Алгебраические критерии устойчивости реферат

Обновлено: 02.07.2024

В реальной цепи, охваченной обратной связью, всегда имеются реактивные элементы, накапливающие энергию. Даже в усилителе на резисторах имеются такие элементы в виде паразитных емкостей схемы и электронных приборов, переходные конденсаторы, индуктивности проводов и так далее. Эти реактивные элементы создают дополнительные фазовые сдвиги и если на какой-либо частоте они в сумме дают дополнительный угол в 180, то обратная связь превращается из отрицательной в положительную и создаются условия для паразитной генерации.

Это обстоятельство во многих случаях существенно ограничивает эффективность применения обратной связи, так как при больших значениях ½ K y K o c ½ для устранения паразитной генерации требуются специальные устройства (фазокомпенсаторы и др.), уменьшающие крутизну ФЧХ в кольце обратной связи. Однако оказывается, что введение в схему новых элементов приводит лишь к сдвигу частоты паразитной генерации в область очень низких или очень высоких частот.

Итак, из выше сказанного следует, что применение обратной связи тесно связано с проблемой обеспечения устойчивости цепи.

Для правильного построения цепи и выбора ее параметров большое значение приобретают методы определения устойчивости цепи. Рассмотрим некоторые из них.

Алгебраические критерии устойчивости.

В настоящее время известно несколько критериев, различающихся больше по форме, чем по содержанию. В основе большинства из этих критериев лежит критерий устойчивости решений дифференциального уравнения, описывающего исследуемую цепь.

Пусть линейное однородное уравнение для цепи с постоянными параметрами задано в форме :

где x - ток, напряжение и так далее., а постоянные коэффициенты - действительные числа, зависящие от параметров цепи.

Решение этого уравнения имеет вид :

где Ai - постоянные, а pi - корни характеристического уравнения

Условие устойчивости состояния покоя цепи заключается в том, что после прекращения действия внешних возмущений цепь возвращается в исходное состояние. Для этого необходимо, чтобы возникающие в цепи при нарушении состояния покоя свободные токи и напряжения были затухающими. А это означает, что корни уравнения (1) должны быть либо отрицательными действительными величинами, либо комплексными величинами с отрицательными действительными частями. Из этих представлений вытекает следующий фундаментальный критерий устойчивости любых линейных систем :

“Cистема устойчива, если действительные части всех корней характеристического уравнения отрицательны.”

Это фундаментальное положение было основано А.М.Ляпуновым, который в 90-х годах прошлого века заложил основы теории устойчивости. В связи с этим приведенный выше критерий называют критерием Ляпунова .

Заметим, что левая часть характеристического уравнения (1) представляет собой не что иное, как знаменатель передаточной функции цепи записанной в форме

Таким образом, корни характеристического уравнения цепи являются полюсами передаточной функции К( р ) этой цепи.

Отсюда следует, что сформулированные выше условия отрицательности действительных корней равносильны следующему утверждению : для устойчивости цепи необ-ходимо, чтобы передаточная функция К( р ) не имела полю-сов в правой полуплоскости комплексной переменной р.

В тех случаях, когда цепь описывается дифференциальным уравнением высокого порядка, исследование корней характеристического уравнения, необходимое для решения вопроса об устойчивости системы, является сложной задачей.

Однако ее можно решить, анализируя соотношения между коэффициентами уравнения без определения самих коэффициентов. Это можно сделать с помощью теоремы Гурвица, которая утверждает, что для того, чтобы действительные части всех корней уравнения

c действительными коэффициентами и b0>0 были отрицательными, необходимо и достаточно, чтобы были положительными все определители D 1, D 2, . D m, составленные из коэффициентов уравнения по следующей схеме :

Сформулированный алгебраический критерий устойчивости называют критерием Рауса - Гурвица .

При составлении определителей по указанной схеме коэффициенты с индексом, превышающим степень характеристического уравнения заменяют нулями.

Для уравнения четвертой степени получаются следующие определители :

В результате несложно видеть, что выполняется равенство

Отсюда по теореме Гурвица следуют условия устойчивости (в виде следующих неравенств):

Так, для характеристического уравнения второй степени

Критерий Рауса - Гурвица особенно удобен для проверки устойчивости цепи с заданными параметрами: вычисления относительно просты. Недостатком этого критерия является ограниченность применения: область применения критерия ограничена цепями с сосредоточенными параметрами, поскольку только для них передаточная функция выражается через многочлены. Кроме того этот критерий не дает ясных указаний на то как из неустойчивой цепи сделать устойчивую.

Геометрические критерии устойчивости.

Требование, чтобы передаточная функция

не имела полюсов в правой полуплоскости р = s + i w , т.е. в области, ограниченной полуплоскостью бесконечно большого радиуса R и осью i w (см. рисунок), равносильно условию, что знаменатель выражения (2) не должен иметь нулей в указанной области или, что то же, функция

не должна обращаться в единицу ни в одной из точек правой полуплоскости р.

Но Н(р) представляет собой передаточную функцию разомкнутого кольца обратной связи, то есть отношение напряжения на зажимах 2-2 к напряжению на зажимах 1-1 при разомкнутой системе, как это показано на рисунке 2.

Для дальнейшего анализа перейдем от комплексной плоскости р на другую комплексную плоскость Н(р)=u+i (см. рисунок 3).

При этом каждой точке р плоскости s , i w соответствует определенное значение Н на плоскости u,iv . И любой замкнутый контур на плоскости перейдет в некий, также замкнутый контур на плоскости Н .

Если исходный контур на плоскости р задан в виде контура как на рисунке 1, то соответствующий ему контур на плоскости Н называется годографом функции Н(p) .

Показанный на рисунке 1 контур можно разбить на два участка : прямую iw от ¥ до - ¥ и полуокружность бесконечно большого радиуса R. На первом участке, где s = 0 , р= i w , функция H(p) обращается в функцию H( i w ). В соответствии с выражением (*) этот участок преобра-зуется на плоскости H в линию, определяемую следующим cоотношением

В этих выражениях аргументы передаточных функций соответственно четырехполюсников

На втором рисунке контура (см. рисунок 1) при R ® ¥ функция H(p) ® 0. Это вытекает из общего выражения

которое при ½ p ½ ® ¥ можно представить в виде (под В подразумевается постоянный коэффициент, а p 0i и p пi - соответственно нули и полюсы функции К(р) ).

Совершенно аналогично и функцию Н(р) при ½ p ½ ® ¥ можно представить в форме H(p) = Ap n-m где n и m - числа соответственно нулей и полюсов функции Н(р).

При n и ½ p ½ ® ¥ модуль функции H(p) на полуокружности R ® ¥ равен нулю. Таким образом, полуокружность бесконечно большого радиуса R на плоскости р преобразуется в точку, лежащую в начале координат на плоскости Н , и для построения годографа Н в виде замкнутого контура достаточно знать поведение Н(р) на оси iw , то есть знать АЧХ и ФЧХ цепи K y (iw),K oc (iw).

Обходу контура на рисунке 1 в положительном направлении (против часовой стрелки) соответствует обход годографа Н при изменении частоты от ¥ до - ¥ , т.е. также против часовой стрелки (см. рисунок 3).

Следовательно, если годограф передаточной функции разорванного кольца не охватывает точку 1,i0 , то при замкнутой цепи обратной связи система устойчива, в противном случае система неустойчива.

Это условие называют критерием устойчивости Найквиста , а годограф H(iw) - диаграммой Найквиста.

Показанная на рисунке 3 диаграмма соответствует устойчивой системе. Это видно из того, что годограф Н не охватывает точку 1,i0 . Сплошной линией показана часть контура, соответствующая положительным частотам 0 ¥ , а штриховой - часть контура, соответствующая отрицательным частотам. Так как функция u(w) четная, а v(w) нечетная относительно w, то оба годографа симметричны относительно действительной оси.

Рисунок 3 был построен для случая, когда при w = 0 передаточная функция Н(iw) отлична от нуля ( эта возможно, например, для усилителей постоянного тока, в которых отсутствуют разделительные конденсаторы).

Пример диаграммы Найквиста для неустойчивой системы приведена на рисунке 4.

Основное преимущество данного метода : удобство оперирования с АЧХ и ФЧХ разомкнутой цепи.

Следует отметить, что при сложной схеме устройства форма диаграммы бывает настолько усложнена, что по ней сложно судить о попадании точки 1,i0 в замкнутый контур годографа. В подобных случаях оказывается полезным критерий, вытекающий из критерия Найквиста , основанный на подсчете числа пересечений годографом оси U н (w) на участке 1, ¥ .

Для устойчивости системы тогда необходимо, чтобы годограф либо вообще не пересекал этот отрезок (так, как показано на рисунке 4), либо пересекал его в положительном и отрицательном направлениях одинаковое число раз

Справедливости ради необходимо заметить, что известны и другие геометрические методы исследования устойчивости линейных систем с обратной связью, например критерий Михайлова и критерий пересечений. Они широко применяются при анализе систем автоматического регулирования. Но мы не будем рассматривать их в данной работе , а при необходимости , с ними можно познакомиться в книге : Котельников В.А., Николаев А.М. “Основы радиоэлектроники”

Литература

1. С.И. Баскаков “Радиотехнические цепи и cигналы” , 1983. М.: Высшая школа.

2. И.С. Гоноровский “Радиотехнические цепи и сигналы”, 1986 М.: Радио и связь.

Ознакомление с выражением характеристического уравнения, главного диагонального минора матрицы Гурвица. Рассмотрение свойства годографа. Определение диапазона изменения (приращения) аргумента. Анализ отредактированных графиков годографов Михайлова.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 22.09.2017
Размер файла 305,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.

курсовая работа [398,2 K], добавлен 13.07.2010

Нахождение АЧХ, ФЧХ, ЛАЧХ для заданных параметров. Построение ЛФЧХ. Определение параметров передаточной функции разомкнутой системы. Исследование на устойчивость по критериям: Гурвица, Михайлова и Найквиста. Определение точности структурной схемы.

курсовая работа [957,8 K], добавлен 11.12.2012

Исследования устойчивости разомкнутой и замкнутой систем. Понятие разомкнутой системы – системы, в которой отсутствует обратная связь между входом и выходом, то есть управляемая величина (выходная) не контролируется. Логарифмический частотный критерий.

реферат [189,7 K], добавлен 30.01.2011

Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.

реферат [403,7 K], добавлен 23.10.2014

Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

курсовая работа [220,0 K], добавлен 21.10.2011

Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.

курсовая работа [220,5 K], добавлен 25.05.2010

Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

8.1. Понятие устойчивости системы

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом" , если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом" , когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

y(t) = y вын (t) + y св (t).

Здесь yсв(t) - общее решение однородного дифференциального уравнения , то есть уравнения с нулевой правой частью:

a o y (n) + a 1 y (n-1) + . + a (n-1) y’ + a (n) y = 0.

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. y вын (t) - частное решение неоднородного дифференциального уравнения , под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t) . Поэтому вторая составляющая общего решения называется вынужденный . Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р . После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей y вын = y(t ) . Если внешнее воздействие само будет изменяться по синусоидальному закону P = P o sin(t + ) , то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть y вын = y max sin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где p i корни характеристического уравнения D(p) = a 0 p n + a 1 p n -1 + a 2 p n -2 + . + a n = 0 . Корни могут быть либо вещественными p i = a i , либо попарно комплексно сопряженными p i = a i ± ji . Постоянные интегрирования А i определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая y св (t) i , каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует y св (t) i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i , при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

Так как после снятия возмущения y вын (t) = 0 , то устойчивость системы определяется только характером свободной составляющей y св (t) . zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми , с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где a n = 0 ), а остальные левые, то система находится на границе апериодической устойчивости . Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости .

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости . Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).

8.2. Алгебраические критерии устойчивости

8.2.1. Необходимое условие устойчивости

Характеристическое уравнение системы с помощью теоремы Виета может быть записано в виде

D(p) = a o p n + a 1 p n-1 + a 2 p n-2 + . + a n = a o (p-p 1 )(p-p 2 ). (p-p n ) = 0,

где p 1 , p 2 , . p n - корни этого уравнения. Если система устойчива, значит все корни левые, то есть вещественные части всех корней

отрицательны, что можно записать как a i = -|a i | . Подставим их в уравнение:

a 0 (p + |a 1 |)(p + |a 2 | - j2)(p + |a 2 | + j2). = 0.

Перемножая комплексно сопряженные выражения, получим:

a 0 (p + |a 1 |)((p + |a 2 |)2 + (2)2). = 0.

После раскрытия скобок должно получиться выражение

a 0 p n + a 1 p n-1 + a 2 p n-2 + . + a n = 0.

Так как в скобках нет ни одного отрицательного числа, то ни один из коэффициентов a 0 ,a 1 . a n не будет отрицательным. Поэтому необходимым условием устойчивости САУ является положительность всех коэффициентов характеристического уравнения: a 0 > 0, a 1 > 0, . , a n > 0 . В дальнейшем будем рассматривать только уравнения, где a 0 > 0 . В противном случае уравнение домножается на -1.

Рассмотренное условие является необходиным, но не достаточным условием. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.

8.2.1. Критерий Рауса

Раус предложил критерий устойчивости САУ в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:

1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;

2) во второй строке - с нечетными;

3) остальные элементы таблицы определяется по формуле: c k,i = c k+ 1,i - 2 - ric k + 1,i - 1 , где ri = c 1,i - 2 /c 1,i - 1 , i 3 - номер строки, k - номер столбца.

4) Число строк таблицы Рауса на единицу больше порядка характеристического уравнения.

В реальной цепи, охваченной обратной связью, всегда имеются реактивные элементы, накапливающие энергию. Даже в усилителе на резисторах имеются такие элементы в виде паразитных емкостей схемы или усилительных приборов, индуктивности проводов и так далее. Эти реактивные элементы создают дополнительные фазовые сдвиги и если на какой-либо частоте они в сумме дают дополнительный угол в 180, то обратная связь превращается из отрицательной в положительную и создаются условия для паразитной генерации.

Это обстоятельство во многих случаях существенно ограничивает эффективность применения обратной связи, так как при больших значениях ½Ky Koc½ для устранения паразитной генерации требуются специальные устройства (фазокомпенсаторы и др.), уменьшающие крутизну ФЧХ в кольце обратной связи. Однако оказывается, что введение в схему новых элементов приводит лишь к сдвигу частоты паразитной генерации в область очень низких или очень высоких частот.

Итак, из выше сказанного следует, что применение обратной связи тесно связано с проблемой обеспечения устойчивости цепи.

Для правильного построения цепи и выбора ее параметров большое значение приобретают методы определения устойчивости цепи. Рассмотрим некоторые из них.

Алгебраические критерии устойчивости.

В настоящее время известно несколько критериев, различающихся больше по форме, чем по содержанию. В основе большинства из этих критериев лежит критерий устойчивости решений дифференциального уравнения, описывающего исследуемую цепь.

Пусть линейное однородное уравнение для цепи с постоянными параметрами задано в форме :

где х - ток, напряжение и так далее., а постоянные коэффициенты - действительные числа, зависящие от параметров цепи.

Решение этого уравнения имеет вид :

где Ai - постоянные, а pi - корни характеристического

Условие устойчивости состояния покоя цепи заключается в том, что после прекращения действия внешних возмущений цепь возвращается в исходное состояние. Для этого необходимо, чтобы возникающие в цепи при нарушении состояния покоя свободные токи и напряжения были затухающими. А это означает, что корни уравнения (1) должны быть либо отрицательными действительными величинами, либо комплексными величинами с отрицательными действительными частями. Из этих представлений вытекает следующий фундаментальный критерий устойчивости любых линейных систем :

“Cистема устойчива, если действительные части всех корней характеристического уравнения отрицательны.”

Это фундаментальное положение было основано А.М.Ляпуновым, который в 90-х годах прошлого века заложил основы теории устойчивости. В связи с этим приведенный выше критерий называют критерием Ляпунова.

Заметим, что левая часть характеристического уравнения (1) представляет собой не что иное, как знаменатель передаточной функции цепи записанной в форме

Таким образом, корни характеристического уравнения цепи являются полюсами передаточной функции К(р) этой цепи.

Отсюда следует, что сформулированные выше условия отрицательности действительных корней равносильны следующему утверждению : для устойчивости цепи необ-ходимо, чтобы передаточная функция К(р) не имела полю-сов в правой полуплоскости комплексной переменной р.

В тех случаях, когда цепь описывается дифференциальным уравнением высокого порядка, исследование корней характеристического уравнения, необходимое для решения вопроса об устойчивости системы, является сложной задачей.

Однако ее можно решить, анализируя соотношения между коэффициентами уравнения без определения самих коэффициентов. Это можно сделать с помощью теоремы

Гурвица, которая утверждает, что для того, чтобы действительные части всех корней уравнения

c действительными коэффициентами и b0>0 были отрицательными, необходимо и достаточно, чтобы были положительными все определители D1, D2, . Dm, составленные из коэффициентов уравнения по следующей схеме :

Сформулированный алгебраический критерий устойчи­вости называют критерием Рауса - Гурвица.

При составлении определителей по указанной схеме коэффициенты с индексом, превышающим степень характеристического уравнения заменяют нулями. Поэтому для уравнения четвертой степени получаются следующие определители :

В результате несложно видеть, что выполняется равенство

Отсюда по теореме Гурвица следуют условия устойчивости (в виде следующих неравенств):

Так, для характеристического уравнения второй степени

Критерий Рауса - Гурвица особенно удобен для проверки устойчивости цепи с заданными параметрами: вычисления относительно просты. Недостатком этого критерия является ограниченность применения: область применения критерия ограничена цепями с сосредоточенными параметрами, поскольку только для них передаточная функция выражается через многочлены. Кроме того этот критерий не дает ясных указаний на то как из неустойчивой цепи сделать устойчивую.

Геометрические критерии устойчивости.

Требование, чтобы передаточная функция

не имела полюсов в правой полуплоскости р = s + iw, т.е. в области, ограниченной полуплоскостью бесконечно большого радиуса R и осью iw (см. рисунок), равносильно условию, что знаменатель выражения (2) не должен иметь нулей в указанной области или, что то же, функция

не должна обращаться в единицу ни в одной из точек правой полуплоскости р.[1]

Но Н(р) представляет собой передаточную функцию разомкнутого кольца обратной связи, то есть отношение напряжения на зажимах 2-2 к напряжению на зажимах 1-1 при разомкнутой системе, как это показано на рисунке 2.

Для дальнейшего анализа перейдем от комплексной плоскости р на другую комплексную плоскость Н(р)=u+i (см. рисунок 3).

При этом каждой точке р плоскости s,iw соответствует определенное значение Н на плоскости u,iv. И любой замкнутый контур на плоскости перейдет в некий, также замкнутый контур на плоскости Н.

Если исходный контур на плоскости р задан в виде контура как на рисунке 1, то соответствующий ему контур на плоскости Н называется годографом функции Н.

Показанный на рисунке 1 контур можно разбить на два участка : прямую iw от ¥ до -¥ и полуокружность бесконечно большого радиуса R. На первом участке, где s=0, р=iw, функция H(p) обращается в функцию H(iw).В соответствии с выражением (*) этот участок преобразуется на плоскости H в линию, определяемую следующим соотношением:

В этих выражениях аргументы переда-

точных функций соответственно четырехполюсников

На втором рисунке контура (см. рисунок 1) при R®¥ функция H(p)®0. Это вытекает из общего выражения

которое при ½p½ ® ¥ можно представить в виде (под В подразумевается постоянный коэффициент, а p0i и pпi - соответственно нули и полюсы функции К(р)).

Совершенно аналогично и функцию Н(р) при ½p½ ® ¥ можно представить в форме H(p) = Ap n-m где n и m - числа соответственно нулей и полюсов функции Н(р).

[1] Здесь и далее подразумевается, что Кос(р) и b обозначают одно и тоже - коэффициент усиления обратной связи.

Теги: Критерии устойчивости линейных систем Реферат Антикризисный менеджмент

В реальной цепи, охваченной обратной связью, всегда имеются реактивные элементы, накапливающие энергию. Даже в усилителе на резисторах имеются такие элементы в виде паразитных емкостей схемы и электронных приборов, переходные конденсаторы, индуктивности проводов и так далее. Эти реактивные элементы создают дополнительные фазовые сдвиги и если на какой-либо частоте они в сумме дают дополнительный угол в 180, то обратная связь превращается из отрицательной в положительную и создаются условия для паразитной генерации.

Это обстоятельство во многих случаях существенно ограничивает эффективность применения обратной связи, так как при больших значениях ½ K y K o c ½ для устранения паразитной генерации требуются специальные устройства (фазокомпенсаторы и др.), уменьшающие крутизну ФЧХ в кольце обратной связи. Однако оказывается, что введение в схему новых элементов приводит лишь к сдвигу частоты паразитной генерации в область очень низких или очень высоких частот.

Итак, из выше сказанного следует, что применение обратной связи тесно связано с проблемой обеспечения устойчивости цепи.

Для правильного построения цепи и выбора ее параметров большое значение приобретают методы определения устойчивости цепи. Рассмотрим некоторые из них.

Алгебраические критерии устойчивости.

В настоящее время известно несколько критериев, различающихся больше по форме, чем по содержанию. В основе большинства из этих критериев лежит критерий устойчивости решений дифференциального уравнения, описывающего исследуемую цепь.

Пусть линейное однородное уравнение для цепи с постоянными параметрами задано в форме :

где x - ток, напряжение и так далее., а постоянные коэффициенты - действительные числа, зависящие от параметров цепи.

Решение этого уравнения имеет вид :

где Ai - постоянные, а pi - корни характеристического уравнения

Условие устойчивости состояния покоя цепи заключается в том, что после прекращения действия внешних возмущений цепь возвращается в исходное состояние. Для этого необходимо, чтобы возникающие в цепи при нарушении состояния покоя свободные токи и напряжения были затухающими. А это означает, что корни уравнения (1) должны быть либо отрицательными действительными величинами, либо комплексными величинами с отрицательными действительными частями. Из этих представлений вытекает следующий фундаментальный критерий устойчивости любых линейных систем :

“Cистема устойчива, если действительные части всех корней характеристического уравнения отрицательны.”

Это фундаментальное положение было основано А.М.Ляпуновым, который в 90-х годах прошлого века заложил основы теории устойчивости. В связи с этим приведенный выше критерий называют критерием Ляпунова .

Заметим, что левая часть характеристического уравнения (1) представляет собой не что иное, как знаменатель передаточной функции цепи записанной в форме

Таким образом, корни характеристического уравнения цепи являются полюсами передаточной функции К( р ) этой цепи.

Отсюда следует, что сформулированные выше условия отрицательности действительных корней равносильны следующему утверждению : для устойчивости цепи необ-ходимо, чтобы передаточная функция К( р ) не имела полю-сов в правой полуплоскости комплексной переменной р.

В тех случаях, когда цепь описывается дифференциальным уравнением высокого порядка, исследование корней характеристического уравнения, необходимое для решения вопроса об устойчивости системы, является сложной задачей.

Однако ее можно решить, анализируя соотношения между коэффициентами уравнения без определения самих коэффициентов. Это можно сделать с помощью теоремы Гурвица, которая утверждает, что для того, чтобы действительные части всех корней уравнения

c действительными коэффициентами и b0>0 были отрицательными, необходимо и достаточно, чтобы были положительными все определители D 1, D 2, . D m, составленные из коэффициентов уравнения по следующей схеме :

Сформулированный алгебраический критерий устойчивости называют критерием Рауса - Гурвица .

При составлении определителей по указанной схеме коэффициенты с индексом, превышающим степень характеристического уравнения заменяют нулями.

Для уравнения четвертой степени получаются следующие определители :

В результате несложно видеть, что выполняется равенство

Отсюда по теореме Гурвица следуют условия устойчивости (в виде следующих неравенств):

Так, для характеристического уравнения второй степени

Критерий Рауса - Гурвица особенно удобен для проверки устойчивости цепи с заданными параметрами: вычисления относительно просты. Недостатком этого критерия является ограниченность применения: область применения критерия ограничена цепями с сосредоточенными параметрами, поскольку только для них передаточная функция выражается через многочлены. Кроме того этот критерий не дает ясных указаний на то как из неустойчивой цепи сделать устойчивую.

Геометрические критерии устойчивости.

Требование, чтобы передаточная функция

не имела полюсов в правой полуплоскости р = s + i w , т.е. в области, ограниченной полуплоскостью бесконечно большого радиуса R и осью i w (см. рисунок), равносильно условию, что знаменатель выражения (2) не должен иметь нулей в указанной области или, что то же, функция

не должна обращаться в единицу ни в одной из точек правой полуплоскости р.

Но Н(р) представляет собой передаточную функцию разомкнутого кольца обратной связи, то есть отношение напряжения на зажимах 2-2 к напряжению на зажимах 1-1 при разомкнутой системе, как это показано на рисунке 2.

Для дальнейшего анализа перейдем от комплексной плоскости р на другую комплексную плоскость Н(р)=u+i (см. рисунок 3).

При этом каждой точке р плоскости s , i w соответствует определенное значение Н на плоскости u,iv . И любой замкнутый контур на плоскости перейдет в некий, также замкнутый контур на плоскости Н .

Если исходный контур на плоскости р задан в виде контура как на рисунке 1, то соответствующий ему контур на плоскости Н называется годографом функции Н(p) .

Показанный на рисунке 1 контур можно разбить на два участка : прямую iw от ¥ до - ¥ и полуокружность бесконечно большого радиуса R. На первом участке, где s = 0 , р= i w , функция H(p) обращается в функцию H( i w ). В соответствии с выражением (*) этот участок преобра-зуется на плоскости H в линию, определяемую следующим cоотношением

В этих выражениях аргументы передаточных функций соответственно четырехполюсников

На втором рисунке контура (см. рисунок 1) при R ® ¥ функция H(p) ® 0. Это вытекает из общего выражения

которое при ½ p ½ ® ¥ можно представить в виде (под В подразумевается постоянный коэффициент, а p 0i и p пi - соответственно нули и полюсы функции К(р) ).

Совершенно аналогично и функцию Н(р) при ½ p ½ ® ¥ можно представить в форме H(p) = Ap n-m где n и m - числа соответственно нулей и полюсов функции Н(р).

При n и ½ p ½ ® ¥ модуль функции H(p) на полуокружности R ® ¥ равен нулю. Таким образом, полуокружность бесконечно большого радиуса R на плоскости р преобразуется в точку, лежащую в начале координат на плоскости Н , и для построения годографа Н в виде замкнутого контура достаточно знать поведение Н(р) на оси iw , то есть знать АЧХ и ФЧХ цепи K y (iw),K oc (iw).

Обходу контура на рисунке 1 в положительном направлении (против часовой стрелки) соответствует обход годографа Н при изменении частоты от ¥ до - ¥ , т.е. также против часовой стрелки (см. рисунок 3).

Следовательно, если годограф передаточной функции разорванного кольца не охватывает точку 1,i0 , то при замкнутой цепи обратной связи система устойчива, в противном случае система неустойчива.

Это условие называют критерием устойчивости Найквиста , а годограф H(iw) - диаграммой Найквиста.

Показанная на рисунке 3 диаграмма соответствует устойчивой системе. Это видно из того, что годограф Н не охватывает точку 1,i0 . Сплошной линией показана часть контура, соответствующая положительным частотам 0 ¥ , а штриховой - часть контура, соответствующая отрицательным частотам. Так как функция u(w) четная, а v(w) нечетная относительно w, то оба годографа симметричны относительно действительной оси.

Рисунок 3 был построен для случая, когда при w = 0 передаточная функция Н(iw) отлична от нуля ( эта возможно, например, для усилителей постоянного тока, в которых отсутствуют разделительные конденсаторы).

Пример диаграммы Найквиста для неустойчивой системы приведена на рисунке 4.

Основное преимущество данного метода : удобство оперирования с АЧХ и ФЧХ разомкнутой цепи.

Следует отметить, что при сложной схеме устройства форма диаграммы бывает настолько усложнена, что по ней сложно судить о попадании точки 1,i0 в замкнутый контур годографа. В подобных случаях оказывается полезным критерий, вытекающий из критерия Найквиста , основанный на подсчете числа пересечений годографом оси U н (w) на участке 1, ¥ .

Для устойчивости системы тогда необходимо, чтобы годограф либо вообще не пересекал этот отрезок (так, как показано на рисунке 4), либо пересекал его в положительном и отрицательном направлениях одинаковое число раз

Справедливости ради необходимо заметить, что известны и другие геометрические методы исследования устойчивости линейных систем с обратной связью, например критерий Михайлова и критерий пересечений. Они широко применяются при анализе систем автоматического регулирования. Но мы не будем рассматривать их в данной работе , а при необходимости , с ними можно познакомиться в книге : Котельников В.А., Николаев А.М. “Основы радиоэлектроники”

Литература

1. С.И. Баскаков “Радиотехнические цепи и cигналы” , 1983. М.: Высшая школа.

2. И.С. Гоноровский “Радиотехнические цепи и сигналы”, 1986 М.: Радио и связь.

Читайте также: