Устройство рентгеновской трубки кратко

Обновлено: 04.07.2024

При рентгенологическом методе и рентгеновской компьютерной томографии используется ионизирующее (рентгеновское) излучение, при радиоизотопном методе ионизирующее (гамма-излучение), соответственно при проведении вышеперечисленных методов, пациент получает лучевую нагрузку, что делает нежелательным использование их в детском возрасте; они абсолютно противопоказаны во время беременности.

При ультразвуковом исследовании и магнитно-резонансной томографии применяется неионизирующие излучения (пациент не получает лучевую нагрузку), следовательно, данные методы могут широко использоваться в педиатрии и во время беременности (I триместр беременности является относительным противопоказанием к проведению МРТ).

Открытие В.К.Рентгеном нового вида излучения.

В истории медицины нет более ярких примеров определяющего влияния на его развитие вновь открытых явлений из других областей познания мира, подобных открытию рентгеновских лучей. Это выдающееся открытие, совершившее переворот не только в медицине, но и во многих отраслях науки и техники, состоялось 8 ноября 1895 года. Сделал его профессор физики Вюрцбургского университета в Германии Вильгельм Конрад Рентген.

Благодарное человечество навсегда увековечило память о В.К.Рентгене в названии науки, медицинской специальности и диагностических исследований.

Физические основы рентгенологического метода и принципы работы аппаратуры.

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением, представляет собой поток квантов (фотонов), двигающихся со скоростью света – 300.000 км/с. Электрического заряда кванты не имеют, масса их пренебрежительно мала.

Свойства рентгеновских лучей:

1) Проникающая способность - проходят через объекты, не пропускающие видимый свет, т.е. с их помощью можно увидеть внутреннюю структуру объекта;

2) Флюоресцирующее -вызывают свечение некоторых химических соединений; на этом основана методика рентгеновского просвечивания (рентгеноскопия);

3) Фотохимическое действие -разлагают некоторые химические соединения, в частности, галоидные соединения серебра, применяемые в фотоэмульсиях (на этом основана рентгенография).

4) Ионизирующее действие - рентгеновское излучение способно вызывать распад нейтральных атомов на положительные и отрицательные ионы.

5) Биологическое действие –изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии ионизирующего излучения. В 1986 г. русский физиолог И.Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Поэтому проводимые рентгеновские обследования строго учитываются, суммарная доза полученного облучения не должна превышать определенных границ. Многочисленные исследования показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.




Устройство рентгеновской трубки.

Рентгеновская трубка (излучатель) представляет собой стеклянную колбу, в концы которой впаяны электроды – анод и катод. Катод представляет собой спираль, анод – диск со скошенной поверхностью в месте контакта с попадающими на него электронами. Катод нагревается сильным током низкого напряжения и начинает испускать свободные электроны, которые формируют вокруг него так называемое электронное облако. При подаче на электроды высокого напряжения (десятки и сотни киловольт) электроны от поверхности катода отрываются (это явление называется электронной эмиссией), устремляются к аноду и ударяются о его поверхность. Анод вращается с огромной скоростью, на его скошенную поверхность попадает поток электронов, при этом их высокая кинетическая энергия преобразуется в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. И только около 1% от всей энергии, образованной вследствие торможения электронов об анод, покидает рентгеновскую трубку в виде рентгеновского излучения. Скошенная поверхность анода, на которую направлен поток электроном, определяет направление рентгеновского излучения перпендикулярно к оси их движения в рентгеновской трубке. Благодаря вращению анода поток электронов в разные моменты времени ударяется о разные участки его поверхности, что предохраняет анод от перегревания (рис. 1).


Рисунок 1. Схема строения рентгеновской трубки: 1 – катод, 2 – анод, 3 – поток электронов, 4 – рентгеновское излучение.

Таким образом, по своим физическим характеристикам рентгеновское излучение является тормозным электромагнитным излучением. Источника постоянного излучения (радиоактивного вещества) рентгеновская трубка не содержит, следовательно, пребывание рядом с неработающей рентгеновской трубкой безопасно, человек не подвергается облучению.

Выделяют два основных метода рентгенологического исследования: рентгенография и рентгеноскопия (просвечивание). Каждый из этих методов имеет свои преимущества и недостатки, часто они используются вместе.

Преимущества рентгеноскопии:

§ Метод прост и экономичен (так как часто не затрачивается серебросодержащая рентгеновская пленка);

§ Позволяет исследовать пациента при постепенных поворотах (многоосевое исследование);

§ Возможность полипозиционного исследования;

§ Позволяет наблюдать внутренние органы в их динамике (сердечные сокращения, сосудистая пульсация, перистальтика ЖКТ);

Преимущества рентгенографии:

§ Главное преимущество заключается в том, что на рентгенограмме выявляется большее количество деталей рентгеновского изображения;

§ Рентгеновский снимок – это объективный документ, пригодный для демонстрации, для прослеживания процесса в динамике и т.д.;

§ Рентгенография – объективный метод исследования, в то время как, рентгеноскопия – субъективный, проводить описание снимков, выполненных в ходе рентгеноскопии имеет право только тот врач, который проводил исследование;

§ Меньше лучевая нагрузка на пациента (так как меньше время воздействия рентгеновского излучения: при рентгенографии – секунды или доли секунд, при рентгеноскопии – минуты).

В большинстве случаев рентгенография на заключительном этапе включает в себя получение традиционного рентгеновского снимка на пленке. После выполнения снимка пленку подвергают специальной обработке: проявке, фиксации, промывке, сушке. Это может выполняться как вручную, так и автоматически в проявочных машинах.

Существует еще очень важная особенность получения рентгеновс­кого изображения, которая заключается в его суммационном характере. Что это такое? Проходя через исследуемый объект (тело человека), рентгеновский луч пересекает не одну, а огромное множество точек, каждая из которых обладает собственными свойствами по взаимодействию с рентгеновским лучом. Соответственно на любой точке рентгенограммы получится суммарное изображение всего множества проецирующихся друг на друга точек реального объекта, расположен­ных по ходу каждого рентгеновского луча.

Следовательно, на рентгенограмме определяется проекция объекта на плоскость. Судить о глубине расположения того или иного фрагмента исследуемого объекта по одной рентгенограмме нельзя.

Чтобы точно определить, где расположен интересующий объект, надо выполнять рентгенограммы в нескольких проекциях (прямой и боковой).

Основные рентгенологические симптомы:

§ Затемнение – участок более высокой плотности по сравнению с окружающими тканями, на рентгенограммах выглядит как более светлый участок (костные структуры, тела металлической плотности, обызвествления, конкременты).

§ Просветление – область повышенной прозрачности, которая выглядит на рентгенограммах как более темный участок (легочная ткань, воздушные полости, газ в кишке, мягкие ткани).

§ Дефект наполнения – образуется, когда какая-либо ткань препятствует заполнению просвета полого органа контрастным веществом, например, при заполнении мочевого пузыря контрастным веществом камень имеет вид дефекта наполнения (опухоли, конкременты, инородные тела).

Тема: Физико-технические основы рентгенологии. Методы исследования. Принцип искусственного контрастирования.

Введение.

Современные технологии лучевой диагностики в настоящее время представлены следующими методами:

  1. Рентгенологический метод.
  2. Рентгеновская компьютерная томография (РКТ).
  3. Магнитно-резонансная томография (МРТ).
  4. Ультразвуковое исследование (УЗИ).
  5. Радионуклидное исследование (РНИ).

При рентгенологическом методе и рентгеновской компьютерной томографии используется ионизирующее (рентгеновское) излучение, при радиоизотопном методе ионизирующее (гамма-излучение), соответственно при проведении вышеперечисленных методов, пациент получает лучевую нагрузку, что делает нежелательным использование их в детском возрасте; они абсолютно противопоказаны во время беременности.

При ультразвуковом исследовании и магнитно-резонансной томографии применяется неионизирующие излучения (пациент не получает лучевую нагрузку), следовательно, данные методы могут широко использоваться в педиатрии и во время беременности (I триместр беременности является относительным противопоказанием к проведению МРТ).

Открытие В.К.Рентгеном нового вида излучения.

В истории медицины нет более ярких примеров определяющего влияния на его развитие вновь открытых явлений из других областей познания мира, подобных открытию рентгеновских лучей. Это выдающееся открытие, совершившее переворот не только в медицине, но и во многих отраслях науки и техники, состоялось 8 ноября 1895 года. Сделал его профессор физики Вюрцбургского университета в Германии Вильгельм Конрад Рентген.

Благодарное человечество навсегда увековечило память о В.К.Рентгене в названии науки, медицинской специальности и диагностических исследований.

Физические основы рентгенологического метода и принципы работы аппаратуры.

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением, представляет собой поток квантов (фотонов), двигающихся со скоростью света – 300.000 км/с. Электрического заряда кванты не имеют, масса их пренебрежительно мала.

Свойства рентгеновских лучей:

1) Проникающая способность - проходят через объекты, не пропускающие видимый свет, т.е. с их помощью можно увидеть внутреннюю структуру объекта;

2) Флюоресцирующее -вызывают свечение некоторых химических соединений; на этом основана методика рентгеновского просвечивания (рентгеноскопия);

3) Фотохимическое действие -разлагают некоторые химические соединения, в частности, галоидные соединения серебра, применяемые в фотоэмульсиях (на этом основана рентгенография).

4) Ионизирующее действие - рентгеновское излучение способно вызывать распад нейтральных атомов на положительные и отрицательные ионы.

5) Биологическое действие –изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии ионизирующего излучения. В 1986 г. русский физиолог И.Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Поэтому проводимые рентгеновские обследования строго учитываются, суммарная доза полученного облучения не должна превышать определенных границ. Многочисленные исследования показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Устройство рентгеновской трубки.

Рентгеновская трубка (излучатель) представляет собой стеклянную колбу, в концы которой впаяны электроды – анод и катод. Катод представляет собой спираль, анод – диск со скошенной поверхностью в месте контакта с попадающими на него электронами. Катод нагревается сильным током низкого напряжения и начинает испускать свободные электроны, которые формируют вокруг него так называемое электронное облако. При подаче на электроды высокого напряжения (десятки и сотни киловольт) электроны от поверхности катода отрываются (это явление называется электронной эмиссией), устремляются к аноду и ударяются о его поверхность. Анод вращается с огромной скоростью, на его скошенную поверхность попадает поток электронов, при этом их высокая кинетическая энергия преобразуется в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. И только около 1% от всей энергии, образованной вследствие торможения электронов об анод, покидает рентгеновскую трубку в виде рентгеновского излучения. Скошенная поверхность анода, на которую направлен поток электроном, определяет направление рентгеновского излучения перпендикулярно к оси их движения в рентгеновской трубке. Благодаря вращению анода поток электронов в разные моменты времени ударяется о разные участки его поверхности, что предохраняет анод от перегревания (рис. 1).


Рисунок 1. Схема строения рентгеновской трубки: 1 – катод, 2 – анод, 3 – поток электронов, 4 – рентгеновское излучение.

Таким образом, по своим физическим характеристикам рентгеновское излучение является тормозным электромагнитным излучением. Источника постоянного излучения (радиоактивного вещества) рентгеновская трубка не содержит, следовательно, пребывание рядом с неработающей рентгеновской трубкой безопасно, человек не подвергается облучению.

Выделяют два основных метода рентгенологического исследования: рентгенография и рентгеноскопия (просвечивание). Каждый из этих методов имеет свои преимущества и недостатки, часто они используются вместе.

Преимущества рентгеноскопии:

§ Метод прост и экономичен (так как часто не затрачивается серебросодержащая рентгеновская пленка);

§ Позволяет исследовать пациента при постепенных поворотах (многоосевое исследование);

§ Возможность полипозиционного исследования;

§ Позволяет наблюдать внутренние органы в их динамике (сердечные сокращения, сосудистая пульсация, перистальтика ЖКТ);

Преимущества рентгенографии:

§ Главное преимущество заключается в том, что на рентгенограмме выявляется большее количество деталей рентгеновского изображения;

§ Рентгеновский снимок – это объективный документ, пригодный для демонстрации, для прослеживания процесса в динамике и т.д.;

§ Рентгенография – объективный метод исследования, в то время как, рентгеноскопия – субъективный, проводить описание снимков, выполненных в ходе рентгеноскопии имеет право только тот врач, который проводил исследование;

§ Меньше лучевая нагрузка на пациента (так как меньше время воздействия рентгеновского излучения: при рентгенографии – секунды или доли секунд, при рентгеноскопии – минуты).

В большинстве случаев рентгенография на заключительном этапе включает в себя получение традиционного рентгеновского снимка на пленке. После выполнения снимка пленку подвергают специальной обработке: проявке, фиксации, промывке, сушке. Это может выполняться как вручную, так и автоматически в проявочных машинах.

Существует еще очень важная особенность получения рентгеновс­кого изображения, которая заключается в его суммационном характере. Что это такое? Проходя через исследуемый объект (тело человека), рентгеновский луч пересекает не одну, а огромное множество точек, каждая из которых обладает собственными свойствами по взаимодействию с рентгеновским лучом. Соответственно на любой точке рентгенограммы получится суммарное изображение всего множества проецирующихся друг на друга точек реального объекта, расположен­ных по ходу каждого рентгеновского луча.

Следовательно, на рентгенограмме определяется проекция объекта на плоскость. Судить о глубине расположения того или иного фрагмента исследуемого объекта по одной рентгенограмме нельзя.

Чтобы точно определить, где расположен интересующий объект, надо выполнять рентгенограммы в нескольких проекциях (прямой и боковой).

Основные рентгенологические симптомы:

§ Затемнение – участок более высокой плотности по сравнению с окружающими тканями, на рентгенограммах выглядит как более светлый участок (костные структуры, тела металлической плотности, обызвествления, конкременты).

§ Просветление – область повышенной прозрачности, которая выглядит на рентгенограммах как более темный участок (легочная ткань, воздушные полости, газ в кишке, мягкие ткани).

§ Дефект наполнения – образуется, когда какая-либо ткань препятствует заполнению просвета полого органа контрастным веществом, например, при заполнении мочевого пузыря контрастным веществом камень имеет вид дефекта наполнения (опухоли, конкременты, инородные тела).

рентгеновская трубка

Рентгеновская трубка – это электровакуумный прибор, генерирующий рентгеновское излучение. Сфера использования рентгеновских трубок:

  • медицинская (диагностика заболеваний с помощью рентгенографии, рентгеноскопии, маммографии и компьютерной томографии, лучевая терапия при некоторых разновидностях опухолей);
  • промышленная (материаловедение, определение химического строения вещества, дефектоскопия, обеспечение безопасности в аэропортах и т.п.)

Как устроена рентгеновская трубка?

схема рентгеновской трубки

Современные трубки имеют следующее устройство: внутри стеклянной колбы с вакуумом впаяны электроды – катод и анод. Они находятся напротив друг друга.

Катод представляет собой спираль из вольфрамовой нити. При подаче на нее тока катод начинает испускать поток электронов, который ускоряется и двигается в сторону анода за счет разности потенциалов между ними. Процесс отрыва электронов с катода называется электронной эмиссией.

Анод действует как мишень для электронов. Попадая на анод, электроны резко тормозятся, и большая часть их кинетической энергии преобразуется в тепловую энергию, а наименьшая часть (около 1%) – в рентгеновское излучение. Оно направлено перпендикулярно оси движению электронов – за счет скошенной поверхности анода.

Для материала анода подбирается тугоплавкий сплав, который, с одной стороны, быстро рассеивает тепло, с другой стороны – максимально эффективно преобразует энергию в рентгеновское излучение. Чаще всего – используется вольфрам, который имеет высокую температуру плавления и сохраняет свою прочность при нагреве.

Участок анода, куда попадают электроны, называется фокусным* пятном. От его размера зависит качество получаемых изображений – чем он меньше, тем резче получается рисунок. Обратной стороной является более быстрое повреждение анода. Чтобы избежать этого, рентгеновские трубки снабжают вращающимся анодом и конструируют с двумя фокусами – большим и малым.

Так как очень большое количество энергии преобразуется в нежелательное тепло, то рентгеновскую трубку снабжают системой охлаждения – водным, воздушным или масляным.

Рентгеновская трубка: принцип работы

Трубки для медицинских рентгеновских аппаратов поставляются с различными характеристиками. При этом трубки для разных видов диагностики и для терапии будут иметь разные показатели.

Путем изменения электрических параметров (напряжение, ток трубки) и времени воздействия можно менять количество и качество рентгеновского излучения, добиваясь тем самым необходимого воздействия на биологические ткани или требуемого качества получаемых изображений.

Например, рентген трубки, используемые для диагностических целей, работают при максимальном напряжении до 150 кВ, а для терапевтических – до 400 кВ. Фокусное пятно трубок для маммографии меньше, чем у трубок для рентгеновских аппаратов.

Большое значение имеют оптические характеристики трубки – размер фокусного пятна определяет разрешающую способность получаемых снимков. При его уменьшении возникает ограничение на максимальную мощность трубки: даже при использовании в качестве мишени анода очень тугоплавкого вольфрама при площади фокуса 1 кв. мм и односекундной экспозиции рассеяться без повреждений анода может не более 200 Вт.

Для продления срока службы анода в практической рентгенографии используют специальные таблицы и графики зависимости размера фокусного пятна, времени экспозиции и мощности, подаваемой на трубку.

Ошибка 404

Если Вы перешли на эту страницу по ссылке из письма, убедитесь, что ссылка не была искажена вашим почтовым клиентом. В случае, если ссылка в письме разделена на части переносами строки, вы можете заново воссоздать ее, скопировав части по очереди в адресную строку браузера.

Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или физического лица-предпринимателя.

Схема рентгеновской трубки

Назначением рентгеновской трубки является генерация рентгеновских лучей. По сути своей она является двухэлектродным электровакуумным прибором — диодом.

Существуют разные конструкции рентгеновских трубок, но почти все они имеют типовую электронную схему. В классическом исполнении трубка представляет собой стеклянную колбу определённой формы, в которую впаяны металлические электроды: катод и анод.

Катодом служит вольфрамовая спираль, подключённая к накальной цепи источника тока и заключённая в фокусирующее устройство, которое и формирует поток электронов.

Анод выполняется из меди и делается достаточно массивным для обеспечения хорошего теплообмена. Та часть анода, которая обращена к катоду, имеет косой срез под острым углом 45° – 70°. В центре скошенного среза закрепляется вольфрамовая мишень с фокусным пятном анода, на которой происходит генерация рентгеновского излучения.

Процесс генерации рентгеновского излучения.

При включении тока накала спираль катода разогревается, при этом вокруг неё образуется облако свободных электронов; чем больше напряжение, тем выше температура нагрева, тем плотнее облако.

При подаче на электроды трубки высокого напряжения — порядка десятков и сотен киловольт — проявляется свойство разноимённых зарядов притягиваться друг к другу. В результате отрицательно заряженные электроны с большой скоростью устремляются к положительному аноду. Чем выше анодное напряжение, тем больше скорость электронного пучка.

Изобретение рентгена датируется 8 ноября 1895 года, когда В. К. Рентген, проводя опыты с катодной трубкой, случайно обнаружил таинственные лучи, которые он назвал X-лучами. В том же году им была создана первая в мире газовая трубка ионного типа. Впоследствии трубки, генерирующие X-лучи, и сами лучи назвали в честь учёного - рентгеновскими.

Типы рентгеновских трубок

К настоящему времени разработано большое количество видов рентгеновских трубок в соответствии с условиями их эксплуатации. Они различаются:

Читайте также: