Аппараты воздушного охлаждения реферат

Обновлено: 02.07.2024

Где Ар — разность плотностей воздуха, кг/м3; g — ускорение свободного падения; Н — эффективная высота градирни, равная разности высот центра пучка труб и выходного отверстия градирни; АР — потери давления в градирне, включая потери на трение, потери из-за смены направления потока, и потери на выходе. Эти потери давления часто достигают значений такого же порядка, как и статическая разность… Читать ещё >

Аппараты воздушного охлаждения и их расчет ( реферат , курсовая , диплом , контрольная )

Аппараты воздушного охлаждения (воздухоохлаждаемые теплообменники) представляют собой охладители с механической прокачкой воздуха или естественной тягой (сухие градирни).

В охладителях с механической прокачкой воздух может нагнетаться или засасываться с помощью вентилятора. При нагнетании в вентилятор поступает холодный воздух, при всасывании — нагретый. Следовательно, при одинаковых объемных расходах воздуха массовая скорость и эффективность охлаждения в теплообменниках с нагнетательным вентилятором будут выше. Для достижения такой же эффективности охлаждения как и в охладителях с нагнетательным вентилятором, в охладителях с вытяжным вентилятором необходимо увеличить объемный расход воздуха, что потребует больших затрат мощности на прокачку. Несмотря на эти недостатки, охладители с вытяжным вентилятором часто выбираются в силу таких преимуществ, как более равномерное распределение воздуха в пучке и защита теплообменной поверхности от повреждений при ливневых дождях, снегопадах, выпадении града.

В воздушных охладителях с естественной тягой охлаждающий воздух всегда отсасывается из теплообменника. Прокачка воздуха в градирнях высотой 100… 150 м осуществляется за счет разности плотностей воздуха, нагретого в градирне, и окружающей среде.

При большой высоте градирни и высокой температуре воздуха на выходе из теплообменника скорость воздуха может достигать значительных величин, а удельный расход воздуха может быть такой же, как для охладителей с механической прокачкой (при использовании вентиляторов).

Относительно более низкие значения коэффициентов теплоотдачи со стороны воздуха по сравнению с коэффициентами теплоотдачи охлаждаемых или конденсируемых технологических жидкостей могут быть частично компенсированы за счет увеличения поверхностей со стороны воздуха, что возможно при применении пучков оребренных труб.

За счет оребрения теплообменная поверхность может быть увеличена в 10. .25 раз по сравнению с поверхностью гладких труб. Степень развития поверхности оптимизируется с учетом экономической целесообразности и технологии изготовления.

Оценка коэффициентов теплоотдачи в трубах. В соответствии с заданием на проектирование начальные значения коэффициентов теплоотдачи могут быть найдены с помощью табл. 18.2, 18.3. Приведенные значения относятся к типичным условиям, в которых работают воздушные охладители и конденсаторы.

Скорость охлаждающего воздуха задается в узких пределах, поскольку потери давления со стороны воздуха пропорциональны квадрату скорости, и, вследствие низкого статического давления (100…200 Па), обеспечиваемого вентилятором, скорость изменяется от 2 до 4 м/с. Скорость воздуха зависит от наружной поверхности, числа рядов труб п, допустимого и возможного подогрева воздуха.

После определения а, и скорости воздуха может быть найден коэффициент теплопередачи для выбранных пучков оребренных труб. Если необходимо учитывать термическое сопротивление отложений в трубах, то определяются действительные коэффициенты теплоотдачи.

Мощность /V, потребляемая вентилятором часто составляет 10… 13% тепловой мощности теплообменника. Для грубой оценки может служить выражение.

Таблица 18.2. Коэффициенты теплоотдачи, а для жидкостей в трубах (скорость жидкости около I м/с).

Аппараты воздушного охлаждения в основном используются там, где применение других систем охлаждения технически не возможно или не целесообразно с экономической точки зрения. Крупные производственные предприятия различных отраслей промышленности, расположенные вдали от природных источников воды, нуждаются в охлаждении технологических жидкостей, паров и газов. Для этих целей применяются специальные теплообменные установки – аппараты воздушного охлаждения (АВО). В зависимости от назначения АВО подразделяются на конденсаторы, охладители газа, охладители жидкости, маслоохладители.

Как правило, стоимость аппаратов воздушного охлаждения выше, чем у теплообменников, которые охлаждаются водой. Однако при охлаждении воздухом отсутствуют проблемы с коррозией и загрязнением, связанные с применением охлаждающей воды, а также отсутствует вероятность смешивания воды с охлаждаемой технологической жидкостью. Таким образом, затраты на техническое обслуживание аппаратов воздушного охлаждения ниже.

Очевидными преимуществами аппаратов воздушного охлаждения являются:
– Сохранение чистоты охлаждаемых сред благодаря замкнутым контурам;
– Возможность установки практически в любых климатических и природных зонах;
– Относительно невысокие эксплуатационные затраты;
– Экологичность (практически отсутствует воздействие на окружающую среду);

Устройство аппаратов воздушного охлаждения (АВО)

Аппарат воздушного охлаждения состоит из одной или нескольких теплообменных секций, установленных на общей раме, вентиляторов, которые прокачивают потоки воздуха через теплообменник и приводов вентиляторов (электромоторов). Вентиляторы устанавливаются в специальных диффузорах, которые предназначены для повышения эффективности и направления воздушного потока. Диффузор вентилятора представляет собой обечайку цилиндрической формы, внутри которой размещен сам вентилятор. Теплообменная секция состоит из трубок, через которые протекает охлаждаемая среда, и коллекторов, к которым подключаются подающий и отводящий трубопроводы и которые распределяют охлаждаемую среду равномерно по трубкам теплообменника. Для увеличения площади поверхностей, через которые происходит передача тепла, часто применяют трубки с внешним оребрением или на трубки насаживаются специальные пластины, которые называются ребрами или ламелями. Соединение трубок и ребер производится методом дорнования, что обеспечивает надежный контакт и эффективную теплопередачу. Технологическая среда, которую требуется охладить, поступает в трубки теплообменника. Тепло передается от жидкости к трубкам, а от трубок к ребрам и далее к воздуху, который отводит тепло от теплообменника в окружающую среду.

конструкция аппарата воздушного охлаждения

Типы аппаратов воздушного охлаждения (АВО)

Аппараты воздушного охлаждения в зависимости от расположения теплообменной секции подразделяются на следующие типы:
– горизонтальные
– вертикальные
– V-образные
– зигзагообразные

аппарат воздушного охлаждения горизонтального типа


Аппарат воздушного охлаждения горизонтального типа

Основные параметры аппаратов воздушного охлаждения

Основными параметрами при выборе и проектировании АВО являются:
– производительность
– расчетное давление
– расчетная температура
– материал труб теплообменника (зависит от теплоносителя)

Также при выборе АВО значение имеют такие параметры как:
– объем внутреннего контура (объем заправки)
– площадь поверхности теплопередачи
– диаметр и тип подключений теплоносителя
– массогабаритные характеристики

Все параметры указываются в конструкторской документации и паспорте на изделие.

Исполнение АВО по способу прокачивания воздуха через теплообменник

Существует два исполнения аппаратов воздушного охлаждения – аппараты с естественной конвекцией воздуха через теплообменник и аппараты с принудительной циркуляцией воздуха, которая осуществляется с помощью вентиляторов. Аппараты воздушного охлаждения с принудительной циркуляцией воздуха применяются значительно чаще, т.к. их эффективность намного выше. Теплообменники с естественной конвекцией применяются в специальных случаях, где технологические процессы требуют обеспечения небольших скоростей воздуха, например в некоторых типах холодильных камер.

Аппараты воздушного охлаждения с принудительной циркуляцией воздуха имеют два принципиальных конструктивных исполнения:

1. Вентиляторы нагнетают воздух на теплообменник

вентиляторы нагнетают воздух на теплообменник

Взаимное расположение теплообменника и вентиляторов обеспечивает нагнетание воздушных масс на теплообменную секцию. При этом достигается высокая турбулентность воздушного потока на входе в теплообменник и как следствие более эффективная теплопередача. При горизонтальном исполнении обеспечивается легкий доступ к электромотору и вентилятору для проведения технического обслуживания, а также исключается влияние нагретого воздуха на данные элементы.

Однако из-за относительно небольшой скорости воздушных масс на выходе повышается вероятность рециркуляции теплого воздуха, из-за которой производительность аппарата снижается. Таким образом для достижения необходимой производительности требуется применение более мощных вентиляторов или увеличение теплообменных поверхностей. Также важной проблемой горизонтального исполнения является незащищенность теплообменной секции от воздействия природных факторов (снег, град), что ограничивает его применение в некоторых климатических зонах.

2. Вентиляторы протягивают воздух через теплообменник

вентиляторы протягивают воздух через теплообменник

Расположение вентиляторов обеспечивает протягивание воздуха через теплообменную секцию, что обеспечивает высокие скорости воздуха на выходе и исключает вероятность рециркуляции нагретых воздушных масс. У аппаратов с горизонтальным исполнением достигается хорошая защищенность теплообменной секции от воздействия природных факторов, т.к. теплообменник расположен под кожухом и вентиляторами.

При протягивании вентилятором воздуха через теплообменник требуется больше энергии, чем при нагнетании на теплообменник, т.к. объемный расход нагретого воздуха выше. Однако данный недостаток компенсируется благодаря более равномерному распределению воздушного потока по площади теплообменника.

Материалы для производства аппаратов воздушного охлаждения (АВО)

Тип охлаждаемой среды и её давление являются ключевыми факторами для выбора материала труб аппарата воздушного охлаждения. Для изготовления труб применяются такие материалы как углеродистая сталь, нержавеющая сталь, медь, медно-никелевый сплав, титан. Ребра изготавливаются из алюминия, меди и углеродистой стали, покрытой методом горячего цинкования. Аппараты воздушного охлаждения, которые устанавливаются в зонах, где имеется воздействие агрессивных сред (морской и влажный климат, промышленные зоны), нуждаются в дополнительной защите поверхностей. Для этого применяются различные покрытия ребер (ламелей) или теплообменных секций в целом. Высокие давления охлаждаемых сред требуют повышенного внимания к качеству трубных соединений. Для соединения стальных труб применяется высокоточная сварка, медные трубы соединяются методом пайки.

трубка теплообменника с внешним оребрением


Труба теплообменника с внешним оребрением

Расчет аппаратов воздушного охлаждения (АВО)

В целом методика расчета аппарата воздушного охлаждения аналогична расчету кожухотрубных теплообменников. Предварительная конфигурация теплообменного блока выбирается на основе общего коэффициента теплопередачи с учетом значений основных параметров, которые приведены ниже. Далее выполняются корректирующие тепловые и гидравлические расчеты, в результате которых предварительная конфигурация блока обретает необходимый вид. Важным предварительным шагом в расчете аппарата воздушного охлаждения является выбор температуры воздуха на выходе. Этот параметр оказывает существенное влияние на стоимость АВО. Повышение температуры воздуха на выходе из аппарата с воздушным охлаждением уменьшает количество необходимого воздуха, что снижает мощность вентилятора и, следовательно, эксплуатационные расходы. Однако, это также уменьшает коэффициент теплопередачи со стороны воздуха, что приводит к увеличению теплообменника, а следовательно и капитальных вложений.

Выбор диаметра и материала труб теплообменника должен осуществляться на основе свойств и температуры охлаждаемой жидкости с учетом антикоррозионных свойств материалов.

Распределение воздушного потока

Чтобы получить равномерное распределение потока воздуха по всей площади теплообменника, площадь вентилятора должна составлять не менее 40% от площади теплообменной секции. Отношение длины секции к ширине должно быть в пределах 3-3,5. Кроме того желательно иметь не менее четырех трубок в глубину для эффективного использования площади теплообменника. Максимальное количество трубок зависит от статического сопротивления, при котором может работать вентилятор. Обычно эти данные указаны в паспорте вентилятора.

Температура окружающей среды

Расчет аппарата воздушного охлаждения должен быть произведен при температуре воздуха в условиях летнего периода. Однако, использование для расчетов самой высокой температуры воздуха приводит к увеличению размеров теплообменного блока, что сильно увеличивает стоимость аппарата. Обычно на практике принимают значения температуры, которые преобладают в данном регионе в течение 90-95% летнего времени.

Температура воздуха на выходе

При расчетах температура воздуха на выходе из аппарата должна ограничиваться примерно 100°С для того, чтобы предотвратить повреждение лопастей вентилятора и подшипников. Тем не менее, эти части могут быть подвержены воздействию высоких температур в случае неисправности вентилятора.

Скорость воздушного потока

Скорость воздушного потока обычно составляет 3-6 м/с. Значения в этом диапазоне, как правило, обеспечивают разумный баланс между теплопередачей с воздушной стороны и падением давления.

Стандарты проектирования

АВО (воздушные холодильники) применяют для осуществления необходимых тепловых процессов, таких как:

  • Охлаждение газов и жидкостей;
  • Конденсация газа;
  • Конденсация пара-жидкостных сред.

По принципу действия АВО относят к поверхностным аппаратам, а по способу передачи теплоты к рекуперативным.


Использование аппаратов воздушного охлаждения в технологических процессах нефтеперерабатывающих заводов широко распространено.

АВО можно отнести к аппаратам поверхностного типа, где в качестве хладагента используют атмосферный воздух. Данные аппараты рассчитаны на работу в широком диапазоне рабочих давлений. Давление аппарата определяет охлаждаемая среда и ее температура.

АВО

Типы аппаратов

По конструкции различают следующие типы аппаратов:

  • горизонтальные АВГ,
  • зигзагообразные АВЗ,
  • малопоточные АВМ,
  • для вязких продуктов АВГ-В,
  • для высоковязких продуктов АВГ-ВВ

Особенности конструкций АВО

АВО состоит из следующих основных частей:

  1. Секций теплообменных оребренных труб
  2. Системы подачи воздуха
  3. Опорных металлоконструкций

Секции АВО представляют собой пучок из оребренных труб, собранных в трубной решетке и закреплённые методом развальцовки с- или без- обварки. Трубная решетка соединяется с коллектором, к которому в свою очередь подводят трубопроводы, падающие или отводящие охлаждаемую среду.

Секции АВО состоят из труб с оребрением, которое выполняется методом накатки или навивки. На российских НПЗ чаще используют накатные ребра, получаемые выдавливанием ребер из алюминиевой трубы надетой на стальную. Такие трубы имеют увеличенный коэффициент теплопередачи по сравнению с гладкими, что позволяет компенсировать низкую теплоотдачу воздуха.

Секция АВО конструкция

Система подачи воздуха включает в себя:

  • рабочее колесо вентилятора
  • электродвигатель с фундамертом
  • диффузор электровентилятора
  • предохранительную сетку

Система подачи воздуха АВО

Секции аппарата устанавливают на опорные металлоконструкции, система подачи воздуха крепится снизу.

Секции АВО с коллектором

По требованию заказчика для ремонта аппарата могут быть допоставлены отдельные части:

  • теплообменная секция
  • трубный пучок (секции без крышек, прокладок)
  • крышка секции
  • колесо вентилятора
  • лопасть вентилятора
  • жалюзи
  • увлажнитель воздуха
  • комплект форсунок для увлажнения воздуха
  • подогреватель воздуха

Дополнительно аппарат может быть оснащен:

  • пневмоприводом жалюзи
  • позиционером к пневмоприводу жалюзи
  • увлажнителем
  • подогревателем воздуха

Конструкции аппаратов воздушного охлаждения

Принцип действия

Воздух нагнетается лопастями рабочего колеса вентилятора в межтрубное пространство. Лопасти рабочего колеса вентилятора находятся в цилиндрическом коллекторе, который предназначен для направления потока воздуха.
Коллектор соединяется с теплообменной секцией с помощью диффузора. Диффузор представляет собой перевернутую четырехугольную пирамиду и способствует выравниванию скоростей потока воздуха перед входом в секцию.
Диффузор коллектора вентилятора крепится к раме. К этой же раме крепятся теплообменные секции. Вентилятор с двигателем находится на специальной раме.

Воздух, проходя сквозь секцию, нагревается, а продукт в трубах охлаждается или конденсируется.
Для изменения расхода воздуха на секции АВО на вентиляторе устанавливается регулятор скорости вращения лопастей или частотный преобразователь.


Дополнительно регулировать объем подаваемого воздуха можно при помощи изменения угла поворота лопастей вентилятора или установкой специальных устройств – жалюзей. Расположены они сразу после теплообменных секций и регулируется либо вручную либо при помощи электромеханического привода.

Конструкции АВО и количество секций теплообмена могут быть различными но принцип действия всегда остается одним и тем же.

Видео работы аппарата воздушного охлаждения на НПЗ

Аппараты воздушного охлаждения (секции АВО) — это система теплообменного устройства, специализирующаяся на охлаждении жидкостей и газа.
Агрегаты нашли своё применение в нефтегазодобывающих и химических отраслях промышленности. Конструкция АВО предусматривает также конденсацию пара в технологических производственных процессах.
Актуальность темы реферата заключается в том, что на многих объектах нефтегазовой и химической промышленности возникает потребность в организации систем охлаждения. Регуляция температурного режима является технологической мерой, чаще всего применяемой для жидкостей и газовых смесей. Подходы к реализации этой процедуры могут быть разными, но оптимальным считается аппарат воздушного охлаждения (АВО).
Цель работы – более полное изучение аппаратов воздушного охлаждения в НФГ.
Для достижения поставленной цели необходимо решить несколько задач: рассмотреть назначение и классификацию АВО, их конструкционное исполнение и принцип работы, технические характеристики и правила эксплуатации, виды АВО, а также расчет теплообменника и другие моменты.
Структура реферата включает в себя несколько частей: введение, основную часть (три главы), заключение и библиографический список, состоящий из пяти источников литературы.


1. Аппараты воздушного охлаждения
1.1 Назначение и классификация
Аппараты воздушного охлаждения (АВО) в силу своей универсальности и экономичности имеют достаточно широкую область применения. Они работают в установках синтеза аммиака, крекинга и реформинга углеводородов, в производстве метанола, хлорорганических продуктов, в производстве метанола и многих других. В данном случае рассматривается аппарат, используемый для охлаждения газа после его компримирования.
Аппараты воздушного охлаждения широко используются в составе компрессорных станций магистральных газопроводов для охлаждения газа после компримирования, а также в нефте- и газоперерабатывающей промышленности. Опыт эксплуатации АВО подтверждает высокую эффективность и надежность работы таких аппаратов. Коэффициенты теплопередачи аппаратов составляют 235-582 Вт/(м2К)
Стандартные аппараты воздушного охлаждения в зависимости от конструкции и назначения принято обозначать следующим образом:
• АВГ - горизонтальные:
• АВЗ - с зигзагообразным расположением секций;
• АВГ-Т -трехконтурные;
• ABM - для малых потоков;
• АВШ — шатровые.1
1.2 Конструкционное исполнение
Основу аппарата формирует группа теплообменных блоков с вентиляторами. Данные секции располагаются относительно друг друга таким образом, чтобы потоки воздуха могли поступать непосредственно в теплообменник. В качестве несущей конструкции используется металлический каркас на рамной основе. Его характеристики определяются количеством теплообменных секций, которые обслуживает аппарат воздушного охлаждения, а также мощностью вентиляторов. Для приведения в действие последних применяется электродвигатель. Как правило, это компактная установка, силовой потенциал которой составляет 20-30 кВт. \Регуляцию направления воздушных потоков осуществляют диффузоры, представляющие собой цилиндрическую обечайку. Это простейшая базовая конструкция, но в зависимости от модификации аппарат воздушного охлаждения может иметь несколько иное устройство. Обычно отклонения имеют незначительный конструкционный характер, а принципиальные различия в типах будут рассмотрены ниже. Что касается объединяющих характеристик, то к ним можно отнести одинаковый набор применяемых материалов. Коммуникационные элементы, например, изготавливаются из нержавеющих стальных сплавов, меди, титана и никеля. Для выполнения соединений применяют высокоточную сварку, способную обеспечить долговечный герметичный шов.
1.3 Принцип работы аппарата
Ключевую функцию выполняет группа теплообменников, по которым и проходят обслуживаемые среды – газы, пары, жидкости и т. д. И здесь надо подробнее рассмотреть сам принцип взаимодействия охлаждающей инфраструктуры и ее функциональных элементов.
Теплообменник представляет несколько проточных каналов, которые разделяются металлическими ребрами

Зарегистрируйся, чтобы продолжить изучение работы

Аппараты воздушного охлаждения (секции АВО) — это система теплообменного устройства, специализирующаяся на охлаждении жидкостей и газа.
Агрегаты нашли своё применение в нефтегазодобывающих и химических отраслях промышленности. Конструкция АВО предусматривает также конденсацию пара в технологических производственных процессах.
Актуальность темы реферата заключается в том, что на многих объектах нефтегазовой и химической промышленности возникает потребность в организации систем охлаждения. Регуляция температурного режима является технологической мерой, чаще всего применяемой для жидкостей и газовых смесей. Подходы к реализации этой процедуры могут быть разными, но оптимальным считается аппарат воздушного охлаждения (АВО).
Цель работы – более полное изучение аппаратов воздушного охлаждения в НФГ.
Для достижения поставленной цели необходимо решить несколько задач: рассмотреть назначение и классификацию АВО, их конструкционное исполнение и принцип работы, технические характеристики и правила эксплуатации, виды АВО, а также расчет теплообменника и другие моменты.
Структура реферата включает в себя несколько частей: введение, основную часть (три главы), заключение и библиографический список, состоящий из пяти источников литературы.


1. Аппараты воздушного охлаждения
1.1 Назначение и классификация
Аппараты воздушного охлаждения (АВО) в силу своей универсальности и экономичности имеют достаточно широкую область применения. Они работают в установках синтеза аммиака, крекинга и реформинга углеводородов, в производстве метанола, хлорорганических продуктов, в производстве метанола и многих других. В данном случае рассматривается аппарат, используемый для охлаждения газа после его компримирования.
Аппараты воздушного охлаждения широко используются в составе компрессорных станций магистральных газопроводов для охлаждения газа после компримирования, а также в нефте- и газоперерабатывающей промышленности. Опыт эксплуатации АВО подтверждает высокую эффективность и надежность работы таких аппаратов. Коэффициенты теплопередачи аппаратов составляют 235-582 Вт/(м2К)
Стандартные аппараты воздушного охлаждения в зависимости от конструкции и назначения принято обозначать следующим образом:
• АВГ - горизонтальные:
• АВЗ - с зигзагообразным расположением секций;
• АВГ-Т -трехконтурные;
• ABM - для малых потоков;
• АВШ — шатровые.1
1.2 Конструкционное исполнение
Основу аппарата формирует группа теплообменных блоков с вентиляторами. Данные секции располагаются относительно друг друга таким образом, чтобы потоки воздуха могли поступать непосредственно в теплообменник. В качестве несущей конструкции используется металлический каркас на рамной основе. Его характеристики определяются количеством теплообменных секций, которые обслуживает аппарат воздушного охлаждения, а также мощностью вентиляторов. Для приведения в действие последних применяется электродвигатель. Как правило, это компактная установка, силовой потенциал которой составляет 20-30 кВт. \Регуляцию направления воздушных потоков осуществляют диффузоры, представляющие собой цилиндрическую обечайку. Это простейшая базовая конструкция, но в зависимости от модификации аппарат воздушного охлаждения может иметь несколько иное устройство. Обычно отклонения имеют незначительный конструкционный характер, а принципиальные различия в типах будут рассмотрены ниже. Что касается объединяющих характеристик, то к ним можно отнести одинаковый набор применяемых материалов. Коммуникационные элементы, например, изготавливаются из нержавеющих стальных сплавов, меди, титана и никеля. Для выполнения соединений применяют высокоточную сварку, способную обеспечить долговечный герметичный шов.
1.3 Принцип работы аппарата
Ключевую функцию выполняет группа теплообменников, по которым и проходят обслуживаемые среды – газы, пары, жидкости и т. д. И здесь надо подробнее рассмотреть сам принцип взаимодействия охлаждающей инфраструктуры и ее функциональных элементов.
Теплообменник представляет несколько проточных каналов, которые разделяются металлическими ребрами . К слову, в изготовлении ребер может применяться алюминий, медь или сталь, но во всех случаях важно наличие оцинкованного покрытия. Перед входом в теплообменные каналы также устанавливается коллектор – он отвечает за распределение между подающими и отводными трубопроводами. В этой же части происходит управление потоками охлаждаемых сред. Вентиляторы также являются важным функциональным звеном, без которого не обходятся аппараты воздушного охлаждения. Работа этого элемента заключается в поддержании циркуляции воздушных масс с целью вывода тепловой энергии, выделяемой в процессе прохождения обслуживаемой среды. Забор тепла как раз выполняется аккумулирующими ребрами, а в целях повышения охлаждающего фона иногда используют специальные технологические добавки для теплообменника.2
1.4 Технические характеристики
Оборудование характеризуется конструкционными параметрами и эксплуатационными показателями. В среднем аппарат воздушного охлаждения может располагать следующими характеристиками:
• Мощность электродвигателя – от 20 до 30 кВт.
• Число секционных блоков теплообменника – обычно 3 шт.
• Уровень давления – диапазон от 0,6 до 5 МПа.
• Число вентиляторных установок – 1 или 2 (зависит от длины трубных контуров).
• Диаметр вентилятора – 2,5-3 м.
• Скорость вращения вентилятора – порядка 400 об/мин.
• Коэффициент оребрения поверхностей труб – 10-20%.
• Длина труб в секциях – 5-8 м.
Таблица 1.1 - Предельные допускаемые температуры деталей, работающих под давлением среды, теплообменных секций аппаратов в зависимости от материальных и климатических исполнений секций аппаратов


1.5 Средства управления оборудованием
Основным параметром регуляции является объем воздуха, идущего на обеспечение циркуляции с тепловым забором. Для этого используются разные конструкционные средства. Например, жалюзи физически регулирует пропускную способность каналов, с которыми взаимодействуют вентиляторы. В данном случае настройка параметра объема возможна посредством ручного, электронного или пневматического контроля.
В современных конструкциях часто используют автоматизированное управление лопастями вентиляторов. Автоматика позволяет оператору точно подстраивать аппарат воздушного охлаждения с помощью частотного преобразователя. Комплексные системы регуляции предполагают и контроль потоков охлаждаемых сред. Конфигурация расположения клапанов и запорной арматуры зависит от условий применения аппарата, но сегодня такие средства используются даже на небольших предприятиях.
1.6 Правила эксплуатации
Агрегат применяется только в соответствии с ГОСТ 2.601, в рабочих диапазонах, не превышающих технических характеристик, указанных в паспорте изделия.
Перед началом эксплуатации и после проведения технического обслуживания и ремонтных работ, предусматривающих снижение давления аппарата воздушного охлаждения, необходимо проверить гаечное крепление крышек к решёткам оборудования. Перед запуском агрегата проверяют:
• Надёжное заземление всех узлов и электродвигателя.
• Качественное фиксирование закрепления лопастей вентилятора и сектора вентиляторного коллектора. При эксплуатации зимой нужно при необходимости удалить наледь с лопастей.
• В редукторе АВО проконтролировать масленый уровень.
• Правильную балансировку вентилятора совместно с двигателем.
В случае остановки оборудования в морозных условиях необходимо удалить жидкости из трубчатых секций, для избежания их замерзания.3
1.7 Расчет подходящей модели
Обычно базовый расчет осуществляется исходя из коэффициента теплоотдачи. Под него подбирается мощность электродвигателя, количество оборотов вентилятора, площадь охвата труб воздушными потоками и т. д. В расширенном виде расчет аппарата воздушного охлаждения предполагает использование таких показателей, как температура окружающей среды, температура обслуживаемой среды, длина секции теплообменника и т. д. В большинстве случаев для охлаждения сред в условиях атмосферного воздуха –8 °С до 35 °С подходят аппараты со следующими характеристиками: модель горизонтального типа с рабочим давлением 1,6 МПа, оребрением на 9%, силовым потенциалом 20 кВт и длиной труб 4 м

Читайте также: