Закономерности наследования 9 класс кратко

Обновлено: 04.07.2024

Процесс передачи наследственной информации от одного поколения организмов к другому.

Свойство всех живых организмов приобретать новые признаки – различия между особями в пределах вида

Любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой

качественный признак, имеющий несколько качеств или состояний (пример: желтая и зеленая окраска семян гороха)

Участок молекулы ДНК, содержащий информацию о первичной структуре одного белка

Местоположение гена в хромосоме

Одно из возможных состояний гена

Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного и того же признака

Гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом

Признак (ген, аллель), проявляющийся у гибрида первого поколения и подавляющий развитие другого признака (гена, аллеля)

Признак (ген, аллель), проявляющийся у гибрида первого поколения и подавляемый доминантным признаком (геном, аллелем)

Совокупность всех генов организма

Совокупность всех внешних и внутренних признаков организма. Формируется в процессе взаимодействия генотипа и внешней среды

Получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке

Скрещивание двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (межвидовая гибридизация)

Организм, полученный от скрещивания двух родительских особей с различными признаками

Метод при котором скрещиваются организмы, отличающиеся друг от друга по одной, нескольким или многим парам альтернативных признаков с последующим анализом потомства

Закономерности наследования признаков, установленные Г. Менделем. Моногибридное скрещивание. Первый и второй законы Г. Менделя

1)Методы исследования в генетике:

  1. Гибридологический метод
  2. Цитогенетический метод (микроскопическое изучение хромосом)
  3. Биохимический метод (исследование состава нуклеиновых кислот, белков и др.веществ в клетках организмов)
  4. Генеалогический метод (анализ родословных человека и животных)
  5. Статистические методы

3) Первый закон Менделя - закон единообразия гибридов первого поколения или правило доминирования: при скрещивании гомозиготных особей (чистых линий), анализируемых по одному альтернативному (качественному) признаку, наблюдается единообразие гибридов первого поколения по фенотипу и генотипу.

4) Второй закон Менделя - закон расщепления: при скрещивании между собой гибридов первого поколения (гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соответствии 3:1 по фенотипу и 1:2:1 по генотипу.

Примеры задач на 1 и 2 законы Менделя:

1) Ген черной масти у крупнорогатого скота доминирует над геном красной масти. Какое потомство F 1 получится от скрещивания чистопородного черного быка с красными коровами? Какое потомство F 2 получится от скрещивания между собой гибридов?

2) Гладкая окраска арбузов наследуется как рецессивный признак. Какое потомство получится от скрещивания двух гетерозиготных растений с плодами полосатой окраски?

3) Определите генотипы и фенотипы потомства от брака кареглазых гетерозиготных родителей.

4)При скрещивании гетерозиготных красноплодных томатов с желтоплодными получено 352 растения , имеющих красные плоды. Остальные растения имели желтые плоды. Определите , сколько растений имело жёлтую окраску?

5)Миоплегия (периодические параличи) наследуется как доминантный признак. Определите вероятность рождения детей с аномалиями в семье, где отец гетерозиготен , а мать не страдает миоплегией

6) Ген черной окраски тела крупного рогатого скота доминирует над геном красной окраски. Какое потомство можно ожидать от скрещивания: а) двух гетерозиготных особей? б) красного быка и гибридной коровы?

7)Умение человека владеть преимущественно правой рукой доминирует над умением владеть преимущественно левой рукой. Мужчина-правша, мать которого была левшой, женился на женщине-правше, имевшей трёх братьев и сестер, двое из которых левши. Определите возможные генотипы женщины и вероятность того, что дети ,родившиеся от этого брака, будут левшами


Основы генетики

Закономерности наследственности. Наследование

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

законы наследственности

Основные положения гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.

■ Первый закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.


■ Второй закон Г. Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3 : 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание — скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1 : 1, исследуемый организм — гетерозиготный Аа.

■ Третий закон Г. Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.


В опытах Мендель использовал разные способы скрещивания : моногибридное, дигибридное и полигибридное. При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.


Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

Основы генетики

ТАБЛИЦА: все закономерности наследования

Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, лежащие в основе гибридологического метода:

1. в качестве объекта исследования были взяты растения гороха одного вида.

2. растения заметно отличались по сравниваемым признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.

3. первое поколение от исходных родительских форм всегда было одинаковым: высокие родители давали высокое потомство, низкие родители давали растения маленького роста; во втором поколении происходило расщепление в признаках.

выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

– форма семени (круглая / некруглая);

– окраска семени (желтая / зеленая);

– кожура семени (гладкая / морщинистая) и т.д.

При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами (назвал этот признак доминантным).

Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).

1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения оказываются по этим признакам единообразными и похожими на родителя с доминантным признаком.

В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фенотипу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться.

2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1

Аа × аа → 50% Аа и 50% аа

При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3 : 1 по фенотипу и 1: 2 :1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.

Появляются семена как с желтой, так и с зеленой окраской.

(закон независимого наследования при дигибридном (полигибридном) скрещивании): выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.

Для дальнейшей записи используется решетка Пеннета.

Во втором поколении возможно появление 4 фенотипов в отношении 9 : 3 : 3 : 1 и 9 генотипов.

В результате анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

– для диплоидных организмов;

– для генов, расположенных в разных гомологичных хромосомах;

– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

Указанные условия являются цитологическими основами дигибридного (и полигибридного) скрещивания.

В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.

В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.

Так как события случайны, то закономерность носит статистический характер, т.е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.

Тематические задания

А1. Доминантный аллель – это

1) пара одинаковых по проявлению генов

2) один из двух аллельных генов

3) ген, подавляющий действие другого гена

4) подавляемый ген

А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

1) нескольких признаках организма

2) одном признаке организма

3) нескольких белках

4) молекуле т-РНК

А3. Если признак не проявляется у гибридов первого поколения, то он называется

3) не полностью доминирующим

А4. Аллельные гены расположены в

1) идентичных участках гомологичных хромосом

2) разных участках гомологичных хромосом

3) идентичных участках негомологичных хромосом

4) разных участках негомологичных хромосом

А5. Какая запись отражает дигетерозиготный организм:

А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

1) белая, шаровидная

2) желтая, шаровидная

3) желтая дисковидная

4) белая, дисковидная

А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

3) 50% ВВ и 50% Вв

4) 75% ВВ и 25% Вв

А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

А10. Второй закон Менделя – это закон, описывающий процесс

1) сцепления генов

2) взаимного влияния генов

3) расщепления признаков

4) независимого распределения гамет

А11. Сколько типов гамет образует организм с генотипом ААВвСс

Основоположник хромосомной теории Томас Гент Морган и его ученики установили, что:

– каждый ген имеет в хромосоме определенный локус (место);

– гены в хромосоме расположены в определенной последовательности;

– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

– группы генов, расположенных в одной хромосоме, образуют группы сцепления;

– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

– между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

– набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности.

Важнейшее следствие этой теории:

современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

У человека 46 хромосом; 2n – диплоидный набор хромосом.

Половые клетки – 23 хромосомы; n – гаплоидный набор хромосом.

Пол человека зависит от половых хромосом.

Хромосомные наборы разных полов отличаются по строению половых хромосом. У-хромосома мужчин не содержит многих аллелей, имеющихся в Х-хромосоме. Признаки, определяемые генами половых хромосом, называются сцепленными с полом. Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х-хромосомой и не имеющие аллеля в У-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, рецессивен.

У человека У-хромосома передается от отца к сыновьям, а Х-хромосома к дочерям. Вторую хромосому дети получают от матери – это всегда Х-хромосома. Если мать несет патологический рецессивный ген в одной из Х-хромосом (например, ген дальтонизма или гемофилии), но при этом сама не больна, то она является носительницей. В случае передачи этого гена сыновьям они могут оказаться больными данным заболеванием, ибо в У-хромосоме нет аллеля, подавляющего патологический ген.

Пол организма человека определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы.

Генотип как целостная, исторически сложившаяся система.

Термин генотип предложен в 1909 г. датским генетиком Вильгельмом Иогансеном.

Генотип – это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов.

Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов .

Аллельные гены (точнее, их продукты – белки) могут взаимодействовать друг с другом:

в составе хромосом – примером является полное и неполное сцепление генов;

в паре гомологичных хромосом – примерами являются полное и неполное доминирование, независимое проявление аллельных генов.

Между собой могут взаимодействовать и неаллельные гены.

Тематические задания

А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78?

3) тридцать шесть

А2. Закономерности сцепленного наследования относятся к генам, расположенным в

1) разных не гомологичных хромосомах

2) гомологичных хромосомах

3) в одной хромосоме

4) негомологичных хромосомах

А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может?

А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36?

А5. Частота кроссинговера между генами К и С – 12%, между генами В и С – 18%, между генами К и В – 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены.

А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме?

А7. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой?

Закономерности наследования признаков – это тенденции, которые отражают процесс передачи признаков от родителей к потомкам.

Закономерности наследования признаков

Первый и второй законы отражали закономерности моногибридного скрещивания, а третий – дигибридного и полигибридного скрещивания.

Моногибридное скрещивание – это тип скрещивания, при котором учитывается одна пара альтернативных признаков.

Дигибридное скрещивание – это тип скрещивания, при котором учитываются две пары альтернативных признаков.

При полигибридном скрещивании во внимание берется несколько пар альтернативных признаков.

Содержание закономерностей наследования признаков

Считается, что успех применения гибридологического метода, лежащего в основе экспериментов Менделя, обусловлен несколькими факторами:

  • анализ наследования признака начинается с чистых линий;
  • анализ производится при исследовании альтернативных признаков (взаимоисключающих);
  • происходит весьма точный количественный учет потомков;
  • наследование признаков можно проследить в ряду поколений.

Первый закон Г. Менделя говорит о том, что при скрещивании гомозиготных особей, которые анализируются по одной паре признаков, в первом поколении происходит проявление только доминантных признаков и наблюдается генотипическое и фенотипическое разнообразие.

В собственных опытах Мендель выбирал горох с желтыми и зелеными семенами, а в первом поколении произошло образование исключительно желтых растений.

Второй закон Менделя говорит о том, что при скрещивании гетерозиготных гибридов первого поколения, во втором поколении наблюдается определенное фенотипическое расщепление: 3:1, а также генотипическое расщепление: 1:2:1. Оказалось, что во втором поколении подавляемый рецессивный признак проявляется вновь.

Готовые работы на аналогичную тему

В ходе мейоза в каждую гамету попадает только 1 хромосома из гомологичной пары. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.

Третий закон Г. Менделя говорит о том, что при скрещивании гомозиготных организмов, которые анализируются по двум или более парам признаков у гибридов третьего поколения наблюдается независимое наследование комбинирование признаков, которое соответствует генам различных аллельных пар.

Для изучения закономерностей наследования признаков у растений Г. Мендель использовал моногибридное скрещивание, затем он постепенно переходил к дигибридному скрещиванию. При этом получается, что закон единообразия гибридов первого поколения проявляется и при моногибридном скрещивании, и при дигибридном, учитывая, что родительские особи гомозиготны по обеим парам признаков.

При исследовании закономерностей наследования признаков часто используют прием анализирующего скрещивания. Он заключается в том, что особь скрещивается с рецессивной гомозиготной особью. При этом в первом поколении наблюдается расщепление в соотношении 1:1.

При изобретении микроскопа изучение закономерностей наследования признаков перестало происходить исключительно на организменном уровне. Оно осуществлялось также и на клеточном и молекулярном уровнях. В 1911 году Т. Морган сформулировал основные положения хромосомной теории наследственности: К ним относят:

  • каждый ген расположен в хромосоме линейно и имеет собственный уникальный локус;
  • гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе. Число групп сцепления равно n набору хромосом;
  • между гомологичными хромосомами возможен процесс кроссинговера, который заключается в обмене гомологичными участками между хромосомами. Этот процесс может нарушить систему сцепления генов. Чем ближе гены расположены друг к другу внутри хромосомы, тем выше вероятность их сцепления. Эта закономерность заключается в том, что одной морганиде соответствует один процент кроссинговера;
  • эксперименты Т. Морган проводил на плодовых мушках – дрозофилах.

Сцепление между генами, локализованными в одной хромосоме, и его нарушение может спровоцировать появление нескольких типов гамет: кроссоверных и некроссоверных.

Также одной из закономерностей наследования признаков называют аллельное взаимодействие генов. При этом возможно возникновение ситуаций двух типов: полного неполного доминирования.

Полное доминирование – это тип доминирования, при котором у потомков проявляется доминантный признак одного из родителей.

Неполное доминирование говорит о том. что в потомстве наблюдается признак, который имеет промежуточный характер между родительскими особями.

Также можно наблюдать ситуацию сверхдоминирования, при которой в гетерозиготе признак выражен сильнее, чем в гомозиготе.

Еще одним вариантом наследования называют кодоминирование, которое отличается тем, что в фенотипе гетерозигот проявляются оба аллельных гена, что создает ситуацию формирования нового признака. Примером может служить формирование четвертой группы крови.

Наконец, множественный аллелизм наблюдается, если в популяции оказывается больше двух аллельных генов. Эти гены возникают в том случае, если наблюдаются мутации одного и того же гена хромосомы.

Неаллельное генетическое взаимодействие проявляется в комплементарности и эпистазе. Комплементарность есть взаимодействие генов, при котором два неаллельных гена могут дать новый признак. Эпистаз заключается в подавление действия генов одной аллели генами другой. Подавляющий ген является супрессером или ингибитором.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Конспект урокаЗакономерности наследования признаков.docx

ФИО: Ильина Марина Александровна

Должность: учитель биологии

Название предмета: биология

УМК (название учебника, автор, год издания: Мамонтов С. Г. Биология: Общие закономерности. 9 кл.: Учеб. Для общеобразоват. Учреждений/ С. Г. Мамонтов, В. Б. Захаров, Н. И. Сонин. – 5-е изд., стереотип. – М.: Дрофа, 2011. – 288с.: ил.

Уровень обучения (базовый, углубленный, профильный): базовый

Тема урока: Закономерности наследования признаков. Основные понятия генетики.

Общее количество часов, отведенное на изучение темы: 2 часа.

Место урока в системе уроков по теме: на изучение закономерностей наследования признаков отводится 2 часа, данный урок – первый.

Цель урока: сформировать представление о генетике как науке, изучающей наследственность и изменчивость организмов, познакомить с основными понятиями генетики.

Задачи урока:

Образовательные : изучить основные исторические моменты в истории генетики как науки, показать многообразие методов, используемых генетикой; изучить основные понятия генетики;

Развивающие : развивать умения и навыки по использованию генетической терминологии и символов для объяснения закономерностей наследования признаков;

Воспитательные : продолжить способствовать формированию культуры умственного труда через овладение навыками общения в процессе беседы, диалога.

Планируемые результаты:

Метапредметные:

Познавательные УУД: умение применять основные термины для объяснения закономерностей наследования, умение работать с различными источниками информации, устанавливать соответствие между объектами и их характеристиками, устанавливать причинно-следственные связи, делать выводы.

Регулятивные УУД: умение определять цели урока, осуществлять рефлексию своей деятельности.

Коммуникативные УУД: умение слушать учителя и отвечать на вопросы, аргументировать свою точку зрения, вести диалог в доброжелательной и открытой форме; проявлять к собеседнику внимание, интерес, уважение.

Личностные: познавательный интерес к биологии; формирование ценностных отношений друг к другу, учителю, результатам обучения.

Дополнительное методическое и дидактическое обеспечение урока (возможны ссылки на интернет-ресурсы)

2.Гуменюк М.М. «Биология. 9 класс. Поурочные планы по учебнику С.Г. Мамонтова, В.Б. Захарова, Н.И. Сонина. Волгоград: Учитель, 2009.

Содержание урока:

I . Организация начала занятия .

-Создание доброжелательной рабочей атмосферы урока.

-Подготовка учащихся к работе.

II. Изучение нового материала .

Деятельность учителя

Изучением закономерностей наследования признаков занимается наука генетика.

-Какова будет цель нашего урока?

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, он считается отцом генетики.(Слайд 4)

Читайте также: