Адсорбционные свойства анионитов реферат

Обновлено: 02.07.2024

Сущность понятия адсорбции. Особенности основных видов адсорбции: физической и химической. Основные промышленные адсорбенты - пористые тела, обладающие большим объемом микропор. Ионный обмен как гетерогенная химическая реакция. Характеристика десорбции.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.10.2011
Размер файла 246,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Адсорбция. Десорбция. Ионный обмен

Адсорбция - процесс поглощения вещества из смеси газон, паров или растворов поверхностью или объемом пор твердого тела- адсорбента. Поглощаемое вещество, находящееся в объемно и фазе (газе, паре или жидкости), называется адсорбтивом, а поглощенное - адсорбатом.

Адсорбцию подразделяют на два вида: физическую и химическую. Физическая адсорбция в основном обусловлена поверхностными вандерваальсовыми силами, которые проявляются ii;i расстояниях, значительно превышающих размеры адсорбируемых молекул, поэтому на поверхности адсорбента обычно удерживаются несколько слоев молекул адсорбата. При химической адсорбции поглощаемое вещество вступает в химическое взаимодействие с адсорбентом с образованием на его поверхности обычных химических соединений.

Процессы адсорбции экзотермичны. Процессы адсорбции избирательны и обратимы. Процесс, обратный адсорбции, называют десорбцией, которую используют для выделения поглощенных веществ и регенерации адсорбента.

Наиболее рационально адсорбцию применять для обработки смесей с низкой концентрацией извлекаемых веществ. В этом случае увеличивается продолжительность работы адсорбционного аппарата- адсорбера- на стадии собственно адсорбции до его переключения на десорбцию.

Типичными примерами адсорбции являются осушка газов и жидкостей, разделение смесей углеводородов, рекуперация раствори гелей, очистка вентиляционных выбросов и сточных вод и т. п. За последнее время значение адсорбции существенно возросло, особенно в связи с решением экологических проблем и проблем получения особо чистых веществ.

Основными промышленными адсорбентами являются пористые тела, обладающие большим объемом микропор. Свойства адсорбентов определяются природой материала, из которого они приготовлены, и пористой внутренней структурой.

В промышленных адсорбентах основное количество поглощенного вещества сорбируется на стенках микропор. Роль переходных пор и макропор в основном сводится к транспортированию адсорбируемого веществ к микропорам.

Адсорбенты характеризуются своей поглотительной, или адсорбционной, способностью, определяемой максимально возможной концентрацией адсорбтива в единице массы или объема адсорбента. Величина поглотительной способности зависит от типа адсорбент его пористой структуры, природы поглощаемого вещества, от концентрации, температуры, а для газов и паров от их парциального давления.

По химическому составу все адсорбенты можно разделить углеродные и неуглеродные. К углеродным адсорбентам относят активные (активированные) угли, углеродные волокнистые материалы, а также некоторые виды твердого топлива. Неуглеродные адсорбенты включают в себя силикагели, активный оксид алюминия, алюмогели, цеолиты и глинистые породы. Активные угли, состоящие из множества беспорядочно расположенных микрокристаллов графита, обычно используют для поглощения органических веществ в процессах очистки и разделения жидкостей и газов (паров). Эти адсорбенты получают cyxoй перегонкой ряда углеродсодержащих веществ (древесины, каменного угля, костей животных, косточек плодов и др.) с целью мления летучих.

адсорбция ионный обмен

Равновесие при адсорбции

Равновесная концентрация X* (кг/кг чистого адсорбента) поглощаемого вещества в адсорбенте может быть представлена в виде функции концентрации с и температуры Т:

или в виде функции парциального давления р и температуры Т в случае адсорбции газов:

где с - концентрация адсорбтива в объемной фазе,кг/м3; р - парциальное давление адсорбтива в объемной фазе,Н/м2.

Зависимость X* = (с) или X* = (р) при постоянной температуре называется изотермой адсорбции.

Изотермы адсорбции изображаются кривыми, форма которых определяется в основном природой адсорбата и адсорбента и его пористой структурой. Из всего многообразия форм изотерм для анализа процессов адсорбции следует выделить выпуклую и вогнутую(рис.1). Важно отметить, что начальные участки изотерм линейны.

Рис.1. Выпуклая и вогнутая изотермы адсорбции.

Равновесные зависимости описываются рядом эмпирических и теоретических уравнений. Наиболее плодотворной для описания равновесия адсорбционных процессов оказалась теория объемного заполнения пор, явившаяся развитием потенциальной теории адсорбции.

Под адсорбционным потенциалом А понимают работу, совершаемую адсорбционными силами при переносе одного моля адсорбтива из равновесной газовой фазы давлением р на поверхность адсорбционной пленки, давление над которой принимается равным давлению насыщенного пара адсорбтива ps при рассматриваемой температуре Т.

Адсорбционный потенциал выражается соотношением:

В процессе адсорбции объем микропор Vn заполняется адсорбатом, объем которого может быть вычислен через величину равновесной адсорбции:

где М - молекулярная масса адсорбата; Vж- молярный объем адсорбата

Десорбция идет более полно и с большей скоростью при повышенной температуре и пониженном давлении.

Рис. 2. Профили концентраций в потоке при десорбции для выпуклой (а) и вогнутой (б) изотерм

Методы регенерации адсорбентов можно подразделить на низкотемпературную термическую регенерацию, высокотемпературную термическую, химическую, вытеснительную и регенерацию понижением давления. Низкотемпературную термическую регенерацию адсорбентов проводят их обработкой перегретым или насыщенным острым водяным паром либо газами при температуре 100-400°С.

Часть водяного пара, подаваемого на десорбцию, идет на нагрев адсорбента и аппарата, на компенсацию теплоты адсорбции и отрицательной теплотысмачивания.Другая,несконденсировавшаяся часть пара уносит десорбированное вещество из аппарата. С помощью водяного пара обычно регенерируют активный уголь. Силикагели, алюмогели и цеолиты регенерируют продувкой при повышенной температуре.

Выбор температуры регенерации определяется энергией связи адсорбат-адсорбент, необходимой полнотой десорбции, термической стойкостью адсорбента и временем регенерации. Чем выше энергия связи между молекулами адсорбата и адсорбента и полнее требуется десорбция, тем более высокой должна быть температура регенерации. За пороговую температуру, ниже которой процесс регенерации осуществлять нецелесообразно, принята величина, при которой половина адсорбата удаляется в вакууме в течение 10 мин. В случае, если низкотемпературная регенерация не позволяет достаточно полно удалить поглощенное вещество, что характерно, например, для отработанных активных углей после водоочистки, прибегают к высокотемпературной термической регенерации, которая заключается в обработке адсорбента различными газами, например СО2, при высокой температуре. В процессе высокотемпературной регенерации адсорбат разлагается, а продукты его деструкции удаляются. В жестких условиях высокотемпературной регенерации частично меняется также и структура адсорбента.

Химическую регенерацию проводят обработкой адсорбента жидкими или газообразными реагентами при умеренных температурах (t

Читайте также: