Архитектура эвм реферат по информатике

Обновлено: 05.07.2024

Современные ЭВМ бывают самыми разными: от больших, занимающих целый зал, до маленьких, помещающихся на столе, в портфеле и даже в кармане. Сегодня самым массовым видом ЭВМ являются персональные компьютеры.
Создание персонального компьютера (ПК) можно отнести к одному из самых значительных изобретений 20 века. ПК существенно изменил роль и значение вычислительной техники в жизни человека.

Содержание
Работа содержит 1 файл

Архитектура ЭВМ, реферат.doc

Министерство Образования и Науки РК.

Казахский Университет Технологии и Бизнеса.

Архитектура ЭВМ.

Подготовила: студентка 1 курса группы РД ГБ

Проверила: Жармаганбетова Г.М.

Астана 2011
Оглавление

  1. Общая структура персонального компьютера
    1. Основы архитектуры ЭВМ…………………………………………….4
    2. Структура ПК……………………………………………………….…..7
    1. Материнская плата……………………………………………………. 9
    2. Процессор……………………………………………………… ………11
    3. Память……………………………………………………………… ….12
    4. Винчестер……………………………………………………… ………14
    5. Клавиатура…………………………………………………… ………..15
    6. Монитор…………………………………………………………… …..16
      1. Цифровые (TTL) и аналоговые мониторы………………………….16
      2. Жидкокристаллические мониторы………………………………….19
      1. Дискеты. Дисководы для флоппи- дисков…………………………. 20
      2. Приводы компакт- дисков. CD- ROM……………………………….21
      3. Манипуляторы……………………………………………… …………22
      4. Принтер. Плоттер…………..…………………………………………. 23
      5. Сканер……………………………………………………………… …..23

      Предисловие

      Современные ЭВМ бывают самыми разными: от больших, занимающих целый зал, до маленьких, помещающихся на столе, в портфеле и даже в кармане. Сегодня самым массовым видом ЭВМ являются персональные компьютеры.

      Создание персонального компьютера (ПК) можно отнести к одному из самых значительных изобретений 20 века. ПК существенно изменил роль и значение вычислительной техники в жизни человека.

      Персональные компьютеры используются сейчас повсеместно. Их основное назначение- выполнение рутинной работы: поиск информации, составление типовых форм документации, фиксация результатов исследования, подготовка текстов разного рода от простейших документов до издательской верстки и пр.

      Общедоступность и универсальность персонального компьютера обеспечивается за счет наличия следующих характеристик:

      высокая надежность работы
      1. Общая структура персонального компьютера

      1.1. Основы архитектуры ЭВМ

      Составные части, из которых состоит компьютер, называют модулями. Среди всех модулей выделяют основные модули, без которых работа компьютера невозможна, и остальные модули, которые используются для решения различных задач: ввода и вывода графической информации, подключения к компьютерной сети и т.д.

      В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом:

      1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в заданной последовательности).

      2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).

      3. Принцип адресности (основная память структурно состоит из пронумерованных ячеек).

      ЭВМ, построенные на этих принципах, имеют классическую архитектуру (архитектуру фон Неймана). Архитектура ЭВМ – это её логическая организация, структура и ресурсы. Архитектура определяет принцип действия, информационные связи и взаимное соединение основных логических узлов ЭВМ:

        • процессора;
        • оперативного ЗУ (запоминающего устройства);
        • внешних ЗУ;
        • периферийных устройств.

        Функции памяти:

          • приём информации от других устройств;
          • запоминание информации;
          • передача информации по запросу в другие устройства машины.

          Память делят на :

            1. основную:
          1. ОЗУ (оперативно запоминающее устройство);
            1. внешнюю (устройства внешней памяти позволяют длительно хранить информацию).

          Носители внешней памяти: жесткие и гибкие магнитные диски, а также лазерные диски (CD). Прежде, чем использовать, диски форматируют на дорожки и секторы.

          К функциям периферийных устройств относятся ввод и вывод информации.

          Каждое устройство имеет набор характеристик, которые позволяют подобрать такую конфигурацию устройств, которая наилучшим образом подходит для решения определенного круга задач с помощью компьютера.

          Функции процессора:

          1.обработка данных по заданной программе (выполнение над ними арифметических и логических операций)– функция АЛУ (арифметико-логического устройства);

          2.программное управление работой устройств ЭВМ – функция УУ (устройства управления).

          В состав процессора входят также регистры (процессорная память) – ряд специальных запоминающих ячеек.

          Регистры выполняют две функции:

            • кратковременное хранение числа или команды;
            • выполнение над ними некоторых операций.

            Важнейшие регистры:

              • счетчик команд (служит для автоматической выборки команд программы из последовательных ячеек памяти, в нем хранится адрес выполняемой команды);
              • регистр команд и состояний (служит для хранения кода команды).

              Команда – это элементарная операция, которую должна выполнить ЭВМ. Команда содержит:

                • код выполняемой операции;
                • адреса операндов;
                • адрес размещения результата.

                Выполнение команды разбивается на следующие этапы:

                1. из ячейки памяти, адрес которой хранится в счетчике команд, выбирается команда (при этом содержимое счётчика команд увеличивается);
                2. команда передаётся в устройство управления (в регистр команд);
                3. устройство управления расшифровывает адресное поле команды;
                4. по сигналам устройства управления операнды выбираются из памяти в АЛУ (в регистры операндов);
                5. УУ расшифровывает код операции и выдаёт сигнал АЛУ выполнить операцию;
                6. результат операции остаётся в процессоре, либо возвращается в ОЗУ.


                1.2. Структура ПК

                Персональные компьютеры обычно состоят из следующих основных модулей, представленных на рисунке 3.

                В системном блоке находятся все основные узлы компьютера:

                  • материнская плата;
                  • электронные схемы (процессор, контроллеры устройств и т.д.);
                  • блок питания;
                  • дисководы (накопители).

                  Рассмотрим характеристики основных модулей ПК.

                  2. Характеристики основных модулей ПК

                  2.1. Материнская плата

                  Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств.

                  Общая производительность материнской платы определяется не только тактовой частотой, но и количеством (разрядностью) данных, обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

                  По функциональному назначению шины делятся на:

                    • шину данных;
                    • адресную шину;
                    • шину управления.

                    По адресной шине происходит адресация ячеек памяти, в которые производится запись данных.

                    По шине управления или системной шине происходит передача управляющих сигналов между центральным процессором и периферией. На материнской плате системная шина заканчивается слотами для установки других устройств. Адресные шины и шины данных иногда занимают одни и те же физические проводники.

                    В настоящее время существует несколько стандартов шин: ISA (Industry Sland art Architecture), MCA (MicroChannel Architecture), EISA (Extended ISA), VESA (Video Electronics SlandarlAssollallon), PCI (Peripheral Component Interconnect), USB (Universal Serial BUS).

                    Понятие архитектуры ЭВМ. Двоичная система представления данных. Принцип последовательного выполнения операций. Состав и назначение основных блоков персонального компьютера (ПК). Внутримашинный системный интерфейс, основные внешние устройства (ПК).

                    Рубрика Программирование, компьютеры и кибернетика
                    Вид реферат
                    Язык русский
                    Дата добавления 15.10.2009
                    Размер файла 149,6 K

                    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

                    Содержание

                      Введение
                      • 1. Понятие архитектуры ЭВМ. Принципы фон Неймана
                      • 1.1 Использование двоичной системы представления данных
                      • 1.2 Принцип последовательного выполнения операций
                      • 2. Функционально-структурная организация компьютера
                      • 2.1 Состав и назначение основных блоков ПК
                      • 2.2 Внутримашинный системный интерфейс
                      • 2.3 Функциональные устройства ПК
                      • 3.1 Структура микропроцессора
                      • 3.2 Последовательность работы блоков ПК
                      • 4. Запоминающие устройства ПК
                      • 5. Основные внешние устройства ПК
                      • Заключение
                      • Список литературы

                      Введение

                      Актуальность. Компьютер (англ. computer - вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. Существует два основных класса компьютеров: цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов; аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин.

                      Электронно-вычислительные машины (ЭВМ), или, как их теперь чаще называют, компьютеры, - одно из самых удивительных творений человека. В узком смысле ЭВМ - это приспособления, выполняющие разного рода вычисления или облегчающие этот процесс. Простейшие устройства, служащие подобным целям, появились в глубокой древности, несколько тысячелетий назад. По мере развития человеческой цивилизации они медленно эвоционировали, непрерывно совершенствуясь. Однако только в 40-е годы нашего столетия было положено начало созданию компьютеров современной архитектуры и с современной логикой. Именно эти годы можно по праву считать временем рождения современных ( естественно, электронных ) вычислительных машин.

                      В своем историческом докладе, опубликованном в 1945 году, Джон фон Нейман выделил и детально описал пять ключевых компонентов того, что ныне называют " архитектурой фон Неймана " современного компьютера.

                      Чтобы компьютер был и эффективным , и универсальным инструментом, он должен включать следующие структуры: центральное арифметико-логическое устройство (АЛУ), центральное устройство управления (УУ), " дирижирующее " операциями, запоминающее устройство, или память, а также устройства ввода-вывода информации.

                      Фон Нейман отмечал, что эта система должна работать с двоичными числами, быть электронным, а не механическим устройством и выполнять операции последовательно, одну за другой.

                      Принципы, сформированные фон Нейманом, стали общепринятыми и положены в основу как больших ЭВМ первых поколений, так и более поздних мини- и микро-ЭВМ. И хотя в последнее время идут активные поиски вычислительных машин, построенных на принципах, отличных от классических, большинство компьютеров построено согласно принципам, определенным Нейманом.

                      При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

                      Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.


                      Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

                      Наиболее распространены следующие архитектурные решения.

                      Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

                      Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.


                      Периферийные устройства ( принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры — устройства управления периферийными устройствами.

                      Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

                      Многопроцессорная архитектура . Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рисунке.

                      Архитектура многопроцессорного компьютера

                      Многомашинная вычислительная система . Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

                      Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

                      Архитектура с параллельными процессорами . Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе — то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рисунке.

                      Архитектура с параллельным процессором

                      В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

                      Современный персональный компьютер состоит из нескольких основных конструктивных компонентов:

                      • системного блока;
                      • монитора;
                      • клавиатуры;
                      • манипуляторов.

                      Системный блок – самый главный блок компьютера. К нему подключаются все остальные блоки, называемые внешними или периферийными устройствами. В системном блоке находятся основные электронные компоненты компьютера. ПК построен на основе СБИС (сверхбольших интегральных схем), и почти все они находятся внутри системного блока, на специальных платах (плата - пластмассовая пластина, на которой закреплены и соединены между собой электронные компоненты - СБИСы, микросхемы и др.). Самой важной платой компьютера является системная плата. На ней находятся центральный процессор, сопроцессор, оперативное запоминающее устройство – ОЗУ и разъемы для подключения плат-контроллеров внешних устройств.

                      В системном блоке размещаются:

                      • блок питания - устройство, преобразующее переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.
                      • системная плата (материнская плата);
                      • магистраль (системная шина);
                      • процессор;
                      • звуковая карта;
                      • видеокарта (графическая карта);
                      • накопители на жёстких магнитных дисках;
                      • накопители на гибких магнитных дисках;
                      • оптические, магнитооптические и пр. накопители;
                      • накопитель CD-ROM, DVD-ROM;

                      Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Функционально материнскую плату можно описать различным образом. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной. В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.


                      Первая материнская плата была разработана фирмой IBM, и показана в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения - 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

                      Материнская плата — это комплекс различных устройств поддерживающий работу системы в целом. Обязательными атрибутами материнской платы являются базовый процессор, оперативная память, системный BIOS, контролер клавиатуры, разъемы расширения.

                      Материнская плата внутри компьютера - главная монтажная деталь, к которой крепятся остальные компоненты.



                      При нормальной работе материнской платы о ней не вспоминают, пока не понадобится усовершенствовать компьютер. Обычно хотят поставить более быстрый процессор, что и ведет к замене материнской платы. Нельзя, например, заменить старый Pentium MMX на Pentium III без новой материнской платы.

                      По внешнему виду материнской платы можно определить, какие нужны процессор, память и дополнительные устройства, вставляемые во внешние порты и гнезда компьютера.

                      По размерам материнские платы в общем случае можно разделить на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше. Часто речь может идти о “зеленых” платах (green mothеrboard). Сейчас выпускаются только такие платы. Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления (в том числе, так называемый “sleep”, при котором отключается питание от компонентов компьютера, которые в данный момент не работают).


                      Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем (в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, а на плату подается 5В, на системных
                      платах монтируют преобразователи напряжение.

                      Частота процессора, системной шины и шин периферийных устройств

                      Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост).


                      Рис.1. Логическая схема системной платы

                      К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI-контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

                      По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

                      Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

                      Устройства хранения информации (жесткие диски, CD-ROM, DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

                      Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как COM1 и COM2, а
                      аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

                      Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LTP, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

                      Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств. Клавиатура подключается обычно с помощью порта PS/2.

                      Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду. Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения п т. д. С другой стороны, быстродействие ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

                      Емкость, или объем, памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограничена.

                      Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов в самых разнообразных приложениях. Однако, если этого мало, можно использовать удвоенную или утроенную разрядную сетку.

                      Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна иметь команда для ее распознания. Количество основных разновидностей команд невелико. С их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этапе развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, связанный с разработкой процессоров с полным набором команд, — архитектура CISC (Complete Instruction Set Computer — компьютер с полным набором команд). С другой стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употребляемых команд, что позволяет упростить аппаратные средства процессора и повысить его быстродействие — архитектура RISC (Reduced Instruction Set Computer — компьютер с сокращенным набором команд).

                      Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

                      Надежность ЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

                      • вероятность безотказной работы за определенное время при данных условиях эксплуатации;
                      • наработка ЭВМ на отказ;
                      • среднее время восстановления машины и др.

                      1. Букчин Л.В., Безрукий Ю.Л. Дисковая система IBM - совместимых компьютеров. - М.: Бином, 1993. - 284 с.

                      2. Лагутенко О.И. Модемы. Справочник пользователя. - СПб.: Лань, 1997. - 364

                      3. Информатика. Базовый курс

                      5. Угринович Н.Д. Информатика и информационные технологии. Учебное пособие для 10-11 классов. Углубленный курс. - М.: Лаборатория Базовых Знаний, 2000.

                      В современном мире невозможно представить рабочее место без персонального компьютера. В последние годы широкое распространение получили настольные персональные компьютеры (ПК). Строго говоря, компьютер – это комплекс технических и программных средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

                      Содержание

                      Введение……………………………………………………………………………….3
                      Классическая архитектура ЭВМ………………………………………………5
                      Функциональная организация ЭВМ…………………………………………..11
                      Структура и принцип действия ЭВМ…………………………………………12
                      Организация и разрядность интерфейсов ЭВМ……………………………. 21
                      Организация и способы организации адресации памяти……………………23
                      Сегментная организация памяти…………………………………………..29
                      Заключение…………………………………………………………………………….30
                      Список использованных источников………………………………………………. 31

                      Вложенные файлы: 1 файл

                      реферат Анисимова.docx

                      Федеральная таможенная служба

                      Государственное казённое образовательное учреждение

                      высшего профессионального образования

                      Кафедра информатики и информационных таможенных технологий

                      студента Анисимовой Ксении Александровны

                      факультета Таможенного дела

                      на тему: Архитектура ЭВМ

                      Преподаватель: Вольнов И.Н.

                      1. Классическая архитектура ЭВМ………………………………………………5
                      2. Функциональная организация ЭВМ…………………………………………..11
                      3. Структура и принцип действия ЭВМ…………………………………………12
                      4. Организация и разрядность интерфейсов ЭВМ……………………………. 21
                      5. Организация и способы организации адресации памяти……………………23
                        1. Сегментная организация памяти…………………………………………..29

                        Список использованных источников……………………………………………….. .31

                        В современном мире невозможно представить рабочее место без персонального компьютера. В последние годы широкое распространение получили настольные персональные компьютеры (ПК). Строго говоря, компьютер – это комплекс технических и программных средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

                        Но как устроен ЭВМ? Что такое архитектура ЭВМ?

                        Для любого компьютера, в том числе настольного ПК можно выделить следующие важные компоненты архитектуры:

                          1. Функциональные и логические возможности процессора (система команд, форматы команд и данных, способы адресации, разрядность обрабатываемых слов и т.д.)
                          2. Структурная организация и принципы управления аппаратными средствами (центральным процессором, памятью, вводом-выводом, системным интерфейсом и т.д.)
                          3. Программное обеспечение (операционная система, трансляторы языков программирования, прикладное ПО).

                        Целью реферата является рассмотреть функциональную и структурную организацию ПК.

                        Исходя из цели сформулированы задачи:

                          1. Рассмотреть структурную организацию ЭВМ
                          2. Рассмотреть организацию и разрядность интерфейсов
                          3. Рассмотреть организацию и способы адресации памяти.

                        Архитектура ЭВМ – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействие основных ее функциональных узлов.

                        В середине 40-х годов имелось несколько возможных путей для создания электронных компьютеров. Нельзя сбрасывать со счетов гарвардскую архитектуру; она сложнее в реализации, чем фон-неймановская, но может обеспечить существенно более высокую производительность, поэтому она сохранилась во встраиваемых процессорах, где скорость обработки сигналов наиболее критична. Но судьба распорядилась так, что в широком масштабе была однозначно и безоговорочно принята архитектура фон Неймана. Из основных принципов этой архитектуры вытекает важное следствие: аппаратура является неизменной частью вычислительной машины, а программы — переменной. В большинстве учебников архитектуру фон Неймана представляется классической, вечной и неизменной, поэтому может сложиться впечатление, что она столь же объективна, как и природные законы. Однако, современное и программное, и аппаратное обеспечение за самым малым исключением являются производными от этого выбора. Фон-неймановская архитектура, как и все в этом мире, не вечна; незаметно для большинства происходит ее моральное старение. Критику этой архитектуры и неизбежный со временем отказ от нее не следует рассматривать как критику в адрес самого фон Неймана — скорее, справедливая критика может быть направлена в адрес тех, кто десятилетиями догматизировал его взгляды.

                        Итак, основной вклад фон Неймана состоит в переводе абстрактной схемы Тьюринга в конкретное железо; если предельно упростить то, что сделал фон Нейман, можно сказать, что он перенес бесконечную ленту машины Тьюринга в память. Странно, что при всей своей гениальной прозорливости фон Нейман остановился на сделанном. В области вычислительных машин он — автор одной работы. Выполнив ее, он не стремился к чему-то иному, более того, считал дальнейшее развитие ненужным. К примеру, он активно возражал против попыток как-то упростить или автоматизировать программирование. Он умер в феврале 1957 года, успев дожить до времени, когда уже были созданы языки Ассемблера и вот-вот должны были появиться Кобол и Фортран. Тогда проблема языков программирования активно обсуждалась, однако он считал это занятие бессмысленным, будучи уверенным в том, что ни к чему тратить дорогостоящее машинное время на работу с текстами программ.

                        Немного ранее Герман Гольдштейн, профессор математики из Мичиганского университета, после призыва на воинскую службу получил чин лейтенанта и руководил расчетом артиллерийских таблиц в баллистической лаборатории при полигоне. Работу выполняли сотни женщин, использовавших механические арифмометры, в те времена именно женщин-расчетчиц и называли компьютерами. Объем необходимых вычислений был чудовищным: только для расчета одной траектории полета снаряда требовалось выполнить 750 операций, а для передачи военным орудие необходимо было снабдить как минимум расчетами 3 тыс. траекторий, общая трудоемкость такой процедуры превышала четыре человеко-года.

                        Основные принципы фон-неймановской модели:

                        1. Информация кодируется в двоичной форме и разделяется на единицы — слова.
                        2. Разнотипные по смыслу слова различаются по способу использования, но не по способу кодирования.
                        3. Слова информации размещаются в ячейках памяти и идентифицируются номерами ячеек — адресами слов.
                        4. Алгоритм представляется в форме последовательности управляющих слов, называемых командами. Команда определяет наименование операции и слова информации, участвующие в ней. Алгоритм, записанный в виде последовательности команд, называется программой.
                        5. Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определенном программой.

                        Согласно фон Нейману, ЭВМ должна состоять из следующих основных блоков (рис. 1): устройства управления (УУ) и арифметико-логического устройства (АЛУ) (в современных компьютерах эти устройства объединены в один блок – процессор), запоминающих устройств (внутренней и внешней памяти), устройств ввода и вывода.

                        Рис. 1. Архитектура ЭВМ по фон Нейману

                        Программа вычислений (обработки информации) составляется в виде последовательности команд и загружается в память машины — запоминающее устройство (ЗУ). Там же хранятся исходные данные и промежуточные результаты обработки. Центральное устройство управления (ЦУУ) последовательно извлекает из памяти команды программы и организует их выполнение. Арифметико-логическое устройство (АЛУ) предназначено для реализации операций преобразования информации. Программа и исходные данные вводятся в память машины через устройства ввода (УВв), а результаты обработки предъявляются на устройства вывода (УВыв). Характерной особенностью архитектуры фон Неймана является то, что память представляет собой единое адресное пространство, предназначенное для хранения как программ, так и данных. Такой подход, с одной стороны, обеспечивает большую гибкость организации вычислений — возможность перераспределения памяти между программой и данными, возможность самомодификации программы в процессе ее выполнения. С другой стороны, без принятия специальных мер защиты снижается надежность выполнения программы, что особенно недопустимо в управляющих системах. Альтернативной фон-неймановской является гарвардская архитектура. ЭВМ, реализованные по этому принципу, имеют два непересекающихся адресных пространства — для программы и для данных, причем программу нельзя разместить в свободной области памяти данных и наоборот. Гарвардская архитектура применяется главным образом в управляющих ЭВМ.

                        * Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

                        С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие — архитектура ЭВМ.

                        Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

                        Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

                        Архитектуру вычислительного средства необходимо отличать от структуры ВС. Структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

                        Так, пользователю ЭВМ не важно, на каких элементах выполнены электронные схемы, схемно или программно исполняются команды и тому подобное. Архитектура ЭВМ действительно отражает круг проблем, которые относятся к общему проектированию и построению вычислительных машин и их ПО.

                        Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

                        Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

                        Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, представленную на рисунке.

                        Положения фон Неймана:

                        Компьютер состоит из нескольких основных устройств (арифметико-логическое устройство, управляющее устройство, память, внешняя память, устройства ввода и вывода)

                        Арифметико-логическое устройство – выполняет логические и арифметические действия, необходимые для переработки информации, хранящейся в памяти

                        Управляющее устройство – обеспечивает управление и контроль всех устройств компьютера (управляющие сигналы указаны пунктирными стрелками)

                        Данные, которые хранятся в запоминающем устройстве, представлены в двоичной форме

                        Программа, которая задает работу компьютера, и данные хранятся в одном и том же запоминающем устройстве

                        Для ввода и вывода информации используются устройства ввода и вывода

                        Современную архитектуру компьютера определяют следующие принципы:

                        Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

                        Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

                        Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

                        На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

                        Реальная структура компьютера значительно сложнее, чем рассмотренная выше (ее можно назвать логической структурой). В современных компьютерах, в частности персональных, все чаще происходит отход от традиционной архитектуры фон Неймана, обусловленный стремлением разработчиков и пользователей к повышению качества и производительности компьютеров. Качество ЭВМ характеризуется многими показателями. Это и набор команд, которые компьютер способный понимать, и скорость работы (быстродействие) центрального процессора, количество периферийных устройств ввода-вывода, присоединяемых к компьютеру одновременно и т.д. Главным показателем является быстродействие - количество операций, какую процессор способен выполнить за единицу времени. На практике пользователя больше интересует производительность компьютера - показатель его эффективного быстродействия, то есть способности не просто быстро функционировать, а быстро решать конкретные поставленные задачи.

                        Как результат, все эти и прочие факторы способствуют принципиальному и конструктивному усовершенствованию элементной базы компьютеров, то есть созданию новых, более быстрых, надежных и удобных в работе процессоров, запоминающих устройств, устройств ввода-вывода и т.д. Тем не менее, следует учитывать, что скорость работы элементов невозможно увеличивать беспредельно (существуют современные технологические ограничения и ограничения, обусловленные физическими законами). Поэтому разработчики компьютерной техники ищут решения этой проблемы усовершенствованием архитектуры ЭВМ.

                        Так, появились компьютеры с многопроцессорной архитектурой, в которой несколько процессоров работают одновременно, а это означает, что производительность такого компьютера равняется сумме производительностей процессоров. В мощных компьютерах, предназначенных для сложных инженерных расчетов и систем автоматизированного проектирования (САПР), часто устанавливают два или четыре процессора. В сверхмощных ЭВМ (такие машины могут, например, моделировать ядерные реакции в режиме реального времени, прогнозировать погоду в глобальном масштабе) количество процессоров достигает нескольких десятков.

                        Скорость работы компьютера существенным образом зависит от быстродействия оперативной памяти. Поэтому, постоянно ведутся поиски элементов для оперативной памяти, затрачивающих меньше времени на операции чтения-записи. Но вместе с быстродействием возрастает стоимость элементов памяти, поэтому наращивание быстродействующей оперативной памяти нужной емкости не всегда приемлемо экономически.

                        Проблема решается построением многоуровневой памяти. Оперативная память состоит из двух-трех частей: основная часть большей емкости строится на относительно медленных (более дешевых) элементах, а дополнительная (так называемая кэш-память) состоит из быстродействующих элементов. Данные, к которым чаще всего обращается процессор находятся в кэш-памяти, а больший объем оперативной информации хранится в основной памяти.

                        Раньше работой устройств ввода-вывода руководил центральный процессор, что занимало немало времени. Архитектура современных компьютеров предусматривает наличие каналов прямого доступа к оперативной памяти для обмена данными с устройствами ввода-вывода без участия центрального процессора, а также передачу большинства функций управления периферийными устройствами специализированным процессорам, разгружающим центральный процессор и повышающим его производительность.

                        Методы классификации компьютеров

                        Номенклатура видов компьютеров сегодня огромная: машины различаются по назначению, мощности, размерам, элементной базе и т.д. Поэтому классифицируют ЭВМ по разным признакам. Следует заметить, что любая классификация является в некоторой мере условной, поскольку развитие компьютерной науки и техники настолько бурное, что, например, сегодняшняя микроЭВМ не уступает по мощности миниЭВМ пятилетней давности и даже суперкомпьютерам недавнего прошлого. Кроме того, зачисление компьютеров к определенному классу довольно условно через нечеткость разделения групп, так и вследствии внедрения в практику заказной сборки компьютеров, где номенклатуру узлов и конкретные модели адаптируют к требованиям заказчика. Рассмотрим распространенные критерии классификации компьютеров.

                        Классификация по назначению

                        большие электронно-вычислительные машины (ЭВМ);

                        Большие ЭВМ (Main Frame)

                        Применяют для обслуживания крупных областей народного хозяйства. Они характеризуются 64-разрядными параллельно работающими процессорами (количество которых достигает до 100), интегральным быстродействием до десятков миллиардов операций в секунду, многопользовательским режимом работы. Доминирующее положение в выпуске компьютеров такого класса занимает фирма IBM (США). Наиболее известными моделями суперЭВМ являются: IBM 360, IBM 370, IBM ES/9000, Cray 3, Cray 4, VAX-100, Hitachi, Fujitsu VP2000.

                        На базе больших ЭВМ создают вычислительный центр, который содержит несколько отделов или групп (структура которого изображена на рис. 2). Штат обслуживания - десятки людей.

                        Читайте также: