Армированные деревянные конструкции реферат

Обновлено: 04.07.2024

С. П. Максимов, Ю. Б. Башкова, А. И. Шкуркина, Е. П. Вшивков

Аннотация

Показана возможность и необходимость армирования деревянных балок стеклопластиковой арматурой для повышения несущей способности. Рассмотрены основные конструктивные и технологические особенности армирования элементов деревянных конструкций стеклопластиковой арматурой.

Рост темпов индивидуального строительства поднимает вопрос рационального использования материалов, сокращения себестоимости и повышения эксплуатационных характеристик конструкций. Наиболее популярным материалом, как для отделки помещений, так и возведения несущих элементов домов и прочих построек является древесина, которая обладает рядом неоспоримых преимуществ [3]. Использование древесины, как экологического материала, при сокращении материалоемкости и сохранении прочностных характеристик элементов деревянных конструкция является актуальной задачей [1].

Анализ показывает, что основным недостатком древесины является ее неоднородность, ввиду наличия сучков. Для повышения эстетических и прочностных свойств используют удаление дефектных мест и сращивание. При этом используют распространенный вид клеевых соединений зубчатым шипом. В этом случае прочность при растяжении составляет 90 % не стыкованной древесины без пороков. Однако использование данного метода снижает прочность в виду того, что зубчатое соединение занимает всю площадь поперечного сечения и разрушение деревянной клееной конструкции происходит по нижнему растянутому слою. Таким образом, в изгибаемых элементах удаление пороков не повышает несущую способность за счет склеивания материала 1-го сорта, а обладает той же прочностью в растянутой зоне, что и не стыкованная по длине древесина 3 сорта. Кроме данного способа на практике часто используют изготовление сборных балок по типу ферм [2]. Этот способ существенно повышает несущую способность деревянных конструкций, однако нарушает целостность и красоту массива древесины, поскольку требует скрытия сложного конструктива внутренней части.

Известен и способ армирования деревянных балок как стальной, так и стеклопластиковой арматурой [4]. При этом в литературе, для стальной арматуры, приводятся основные правила конструирования деревянных армированных балок:

поперечное сечение балок конструируется, как правило, прямоугольным постоянной высотой, при экономическом обосновании – двутавровым или коробчатым;

высота поперечного сечения назначается от 1/15 до 1/20 от длины балки, ширина сечения принимается с учетом существующего сортамента пиломатериалов;

рекомендуется симметричное армирование в сжатой и растянутой зонах;

рациональный процент армирования 1,2. 3,5 %.

Стеклопластиковая арматура (СПА) обладает рядом значительных преимуществ [5]:

меньшая в 5 раз масса, по сравнению с металлической арматурой;

высокая коррозионная стойкость;

непрерывный цикл производство СПА любой строительной длины и др.

Проведенные исследования показали, что армированные металлическими прутками деревянные балки обладают несущей способностью в 2 раза выше, по сравнения с клеедощатыми, и в три раза выше, чем балки составного сечения на податливых связях. При повышенной несущей способности армированные балки имеют наименьший прогиб при приложении максимальной нагрузки.

Для СПА, подобно металлической, разработаны методы и схемы армирования деревянных балок. Однако имея значительные преимущества, производители строительных материалов сталкиваются с рядом специфических особенностей применения СПА для армирования деревянных балок, поэтому распространение такого, казалось бы, эффективного направления строительной отрасли не получает широкого распространения. Рассмотрим эти особенности.

Глянцевая поверхность арматуры. При использовании в качестве клеевой композиции эпоксидных или полиэфирных смол и затвердевании данного состава образуется глянцевая поверхность. Как показывают исследования, последующее клеевое сцепление с такой поверхностью имеет малую прочность, поэтому при использовании СПА и вклейке ее в деревянную балку целесообразно обработать ее, придав ей матовую поверхность. Данная технология широко известна, например, при бесцентровом шлифовании тонких прутков. Однако нужно учитывать, что обработка и снятие внешней навивки СПА является недопустимым в виду ее эксплуатационного назначения. Поэтому устройство зачистки поверхности должно учитывать шаг винтовой навивки и не допускать ее, хоть и незначительной обработки. Избежать негативного эффекта глянцевой поверхности можно на этапе производства СПА, укладывая ее в не затвердевшем состоянии в заранее обработанный паз деревянной балки. Однако вопросы натяжения и фиксации пропитанного клеем сплетенного ровинга, а затем и сушки при условии поточного производства вызывает массу сложных технических задач.

Фиксация арматуры в балке. Свойства клеевого состава для сцепления СПА и массива древесины должны обеспечивать прочность и возможность незначительного циклического деформирования балок без потери качества сцепки. Поэтому состав, условия сушки и объем необходимой клеевой массы требует тщательного изучения.

Вскрытое расположение армирующих элементов. Поскольку работа ведется с массивом древесины, то армирование предполагает внешнюю закладку прутков в балку. Вопрос разработки технологии скрытия армирующих элементов для обеспечения высоких эстетических свойств является актуальной задачей. При этом необходимо учитывать внешнее расположение накладки, которая будет испытывать значительные деформации при восприятии балкой нагрузок и выбор метода и технологии крепления этого элемента, что требует проведения дополнительных исследований.

Низкий модуль Юнга. Как показывают практика при массе своих неоспоримых преимуществ, СПА обладает, однако относительно высокой податливостью при упругом изгибе. Это при известных схемах и технологиях армирования негативно сказывается на приросте прочностных характеристик армируемых балок.

Разработка эффективных способов и схем армирования является актуальной задачей в области современных конструкционных материалов и технологий их создания. Детальное решение вышеперечисленных вопросов, а также разработка технологий непрерывного поточного армирования при обеспечении плотного прижима и фиксации СПА во время сушки клеевого состава, проектирование операций зачистки поверхности содержащей армирующие элементы, создание преднапряженного состояния арматуры для повышения прочностных характеристик позволит эффективно использовать данный полифункциональный материал в строительной индустрии.

Список литературы:

Линьков И.М. Снижение материалоемкости деревянных конструкций / И.М. Линьков. М.: Стройиздат, 1974. – 48 с.

Пособие по проектированию деревянных конструкций (к СНиП П-25-80) /ЦНИИСК им. Кучеренко. М.: Стройиздат, 1986. – 216 с.

Рощина С.И. Армированные деревянные конструкции / С.И. Рощина // Архитектура и строительство России. – № 3, – 2008. – С. 34—39.

Щуко В.Ю. Клееные армированные деревянные конструкции / В.Ю. Щуко, С.И. Рощина // Учебное пособие. Владимир, ВлГУ, 2008. – 82 с.

Запасы древесины в наших лесах составляют около 80 млрд. м 3 . Ежегодно заготавливается около 280 млн. м 3 . деловой древесины, т.е. пригодной для изготовления конструкций и изделий. Однако, это количество далеко не исчерпывает естественного годового прироста древесины в отдаленных районах Сибири и Дальнего Востока.

Заготовленный лес в виде отрезков стволов стандартной длины доставляется автомобильным, железнодорожным и водным транспортом или путем сплава по рекам и озерам на деревообрабатывающие предприятия. Там из него изготавливают пилёные материалы, фанеру, древесные плиты, конструкции и строительные детали. При лесозаготовке и обработке древесины образуется большое количество отходов, эффективное использование которых имеет большое народно-хозяйственное значение. Изготовление из отходов древесины изоляционных древесноволокнистых и древесностружечных плит, широко применяемых в строительстве, позволяет экономить большое количество деловой древесины.

Хвойную древесину используют для изготовления основных элементов деревянных конструкций и строительных деталей. Прямые высокие стволы хвойных деревьев с небольшим количеством сучков позволяют получать прямолинейные пиломатериалы с ограниченным количеством пороков. Хвойная древесина содержит смолы, благодаря чему она лучше сопротивляется увлажнению и загниванию, чем лиственная.

Лиственная древесина большинства пород является менее прямолинейной, имеет больше сучков и более подвержена загниванию, чем хвойная. Она почти не применяется для изготовления основных элементов деревянных строительных конструкций.

Дубовая древесина выделяется среди лиственных пород повышенной прочностью и стойкостью к загниванию. Однако, ввиду дефицитности и высокой стоимости она используется только для небольших соединительных деталей.



  1. Строение древесины

Древесные волокна располагаются концентрическими слоями вокруг оси ствола, которые называются годичными слоями, т.к. каждый слой нарастает в течение года. Они хорошо заметны в виде ряда колец на поперечных разрезах ствола, особенно хвойных деревьев. По их количеству можно определить возраст дерева.

Каждый годичный слой состоит из двух частей. Внутренний слой (более широкий и светлый) состоит из мягкой ранней древесины, образующейся весной, когда дерево растет быстро. Клетки ранней древесины имеют более тонкие стенки и широкие полости. Клетки поздней древесины имеют более толстые стенки и узкие полости. Прочность и плотность древесины зависит от относительного содержания в ней поздней древесины.

Средняя часть стволов древесины хвойных пород имеет более темный цвет, содержит больше смолы и называется ядро. Затем идет заболонь и, наконец, кора.

Круглые лесоматериалы, называемые также бревнами, представляют собой части древесных стволов с гладко опиленными концами – торцами. Бревна имеют естественную усечено-коническую форму. Уменьшение их толщины по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины (для лиственницы 1 см на 1 м длины) бревна. Средние бревна имеют толщину от 14 до 24 см крупные – до 26 см. Бревна толщиной 13 см. и менее используют для временных построечных сооружений.

Основными недопустимыми пороками древесины являются: гниль, червоточины и трещины в зонах скалывания в соединениях.

Наиболее распространенными и неизбежными пороками древесины являются сучки – заросшие остатки бывших ветвей дерева. Сучки являются допустимыми с ограничениями пороками.

Наклон волокон (косослой) относительно оси элемента так же является допустимым с ограничением пороком. Он образуется в результате природного винтообразного расположения волокон в стволе, а так же при распиловке бревен в результате их сбега.

Трещины, возникающие при высыхании древесины, тоже относятся к числу ограниченно допускаемых пороков.

Древесина I сорта используется в наиболее ответственных напряженных растянутых элементах. Это отдельные растянутые стержни и доски растянутых зон клееных балок высотой сечения более 50 см

Суммарный диаметр сучков на длине 20 см d ? 1/4b.

Древесина II сорта используется в сжатых и изгибаемых элементах. Это отдельные сжатые стержни, доски крайних зон клееных балок высотой менее 50 см.; доски крайней сжатой зоны и растянутой зоны, расположенной выше досок 1-го сорта в клееных балках высотой более 50 см., доски крайних зон рабочих клееных сжатых, изгибаемых и сжато-изогнутых стержней.

Суммарный диаметр сучков на длине 20 см d ? 1/3b.

Древесина III сорта используется в менее напряженных средних клееных сжатых, изгибаемых и сжато-изгибаемых элементов, а также в мало ответственных элементах настилов и обрешеток.


Суммарный диаметр сучков на длине 20 см d ? 1/2b.


  1. Свойства древесины

    1. Физические свойства

    Температурное расширение. Линейное расширение при нагревании, характеризуемое коэффициентом линейного расширения, в древесине различно вдоль и под углами к волокнам. Коэффициент линейного расширения ? вдоль волокон составляет (3 ч 5) ∙ 10 -6 , что позволяет строить деревянные здания без температурных швов. Поперек волокон древесины этот коэффициент меньше в 7 – 10 раз.

    Теплопроводность древесины благодаря ее трубчатому строению очень мала, особенно поперек волокон. Коэффициент теплопроводности сухой древесины поперек волокон ? ? 0,14Вт/м∙єС. Брус толщиной 15 см эквивалентен по теплопроводности кирпичной стене толщиной в 2,5 кирпича (51 см)воле, а так жетакже при распиловке бревен в результате их сбега.

    ластями, опильных станках. .- торцами.ниванию, чем хвой.

    Теплоемкость древесины значительна, коэффициент теплоемкости сухой древесины составляет С = 1,6КДЖ/кг∙єС.

    Древесина является анизотропным материалом, поэтому ее прочность зависит от направления действия усилий по отношению к волокнам. При действии усилий вдоль волокон, оболочки клеток работают в самых благоприятных условиях и древесина показывает наибольшую прочность.


    • При растяжении – 100 МПа.

    • При изгибе – 80 МПа.

    • При сжатии – 44 МПа.

    Жесткость древесины (ее степень деформативности под действием нагрузки) существенно зависит от направления действия нагрузок по отношению к волокнам, их длительности и влажности древесины. Жесткость определяется модулем упругости Е.

    Для хвойных пород вдоль волокон Е = 15000 МПа.

    В СНиП II-25-80 модуль упругости для любой породы древесины Ео = 10000 МПа. Е90 = 400 МПа.

    При повышенной влажности, температура, а также при совместном действии постоянных и временных нагрузок значение Е снижается коэффициентами условия работы mв, mт, mд 2 и температуре t=145-155єC.

    В зависимости от взаимного расположения слоев шпона в пакете, различают 4 основных марки ДСП:

    ДСП-А – все слои параллельны друг другу, ДСП-Б – через каждые 10-12 параллельных слоев один поперечный, ДСП-В – перекрестное расположение, причем наружные слои располагаются вдоль плиты, ДСП-Г – звездообразная, каждый слой смещен по отношению к предыдущему на 25-30є.

    Для строительных конструкций рекомендуется ДСП-Б и ДСП-В, как наиболее прочные поперек волокон и под углами к волокнам.

    Во всех случаях прочность ДСП превышает прочность цельной древесины, а для некоторых марок при действии усилий вдоль волокон шпона не уступает прочности стали.

    В настоящее время в связи еще с высокой стоимостью ДСП, он применяется в основном для изготовления средств соединения элементов конструкций.


    Древесноволокнистые плиты (ДВП) изготавливают из хаотически расположенных волокон древесины (опилок), склеенных канифольной эмульсией. Сырьем для ДВП являются отходы лесопиления и деревообработки. Для изготовления твердых и сверхтвердых плит в древесноволокнистую массу добавляют фенолоформальдегидную смолу. При длительном действии влажной среды, древесноволокнистая плита весьма гигроскопична, набухает по толщине и теряет прочность, поэтому во влажных условиях применять ДВП не рекомендуется. Прочность сверхтвердых плит ДВП плотностью не менее 950 кг\м 3 при растяжении составляет около 25 МПа.

    Древесностружечные плиты (ПС и ПТ) получают путем горячего прессования древесных стружек, перемешанных, вернее опыленных фенолоформальдегидными смолами.


    • легкие ?=350-500 кг\м 3

    • средние ПС ?=500-650 кг\м 3

    • тяжелые ПТ ?=650-800 кг\м 3

    1. Гниение и защита деревянных конструкций от гниения

    Грибы развиваются из клеток – спор, которые легко переносятся движением воздуха. Приростая, споры образуют плодовое тело и грибницу гриба – источник новых спор.


    Защита от гниения:

    1. Стерилизация древесины в процессе высокотемпературной сушки. Прогрев древесины при t > 80 о С, что приводит к гибели спор грибов, грибниц и плодовых тел гриба.


    1. Горение и защита деревянных конструкций от возгорания

    1. Конструктивная. Ликвидация условий, благоприятных для возгораний.


    2. Химическая (противопожарная пропитка или окраска). Пропитывают веществами, которые называются антипиренами (например, аммонийная соль, фосфорная и серная кислота). Пропитку выполняют в автоклавах одновременно с антисептированием. При нагреве антипирены расплавляются, образуя огнезащитную пленку. Защитная окраска выполняется составами на основе жидкого стекла, суперфтора и т.д.


    12. Основы расчета по предельным состояниям

    В соответствии с действующими в России нормами деревянные конструкции должны рассчитываться по методу предельных состояний.


    1. по несущей способности (прочности, устойчивости).

    2. по деформациям (прогибам, перемещениям).

    ? ? R,

    ? ? Rск (или Rср),

    т.е. когда нормальные напряжения (?) и касательные напряжения (?) не превышают некоторой предельной величины R, называемой расчетным сопротивлением.

    Вторая группа предельных состояний характеризуется такими признаками, при которых эксплуатация конструкций или сооружений хотя и затруднена, однако, полностью не исключается, т.е. конструкция становится непригодной только к нормальной эксплуатации. Пригодность конструкции к нормальной эксплуатации обычно определяется по прогибам:

    f ? [f], или

    f/l ? [f/l].

    Это означает, что изгибаемые элементы или конструкции пригодны к нормальной эксплуатации, когда наибольшая величина отношения прогиба к пролету меньше предельно допустимого относительного прогиба [f/l] (по СНиП II-25-80).

    Читайте также: