина:

  1. Поддержание коллоидно-осмотического давления – 80% общего коллоидно-осмотического давления обусловлено альбумином.
  2. Транспортный белок – транспортирует билирубин, жирные кислоты, ионы кальция, медь, тироксин, альдостерон, а также другие липофильные соединения и молекулы. Альбумин переносит лекарства: клофибрат, фенилбутазон и др. А препараты, связанные с альбумином, неактивны. У пациентов с гипоальбуминемией даже умеренные дозы препарата могут вызывать токсические эффекты.
  3. Резервный белок – действует как депо, как источник аминокислот.

Повышенные значения:

Причины сниженного значения:

  • Снижение поглощения и синтеза альбумина:
  • недоедание;
  • нарушения распада и всасывания альбумина;
  • нарушения использования аминокислот для синтеза альбумина – цирроз, гепатоцеребральная дистрофия, гепатит, амилоидоз печени;
  • врожденная гипоальбуминемия.
  • Повышенная экскреция и деградация альбумина:
  • потеря альбумина через кожу – термические ожоги, экссудативная дермопатия;
  • потеря альбумина через почки – нефротический синдром;
  • потеря альбумина через желудочно-кишечный тракт – энтеропатия – значение альбумина может быть менее 20 г / л;
  • повышенный катаболизм альбумина – эндокринологические патологии: тиреотоксикоз, синдром Иценко-Кушинга; острые и хронические инфекции, травмы, опухоли;
  • повышенное распределение альбумина – гипергидратация, повышенная проницаемость капилляров – генерализованная инфекция.

Белковые фракции

Фракционирование белков – это ориентировочный количественный метод оценки количества определенных белков. В основном идентифицируются и интерпретируются 5 белковых фракций:

  • альбумин;
  • альфа-1-глобулины;
  • альфа-2-глобулины;
  • бета-глобулины, также можно выделить фракции бета-1-глобулинов и бета-2-глобулинов;
  • гамма-глобулины.

Клиническая интерпретация этих фракций определяется содержащимися в них белками.

Фракция альбумина:

Фракция альфа-1 глобулина:

  • альфа-1-антитрипсин;
  • альфа-1 кислотный гликопротеин – орозомукоид;
  • альфа-1 липопротеин – аполипопротеин А;
  • химотрипсин альфа 1;
  • альфа-фетопротеин.

Фракция альфа-2 глобулина:

  • альфа-2-макроглобулин;
  • гаптоглобулин;
  • церулоплазмин;
  • бета-липопротеин (аполипопротеин B также может находиться в бета-зоне на некоторых электрофореграммах);
  • гемопексин;
  • антитромбин III;
  • Ингибитор с1-эстеразы.

Фракция бета-глобулина:

  • трансферрин (зона бета-1 глобулинов);
  • комплемент C4 (зона бета-1 глобулина);
  • комплемент C3 (зона бета 2 глобулинов);
  • бета-2-микроглобулин (зона бета-2-глобулинов).

Фракция гамма-глобулина:

  • иммуноглобулин А;
  • иммуноглобулин М;
  • иммуноглобулин G;
  • фибриноген (в образцах плазмы);
  • иммуноглобулин Е;
  • иммуноглобулин D;
  • легкие цепи иммуноглобулина;
  • С-реактивный белок;
  • лизоцим (мурамидаза).

Фракция альфа-1-глобулина

Фракция альфа-1-глобулина состоит преимущественно из альфа-1-антитрипсина. Обычно оставшиеся глобулины составляют только 10% фракции альфа-1 глобулинов.

Повышенные значения:

  • острые, подострые, хронические воспалительные процессы, связанные с усилением синтеза белка в острой фазе;
  • некоторые злокачественные новообразования – альфа-фетопротеин может увеличиваться почти в 100 раз и давать отдельное увеличение между фракциями альбумина и альфа-1-глобулина.

Сниженные значения:

  • дефицит антитрипсина альфа-1;
  • липопротеинемия гипоальфа 1 – редко.

Фракция альфа-2-глобулина

Фракция альфа-2-глобулина состоит в основном из гаптоглобулина, альфа-2-макроглобулина и церулоплазмина.

Повышенные значения:

  • подострые, хронические воспалительные процессы;
  • злокачественные новообразования;
  • нефротический синдром.

Сниженные значения:

гемолитическая анемия, связанная со снижением гаптоглобулина.

Фракция бета-глобулина

Фракция бета-глобулина состоит из трансферрина и может содержать бета-липопротеины, компоненты комплемента C3, C4.

Повышенные значения:

  • гиперлипопротеинемия – аномально повышенный уровень липидов или липопротеинов в крови;
  • моноклональные гаммапатии – сборное наименование целого класса заболеваний, при них происходит патологическая секреция аномальных, измененных по химическому строению, молекулярной массе или иммунологическим свойствам иммуноглобулинов;
  • железодефицитная анемия, связанная с повышенным уровнем трансферрина;

Сниженные значения:

гиполипопротеемия – пониженный уровень липидов или липопротеинов в крови.

Фракция гамма-глобулина

Фракция гамма-глобулина состоит в основном из иммуноглобулинов, в основном иммуноглобулина G.

Повышенные значения:

  • хронические инфекции;
  • аутоиммунные патологии;
  • хроническая болезнь печени;
  • моноклональные гаммапатии.

Сниженные значения:

синдром иммунодефицита – в основном связанный с иммуноглобулином G.

Наиболее распространенные патологические виды электрофореза.

Электрофорез белков имеет диагностическое значение. В остальных случаях электрофорез носит исключительно информационный характер.

Шесть наиболее распространенных типов аномального электрофореза

Повышенные значения:

  • альфа-2-глобулины (альфа-2-макроглобулин);
  • бета-глобулины.

Уменьшенные значения:

  • альбумин;
  • альфа-1-глобулины;
  • гамма-глобулины.
  1. Цирроз.

Повышенные значения:

  • гамма-глобулины – диффузная гамма-глобулинемия, слияние фракций бета-глобулинов и гамма-глобулинов;
  • бета-глобулины.

Уменьшенные значения:

  1. Дефицит альфа-1-антитрипсина
  2. Гипогаммарная глобулинемия
  3. Диффузная гипергаммарная глобулинемия
  4. Парапротеинемия.

Парапротеины

Парапротеины в основном характерны для миеломы и макроглобулинемии Вальденстрема, но также обнаруживаются у пациентов с другими лимфопролиферативными заболеваниями: хронический лимфолейкоз, лимфома и т. д.

Характерная особенность этой иммунопатологии – по мере увеличения количества парапротеина количество нормальных иммуноглобулинов уменьшается. Следовательно, заболевание сопровождается различными бактериальными инфекциями.

В зависимости от иммунологического класса IgG или IgA различают миелому G и миелому A. Миелома D и E очень редки, с парапротеинами IgD и IgE соответственно. Парапротеин IgM характерен для макроглобулинемии Вальденстрема, но также наблюдается у пациентов с другими злокачественными лимфомами.

Обнаружение и идентификация парапротеина в крови или моче важны для диагностических целей, так как это помогает выбрать подходящие методы лечения и частично прогнозировать клиническое течение заболевания.

Электрофорез иммунофиксации идентифицирует моноклональный белок – класс иммуноглобулинов, тип легкой цепи– в сыворотке крови и моче человека. Электрофорез иммунной фиксации также используется для подтверждения градиента М, определенного электрофорезом белков.

Легкие цепи иммуноглобулина: κ – каппа, λ – лямбда

Иммуноглобулины синтезируются плазматическими клетками. Каждый иммуноглобулин основан на фрагменте, состоящем из двух идентичных тяжелых полипептидных цепей и двух идентичных легких полипептидных цепей, связанных дисульфидными связями.

Класс и подкласс иммуноглобулинов определяются их тяжелыми цепями. Есть два типа легких цепей иммуноглобулина: κ и λ. Оба варианта легкой цепи присутствуют в каждом классе иммуноглобулинов. Не было обнаружено функциональных различий между иммуноглобулинами с легкими цепями κ или λ. У человека соотношение κ варианты иммуноглобулина к варианту λ составляет 2: 1.

Около 10% легких цепей не связаны с тяжелыми цепями, они свободны. Свободные легкие цепи иммуноглобулина часто встречаются в виде димеров и полимеров. Поскольку антитела к свободным легким цепям часто не реагируют со своими димерными и полимерными формами.

Читайте также: