Производство медного купороса реферат

Обновлено: 05.07.2024

Способы производства медного купороса различают главным образом по видам применяемого сырья:

из медного лома и отходов меди с окислением меди кислородом воздуха, электролизом или раствором хлорной меди;

из окиси меди, получаемой из белого матта;

из окиси меди и сернистого газа;

из окисленных медных руд, содержащих незначительное количество меди;

из колчеданных огарков и других отходов;

из отбросных электролитных растворов медеэлектролитных заводов.

Традиционным является способ производства медного купороса из меди и медного лома с окислением меди кислородом воздуха. Этот процесс имеет следующие стадии:

плавление медного лома;

получение гранулированной меди;

кристаллизация и сушка медного купороса.

Рассмотрим все стадии процесса детально.

Медный лом предварительно переплавляют для рафинирования (очистки от примесей Fe, Zn, Al, Pb и др.) и придания ему формы, удобной для растворения. Примеси летучих металлов и окислов – металлический цинк, трехокиси мышьяка и сурьмы – удаляются при нагревании меди до ее расплавления. Образующиеся в процессе окислы металлов, нерастворимые в меди, переходят в шлак, всплывающий на поверхность металла.

После окисления, ошлакования примесей металлов и удаления шлака производят процесс гранулирования с получением пузыристой и пористой меди, который основан на быстром выделении газов при внезапном охлаждении и затвердевании расплавленной меди.

Закись меди растворяется в серной кислоте:

Cu2O + H2SO4 = Cu2SO4 + H2O.

Образующийся сульфат закиси меди легко окисляется в сульфат окиси меди:

2Cu2SO4 + 2H2SO4 + O2 = 4CuSO4 + 2H2O.

Процесс значительно ускоряется, когда в растворе уже присутствует медный купорос. В результате деполяризации CuSO4 восстанавливается медью до Cu2SO4, а затем Cu2SO4 вновь окисляется растворенным кислородом до CuSO4. Таким образом, медный купорос играет роль переносчика кислорода. Растворение меди также ускоряется в присутствии в растворе ионов железа вследствие деполяризации:

4Fe2+ + O2 + 4H+ = 4Fe3+ + 2H2O,

2Cu + 4Fe3+ = 2Cu2+ + 4Fe2+.

Ионы Fe2+ вновь окисляются в Fe3+ и служат, таким образом, катализатором процесса. При этом происходит постепенное накопление сульфата железа в маточном растворе.

Дальнейшей стадией процесса является кристаллизация. Вытекающий из натравочной башни горячий щелок подается насосом во вращающийся кристаллизатор непрерывного действия с воздушным охлаждением раствора. Основное внимание на данной стадии следует уделить совместной растворимости в системе FeSO4 – CuSO4 – H2SO4, равновесные соотношения которой можно посмотреть по литературным данным. Как уже отмечалось, ионы железа попадают в циркулирующий раствор при растворении меди с серной кислотой, образуя FeSO4. Содержание сульфатов железа в растворе непрерывно возрастает и достигает иногда критических значений. Вследствие этого при кристаллизации медного купороса выделяется также и сульфат железа, загрязняющий продукт. Поэтому, когда концентрация железа в растворе становится столь большой, что создается опасность получения нестандартного по содержанию железа медного купороса, раствор полностью выводят из обращения. Если бы маточный раствор, циркулирующий в цикле производства, представлял собой слабый раствор медного купороса, была бы возможна его переработка, например, цементацией меди из раствора:

FeSO4 + CuSO4 + Fe = 2FeSO4 + Cu.

Однако в реальных условиях этот процесс проводить нецелесообразно, т.к. теряется часть готовой продукции. Это является еще одним недостатком данного метода.

Завершающими стадиями процесса являются центрифугирование и сушка медного купороса. Смесь кристаллов с маточным раствором поступает в центрифугу, где кристаллы, отжатые от маточного раствора, промываются водой. Отфугованный продукт высушивают в барабанной сушилке воздухом при 90 – 100 o.

Таким образом, на основе выше изложенного следует вывод о том, что необходимо искать другой более эффективный окислитель.

Производство медного купороса из медного лома делится на три стадии:

1) получение гранулированной меди; 2) получение раствора сульфата меди;

3) кристаллизация и сушка медного купороса.

Получение гранулированной меди

В бассейн помещают стальную корзину с дырчатыми стенками высотой 1 м и диаметром 1,6 м; в последней собираются гранулы. При подъеме корзины с гранулированной медью вода стекает через отверстия в стенках корзины. Образующиеся гранулы имеют диаметр 5 – 15 мм. Вес 1 л гранул не должен превышать

2 кг. 1 кг таких гранул имеет поверхность до 1500 см 2 .

Получение раствора сульфата меди

Гранулированную медь загружают в натравочную башню, высотой около 6 м, диаметром 2,5 м. Башня изготовлена из листовой стали, внутри футерована кислотоупорным кирпичом и диабазовыми плитками. На высоте 0,5 – 0,9 м от дна в башне имеется ложное днище, лежащее на колосниковой решетке из стальных балок, опаянных свинцом. На ложном днище находится слой меди, высоту которого поддерживают периодическими загрузками на уровне 0,25 м от крышки башни. Под крышкой помещена турбинка, с помощью которой медь непрерывно орошается смесью серной кислоты с маточным раствором. Количество находящейся в башне меди составляет 22 – 28 т.

В башне происходит одновременно окисление и растворение меди. Эти процессы идут с выделением тепла, достаточным для повышения температуры до необходимого уровня, то есть до 70 – 85 0 С. Для окисления меди в башню под колосниковую решетку вдувают воздух в смеси с паром. Пар подают для нагревания воздуха. Вдувание холодного воздуха вызвало бы охлаждение щелока и выделение из него кристаллов медного купороса, что привело бы к закристаллизовыванию нижнего слоя гранулированной меди. Подачей пара регулируют и температуру в башне. Уходящая из нее паро-воздушная смесь выбрасывается в атмосферу. С 1 м 3 натравочной башни можно получить в сутки более 1,3 т. медного купороса.

Вытекающий из натравочной башни горячий щелок (74 – 76 0 С) представляет собой почти насыщенный раствор медного купороса – он содержит 42-49 % CuSO4 ∙ 5 H2O и 4 – 6 % свободной H2SO4. Этот щелок подают центробежным насосом из хромоникелевой стали во вращающийся кристаллизатор непрерывного действия с воздушным охлаждением раствора. Смесь кристаллов медного купороса с маточным раствором через сборник с мешалкой поступает в центрифугу из нержавеющей стали, где кристаллы, отжатые от маточного раствора, промываются водой. На центрифугирование поступает пульпа с соотношением Т: Ж от 1: 2 до 1: 1,5. Отфугованный продукт, содержащий 4 – 6 % влаги и 0,15 – 0,2 % кислоты, высушивают в барабанной сушилке воздухом при 90–100 0 С. Маточный раствор и промывную воду после смешения с серной кислотой возвращают в производственный цикл.

В маточном растворе происходит постепенное накопление примесей, все больше загрязняющих продукт. Содержащийся в медном купоросе сульфат никеля можно удалить с достаточной полнотой при однократной перекристаллизации. Для удаления FeSO4 необходима многократная перекристаллизация. Получение медного купороса с содержанием 99,9 % CuSO4 ∙ 5 H2O однократной перекристаллизацией из раствора, насыщенного при 70 0 С, возможно при содержании в нем не более 0,3 % NiSO4 и не более 0,15 % FeSO4.

Если в растворе больше 40 г./л FeSO4, то количество железа в продукте больше 0,4 %, то есть выше нормы, допускаемой ГОСТом для продукта III сорта. Из растворов, содержащих больше 100 – 120 г./л FeSO4, выделяются смешанные кристаллы железного и медного купоросов с характерной сине-зеленой окраской.

Содержание железа в кристаллах медного купороса можно уменьшить предварительным окислением Fe 2+ в Fe 3+ . Окислителем может служить воздух (длительный барботаж), азотная кислота, перекись водорода и др. Степень очистки повышается в 2 – 4 раза при добавке к раствору незначительного количества HF (плавиковой кислоты), что приводит к образованию фторидных комплексов Fe 3+ . Установлено также, что при усилении перемешивания в процессе кристаллизации получаются кристаллы с меньшим содержанием железа, но и размеры их уменьшаются. Присутствие ионов никеля также уменьшает размеры кристаллов, а мышьяка – увеличивает.

На производство 1 т. кристаллического медного купороса расходуют: 0,27 – 0,29 т. металлической меди и 0,39 – 0,40 т. серной кислоты (100 %).

На заводе имени Войкова общие затраты тепла на производство медного купороса составляли 0,76 мгкал на 1 т. продукта. Расход тепла распределяется следующим образом. В натравочную башню через инжекторы вводится 47 % тепла, на подогрев воздуха в калориферах сушильного агрегата затрачивается 26 % тепла и 27 % тепла расходуется на подогрев раствора в сборниках, на разогрев мазута в цистернах и т. д. Количество тепла, выводимого с паро-воздушной смесью, больше тепла, вводимого с паром вследствие дополнительного парообразования, обусловленного выделением тепла реакцией. Поэтому вместо паро-воздушной смеси можно вдувать в башню теплый воздух из кристаллизатора с добавкой 20 – 25 % пара от обычного количества, при температуре смеси, исключающей закристаллизовывание нижнего слоя гранул в башне.

Ввод пара в натравочную башню может быть и вовсе исключен при осуществлении процесса с рециркуляцией паро-воздушной смеси. Отходящую из башни паро-воздушную смесь с температурой ~ 80 0 С направляют при помощи вентилятора из нержавеющей стали под ложное дно башни. При осуществлении процесса по такой схеме возможно введение в цикл газообразного кислорода, что значительно интенсифицирует растворение меди.

Отходом производства медного купороса являются илы, скапливающиеся в резервуарах с производственными растворами. Количество илов составляет 1 – 2 % от перерабатываемой меди. Состав их различен; они могут содержать до 8,5 % Ag2O, до 5 % Bi2O3, 0,05 – 0,1 % Au, Pt, Pd. Такие илы могут быть переработаны гидрометаллургическими методами для извлечения из них ценных металлов.

Предложено получать медный купорос из натравочного щелока добавкой к нему серной кислоты (башенной, купоросного масла, олеума или SO3) до содержания свободной H2SO4 60 % и более. При этом быстро осаждается мелкокристаллический белый безводный сульфат меди, примеси же остаются в растворе. CuSO4 отфуговывают и растворяют в чистом маточном растворе медного купороса, из которого кристаллизуется CuSO4 ∙ 5 H2O. Кислый щелок после осаждения безводного CuSO4 возвращается на растворение меди. После накопления в нем значительного количества ценных примесей (никель, цинк, серебро и др.) их можно извлечь. Преимущество этого способа – в простой и быстрой кристаллизации медного купороса без затраты тепла и холода и высокой чистоте продукта.

Можно вообще отказаться от выпуска пятиводного сульфата меди и выпускать безводный продукт, концентрация меди в котором больше (39,8 % вместо 25,5 % в CuSO4 ∙ 5 H2O). Производство и транспорт его будут дешевле, хотя он и потребует более тщательной упаковки из-за гигроскопичности. Впрочем, даже при небрежной упаковке на поверхности белого порошка появится лишь синеватая окраска вследствие гидратации влагой воздуха, но это не ухудшит качества продукта, который предназначен для растворения в воде. Однако, во избежание слеживания, упаковка должна быть герметичной.

Очистка сточных вод, сбрасываемых в водоемы из производств медного купороса и других медных солей, от ионов меди может быть осуществлена на 70 – 90 % с помощью сульфата алюминия. Выделяющаяся при гидролизе сульфата алюминия гидроокись алюминия адсорбирует ионы меди.

В промышленности получают растворением Cu и медных отходов в разбавленной H2SO4 при продувании воздуха; растворением СuO в H2SO4; сульфатизирующим обжигом сульфидов Cu; как побочный продукт электролитического рафинирования Cu.
В лаборатории можно получить действием концентрированной серной кислотой на медь при нагревании:
Температура не должна превышать 60 градусов Цельсия, так как образуется побочный продукт:
Также в лабораторных условиях сульфат меди (II) может быть получен реакцией нейтрализации гидроксида меди (II) серной кислотой:

Вложенные файлы: 1 файл

Федеральное агентство по образованию ГОУВПО - копия.docx

Сульфат меди (II) (CuSO4) — медная соль серной кислоты, белые кристаллы, хорошо растворимые в воде. Однако из водных растворов, а также на воздухе хотя бы с незначительным содержанием влаги кристаллизуется голубой пентагидрат CuSO4 · 5H2O — медный купорос.

Получение

В промышленности получают растворением Cu и медных отходов в разбавленной H2SO4 при продувании воздуха; растворением СuO в H2SO4; сульфатизирующим обжигом сульфидов Cu; как побочный продукт электролитического рафинирования Cu.

В лаборатории можно получить действием концентрированной серной кислотой на медь при нагревании:

Температура не должна превышать 60 градусов Цельсия, так как образуется побочный продукт:

Также в лабораторных условиях сульфат меди (II) может быть получен реакцией нейтрализации гидроксида меди (II) серной кислотой:

Очистка

Обычно технический сульфат меди загрязнен сульфатом железа (II). Реактив Ч. Д. А. не содержит ионов Fe 2+ . Реактив загрязнен изоморфически и его невозможно очистить простой перекристаллизацией. В нашем случае можно окислить Fe 2+ до Fe 3+ кипячением полученного раствора сульфата меди с PbO2. Fe2(SO4)3 не формирует изоморфическую смесь с сульфатом меди. После кипячения раствор фильтруют. А потом кристаллизацией получают чистый сульфат меди.

Физические свойства

Строение кристаллогидрата

Структура медного купороса приведена на рисунке. Как видно, вокруг иона меди координированы два аниона SO4 2− по осям и четыре молекулы воды (в плоскости), а пятая молекула воды играет роль мостиков, которые при помощи водородных связей объединяют молекулы воды из плоскости и сульфатную группу.

Термическое воздействие

При нагревании последовательно отщепляет две молекулы воды, переходя в тригидрат CuSO4 · 3H2O (этот процесс, то естьвыветривание, частично идёт и просто на воздухе), затем в моногидрат (110°) CuSO4 · H2O, и выше 258 °C образуется безводная соль. Термическое разложение становится заметным выше 650 °C:

Растворимость

Растворимость сульфата меди(II) по мере роста температуры проходит через плоский максимум, в течение которого растворимость соли почти не меняется (в интервале 80-200 °C). (см. рис.)

Как и все соли, образованные ионами слабого основания и сильной кислоты, сульфат меди(II) гидролизуется, (степень гидролиза в 0,01М растворе при 15 °C составляет 0,05 %) и даёт кислую среду (pH указанного раствора 4,2). Константа диссоциации составляет 5·10 −3 .

Растворимость CuSO4, г/100 г H2O

Химические свойства

Диссоциация

CuSO4 — хорошо растворимая в воде соль и сильный электролит, в растворах cульфат меди (II) так же, как и все растворимые соли, диссоциирует в одну стадию:

Реакция замещения

Реакция замещения возможна в водных растворах сульфата меди с использованием металлов активнее меди, стоящих левее меди в электрохимическом ряду напряжения металлов.

Реакция с растворимыми основаниями (щелочами)

Сульфат меди(II) реагирует с щелочами с образованием осадка гидроксида меди(II) голубого цвета:

Реакция обмена с другими солями

Сульфат меди вступает также в обменные реакции по ионам Cu 2+ и SO4 2-

Прочее

С сульфатами щелочных металлов и аммония образует комплексные соли, например, Na2[Cu(SO4)2]·6H2O.

Ион Cu 2+ окрашивает пламя в зеленый цвет.

Применение

Кристаллы сульфата меди (II), выращенные в домашних условиях

Монокристалл сульфата меди (II), выращенный в домашних условиях

Сульфат меди(II) — наиболее важная соль меди — часто служит исходным сырьём для получения других соединений. Например, гидроксида меди (II) — Cu(OH)2 — вещества, необходимого для качественных реакций на глюкозу, глицерин.

Безводный сульфат меди можно использовать как индикатор влажности, с его помощью в лаборатории проводят обезвоживание этанола и некоторых других веществ.

Наибольшее количество непосредственно применяемого CuSO4 расходуется на борьбу с вредителями в сельском хозяйстве, в составе бордоской смеси с известковым молоком— от грибковых заболеваний и виноградной тли. Для этих целей сульфат меди (II) имеется в розничной торговле.

Также он применяется для изготовления минеральных красок, в медицине, как один из компонентов электролитических ванн для омеднения и т. п. и как часть прядильных растворов в производстве ацетатного волокна.

В пунктах скупки лома цветных металлов раствор медного купороса применяется для выявления цинка, марганца и магния в алюминиевых сплавах и нержавейке. При выявлении этих металлов появляются красные пятна.

Токсикология

Токсикологические данные

Сульфат меди (II) по данным Википедии относят к классу опасности 1 (малоопасное вещество), как вещество , содержащее сульфат-ион. С другой же стороны, на стограммовой упаковке сульфата меди, поступающей в розничную продажу, указан класс опасности 2 (высокоопасное вещество). Смертельная доза медного купороса составляет от 8 до 30 граммов для взрослого человека перорально (через рот) . Летальная доза зависит от состояния здоровья человека, от его массы, от иммунитета именно к данному веществу и от других факторов.

Первая помощь при отравлении

При попадании вещества на кожу необходимо снять его ватой или куском ткани, затем обмыть прохладной водой с мылом. При попадании в глаза необходимо обильно промыть их проточной водой. При попадании через дыхательные пути нужно вывести пострадавшего на свежий воздух, прополоскать рот водой. При попадании в желудочно-кишечный тракт необходимо промыть желудок пострадавшего 0,1%-ым раствором марганцовки, дать выпить пострадавшему солевое слабительное —сульфат магния 1-2 ложки, вызвать рвоту, дать мочегонное.

Безопасность

При обращении с сульфатом меди (II) в бытовых условиях стоит быть очень осторожным, иначе можно нанести непоправимый вред здоровью . При приготовлении растворов желательно использовать резиновые или одноразовые полиэтиленовые пер чатки, очки, резиновые сапоги и также настоятельно рекомендуется использовать респиратор. Ни в коем случае не использовать пищевую посуду. Приготовление раствора и использование медного купороса стоит производить в отсутствие детей и животных. Во время использования нельзя пить, курить, принимать пищу. После работы лицо и руки вымыть с мылом, прополоскать рот.

Хранить в сухом прохладном месте при температуре от −30 до +30 °C, отдельно от лекарств, пищевых продуктов и кормов для животных, в недоступном для детей и животных месте. Запрещается хранение вещества в поврежденной упаковке.

Производители и поставщики

Нахождение в природе

В природе изредка встречается минерал халькантит, состав которого близок к CuSO4 ∙ 5H2O

В отсутствие окислителей, в частности кислорода воздуха, в. разбавленной серной кислоте медь практически не растворяется. Она с достаточной скоростью растворяется в горячей концентриро­ванной серной кислоте, но осуществлять этот процесс нерациональ­но, так как при этом половина затрачиваемой кислоты восстанав­ливается до SO2, окисляя медь в окись меди, которая и раство­ряется в серной кислоте, образуя медный купорос. Схема этого-- процесса может быть выражена следующими уравнениями реак­ций:

Си + H2S04 = СиО + Н20 + S02

Си + 2H2S04 = Си S04 + 2Н20 + S02

Очистка и грануляция медного лома

Чистая медь плавится при 1084°, а в присутствии примесей — при более низкой температуре. Примеси летучих металлов и окис­лов — металлический цинк, трехокиси мышьяка и сурьмы — уда­ляются при нагревании меди до ее расплавления. При расплавле­нии медь окисляется до закиси меди, устойчивой выше 1100°. За­кись меди накапливается на поверхности расплавленной мед№ В твердом (до 1200°) и в жидком (выше 1235°) виде и частично растворяется в меди, а затем вступает во взаимодействие с приме­сями, например:

Cu20 + Fe = FeO + 2Cu

По мере расходования растворенной закиси меди новые ее ко­личества переходят с поверхности в раствор, и медь подвергается дальнейшему окислению.

Образующиеся окислы железа, магния, кальция и других ме­таллов не растворимы в меди и переходят в шлак, всплывающий на поверхность металла. Вследствие взаимодействия закиси меди - в некоторыми окислами (например, с окисью железа с образова­нием феррита меди) часть ее также переходит в шлак и содержа­ние в нем СщО достигает 30—40%.

После окисления, ошлакования примесей металлов и удаления шлака температуру в печи немного снижают с целью окисления присутствующей в меди полусернистой меди: Cu2S + 2Cu20 6Cu + S02

В производстве медного купороса дальнейшая очистка меди не требуется, а присутствие в ней кислорода и двуокиси серы необхо­димо для получения пористых и пузыристых гранул. Растворимость газов в расплавленной меди возрастает с повышением темпера­туры. В твердой меди, нагретой даже до температуры плавления, растворимость газов незначительная. Процесс гранулирования с получением пузыристой и пористой меди основан на быстром вы­делении газов при внезапном охлаждении и затвердевании рас­плавленной меди. Это осуществляется выливанием ее тонкой стру­ей в холодную воду.

Растворение меди в серной кислоте (натравка)

При взаимодействии гранул меди с разбавленным раствором серной кислоты, содержащим также сульфат меди, в присутствии воздуха, кислород воздуха растворяется в кислоте, диффундирует К поверхности меди и окисляет ее до закиси меди:

4Cu + 02 = 2CusO

Закись меди растворяется в серной кислоте: Cu20 + H2S04 = Cu2S04 + Н20

Образующийся сульфат вакиси меди легко окисляется в суль­фат окиси меди:

2Cu2S04 + 2HaS04 + Os - 4CUS04 + 2H20

Общая скорость процесса лимитируется наиболее медленной его стадией — окислением меди до закиси меди. Это объясняется малой растворимостью кислорода и медленной его диффузией к поверхности гранул меди. Процесс значительно ускоряется, когда в растворе уже присутствует медный купорос. .В результате депо­ляризации

Cu + Cu2+ = 2Cu+

CuS04 восстанавливается медью до Cu2S04, а затем C112SO4 вновь окисляется растворенным кислородом до CuS04. Таким образом, медный купорос играет роль переносчика кислорода.

В присутствии металлической меди в растворе медного купороса одожет находиться лишь ничтожное количество одновалентной меди. Константа равновесия реакции Cu2++Cu 2Си+ при 25° /С=(Си+]2: [Cu2+]=0,62- Ю-6. В растворе, содержащем 50 е/л H2S04 и 32 е/л Си в виде CuS04, имеется только ~0,022 г одновалентной меди, т. е. меньше 0,1% от общего ее количества 30-32.

Повышение температуры, как и в других случаях, ускоряет химические реакции, но вызывает уменьшение растворимости кис­лорода, что замедляет окисление. Поэтому в натравочной башне поддерживают температуру не выше 80—85°. При этом на окисле­ние меди используется приблизительно 'Д кислорода, поступающего в башню с воздухом, расход которого составляет около 1000 нма На 1 т медного купороса.

Растворимость кислорода уменьшается с ростом концентрации CuS04 в растворе. Поэтому при повышении концентрации CUSO4 скорость растворения меди сначала увеличивается за счет катали­тического действия CuS04, а затем уменьшается вследствие недо­статка кислорода. Максимум скорости растворения наблюдается при концентраций 120 г CuS04 (для раствора, содержащего — 110 г H2S04) 33>84. Но даже при содержании в растворе 300 е/л CuS04 скорость растворения меди в 1,6 раза больше, чем в отсут­ствие медного купороса34. С увеличением концентрации серной кис­лоты растворимость кислорода в ней уменьшается, но усиливаются ее окислительные свойства. Поэтому повышение кислотности раствора вызывает не очень большое уменьшение скорости рас­творения меди — всего на 10% при повышении концентрации H2S04 е 2,5 до 20% 33. Растворение меди значительно ускоряется

В присутствии в растворе ионов железа вследствие деполяризации 4Fe2+ + 02 + 4Н+ = 4Fe3+ + 2Н20

TOC o "1-3" h z 2Cu + 4Fe3+ = 2Cu2+ + 4Fe2+

Ионы Fe2+ вновь окисляются в Fe3+ и служат, таким образом, 1

Катализатором процесса. Доля растворяющейся меди под дей - >

Ствием ионов Fe3+ в растворе, содержащем —110 г/л H2S04, 60 г/л?

CuS04 и 20—22 г/л FeS04, составляет около 60% от всего количе -

Ства меди, перешедшей в раствор34. j

Ионы железа попадают в циркулирующий при растворении меди j

Раствор с серной кислотой и вследствие растворения оставшихся 3

В меди примесей. Содержание сульфатов железа в растворе непре -

Технология минеральных солей (удо­Брений, пестицидов, промышленных со­лей, окислов и кислот)

Родентициды – средства защиты от грызунов

Родентициды это средства защиты от грызунов. Их применяют для уничтожения крыс, мышей и некоторых видов диких хомяков. Применять их в качестве уничтожителя начинают в том случае, если грызуны становятся стихийным …

Получение двуокиси хлора из хлорита натрия

При взаимодействии хлорита натрия с хлором происходит обра­зование хлористого натрия и выделяется двуокись хлора: 2NaC102 + С12 = 2NaCl + 2 СЮ2 Этот способ ранее был основным для получения двуокиси …

Схемы с двухступенчатой аммонизацией

На рис. 404 представлена схема производства диаммонитро - фоски (типа TVA). Фосфорная кислота концентрацией 40—42,5% Р2О5 из сборника 1 насосом 2 подается в напорный бак 3, из кото­рого она непрерывно …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788


Существует большое количество способов получения медного купороса и только некоторые из них смогли найти практическое применения в промышленности и в домашнем производстве. Я расскажу о них в общих чертах, дам необходимые советы, но любой образованный человек сможет понять принцип и суть выбранного им метода. Самое основное - для получения качественного продукта будут необходимы 2 компонента. Это металлическая медь или содержащие ее сплавы - латунь или цинк ( все это в дальнейшем буду называть медью) и серная кислота, которая применяется в виде электролита в аккумуляторах.


Все емкости для работы должны быть из кислотостойкого материала - нержавеющей стали, стекла, пластмассы или керамики по причине агрессивности H2SO4. Желательно иметь средства индивидуальной защиты - резиновые перчатки, фартук и предже всего понимания, что медный купорос это средне-ядовитое вещество. Есть его нельзя. Рекомендую начинать производство на открытом воздухе, так вы безопасно поймете тонкости варки этого полезного химического соединения и сможете его делать в любом удобном для вас месте и наиболее подходящей технологией.


1-й способ.
Он основан на прямом растворении металлической меди в концентрированной серной кислоте. Очень простой, но малопригодный способ. Берется медь, бросается в концентрированную H2SO4 и нагревается. Признак реакции - удушливый, едкий запах горелой серы. Все происходит по формуле Cu+2H2SO4=CuSO4+2H2O+SO2. Вонь стоит ужасная, а выход купороса низкий. Можно применять при наличии бесплатной кислоты и отсутствии людей.


2-я технология.
Применяется сернокислотный электролит мелкая медь (проволока, стружка, мелкие детали, дробь) и нагрев до 80 градусов. Тут через слой металла в электролите продувается горячий воздух и в общем идет растворение меди в кислоте и получение медного купороса, который выделяют кристаллизацией. Допустим, весь день вы продували воздух, а на ночь электролит слили в отдельную емкость и у вас там сульфат меди выделится в виде кристаллов. Хороший способ, но долгий и дает купорос с примесью серной кислоты. Реакция идет по формуле H2SO4+Cu+O=CuSO4+H2O

3-й способ
Нужна окись меди или медная окалина и сернокислотный электролит. В электролит добавляем окись меди с небольшим избытком и нагреваем осторожно. При 60-80 градусов начнется реакция (бурное кипение, которое можно сбить холодной водой). При этом получается хороший медный купорос, но теряется часть меди. Оставшуюся медь можно снова обжечь и пустить на переработку. Требует больших затрат на получение окалины или осксида меди. Все это выражается формулой Cu+H2SO4=CuSO4+H2O

4-й способ
Получение купороса прямым растворением в азотной кислоте с последующим добавлением в раствор серной. Принцип получения такой. В разбавленной горячей азотной кислоте растворяется медь. Осторожно, при этом выделяется окись азота, которая опасна для здоровья. Желательно, чтобы в результате реакции прореагировала вся HNO3. Потом туда добавляется серная кислота из расчета, что от азотки отойдет и к ней присоединится вся растворенная медь. В результате в растворе получиться снова азотная кислота, только ее будет в 2 раза меньше и раствор медного купороса. Кто меня понимает - тот сам может пересчитать и понять все цифры. Способ очень простой, купорос получается отличного качества, но достаточно сложный и требует дополнительно расхода азотной кислоты, хотя улетающую окись азота можно улавливать и получать снова азотную кислоту. Но это на любителя.
Все описанное делал своими руками. Интересно почитать ваши комментарии. Готов на них ответить .

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Читайте также: