Теплообмен при кипении жидкости теплообмен при конденсации пара кратко

Обновлено: 30.06.2024

Кипением называется процесс образования пара в жидкости, нагретой выше температуры насыщения. Физические условия процесса образования пара при нагреве жидкостей отличаются большой сложностью. Для про­цесса кипения необходимы три основных условия:

1) перегрев жидкости - нагрев жидкости до температуры насыщения (температуры кипения при соответствующем давлении) и более;

2) наличие центров образования пузырьков пара на поверхности стен­ки или внутри объема жидкости, каковыми могут служить взвешенные час­тицы, неровности поверхности стенок, углубления, впадины, трещины, присущие в той или иной мере шероховатой поверхности твердой стенки;

3) постоянный подвод теплоты.

Различают два основных режима кипения: пузырьковое и пленочное.

Пузырьковое кипение имеет наибольшее распространение в практиче­ских условиях (паровые котлы, стальные экономайзеры).

Зарождаясь в отдельных точках обогреваемой поверхности, где работа сил адгезии (отрыва жидкости от поверхности) наименьшая, пузырьки пара вначале увеличиваются в размере, затем отрываются от стенки и поднима­ются через слой жидкости в паровое пространство. Их рост и движение вызывают интенсивное перемешивание жидкости.

Если кипение происходит в неподвижной жидкости (кипение в боль­шом объеме), то отрыв пузырей от стенки вызывается действием архимедо­вой силы. При интенсивном вынужденном течении жидкости отрыв пузы­рей происходит под воздействием динамического потока. Чем выше ско­рость потока, тем меньшими оказываются отрывные диаметры пузырей.

Паровая пленка, обладающая меньшим коэффициентом теплопровод­ности, создает наибольшее термическое сопротивление между обогревае­мой поверхностью и кипящей жидкостью. Следствием этого является паде­ние значений коэффициента теплоотдачи, а максимальная тепловая нагруз­ка, предшествующая резкому падению коэффициента теплоотдачи при пе­реходе к пленочному кипению, называется критической тепловой нагруз­кой дкр. Для воды в условиях атмосферного давления и естественной кон­векции отмечаются следующие параметры

ДТкр = 25 °С; акр = 5,85 • 104 Вт/(м2 • К); дкр = 1,46 • 106 Вт/м2.

С повышением давления значения критического температурного на­пора уменьшаются. Для области пузырькового кипения воды в диапазоне давлений 1.40 кг/см2 (0,1.4 МПа) применимы зависимости

А = 3,0 q0Jp°,15; а = 38,7 ДТ 2>33/>5,

Где q и p следует подставлять соответственно в Вт/м2 и кг/см2.

Знание критических параметров жидкости при кипении имеет боль­шое практическое значение, ибо превышение критического температурного напора приводит к резкому снижению производительности кипятильных установок. Когда же заданным является тепловой поток и оказывается бо­лее критического значения, происходит резкое повышение температуры обогреваемой стенки до недопустимого предела. С увеличением давления критическое значение теплового потока вначале заметно возрастает, затем падает и при некотором критическом давлении становится равным нулю. Большие значения коэффициентов теплоотдачи а, Вт/(м2 • К) при кипении (500.5000) и конденсации (4000.20 000) воды позволили весьма эффек­тивно использовать эти процессы в промышленных устройствах.

Процессы конденсации и кипения являются взаимно обратными процессами, отражая фазовый переход вещества из газообразного состояния в жидкость и наоборот.

Основными теоретико-методологическими вопросами, которые решаются в рамках данной области, являются возможности прогнозировать их протекание в прикладных целях.

Основными прикладными направлениями, для которых важны знания о процессах конденсации и кипения, являются решение исследовательских и практических задач в сфере естествознания, применение в метрологии, проектирование производственных комплексов и оборудования в химической, металлургической промышленности, а также других отраслях национальной экономической системы.

Молекулярно-кинетическая теория опирается на определенные представления о строении вещества и оперирует моделями вещества, с помощью которых устанавливаются законы поведения макроскопических систем, состоящих из бесконечно большого числа отдельных частиц. "Молекулярно-кинетическая теория – это учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ" [1]. Следует отметить, что молекулярно-кинетическая теория описывает поведение различных систем на основе вероятностных моделей, чтобы установить взаимозависимость между макроскопическими величинами и микроскопическими характеристиками частиц. К макроскопическим величинам относятся, например, температура, объем, давление и др., а к микроскопическим характеристикам частиц – энергия, масса, импульс и др.

Следует отметить, что в рамках данной области естествознания, термодинамика не оперирует молекулярной структурой вещества и является наукой феноменологической. Термодинамика формирует выводы о свойствах вещества на основе сформированных опытным путем законов и оперирует только макроскопическими величинами, которые вводятся на основе физического эксперимента.

Таким образом, термодинамический и статистический подходы взаимно дополняют друг друга, поскольку только комплексное использование в научных изысканиях термодинамики и молекулярно-кинетической теории позволяет сформировать наиболее полное представление о свойствах систем, состоящих из бесконечно большого числа отдельных частиц.

В зависимости от условий и их изменения любой вещество может находиться в трех разных агрегатных состояниях: твердое, жидкое, газообразное. Процесс перехода из одного состояния в другое является фазовым переходом. Реальные газы, например, азот, водород, кислород и др., могут превратиться в жидкость при соблюдении определенных условий. Превращение газа в жидкость может наблюдаться только при температурах, которые ниже критической температуры (Т кр ). "Например, для воды критическая температура – 647,3 К, азота – 126 К, кислорода – 154,3 К. При комнатной температуре (≈ 300 К) вода может находиться и в жидком, и в газообразном состояниях, а азот и кислород существуют только в виде газов" [3].

Фазовый переход из жидкого состояния в газообразное называется испарением. При этом процессе с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, т.е. к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Фазовый переход, при котором молекулы пара возвращаются в жидкое состояние, называется конденсацией и является обратным процессу испарения.

"Процесс кипения жидкости происходит при температуре, при которой давление ее насыщенных паров становится равным внешнему давлению" [8]. Поскольку в жидкости всегда имеются мельчайшие пузырьки газа, испарение может происходить в объеме жидкости в случае, если давление насыщенного пара жидкости равно давлению газа в пузырьках или больше него. Вследствие этого жидкость будет испаряться внутрь пузырьков, что приведет к расширению пузырьков газа, которые будут всплывать на поверхность.

Теплообмен при конденсация паров газа

Жидкость и ее пар могут находиться в состоянии динамического равновесия, которое означает, что в закрытом сосуде число вылетающих с поверхности жидкости молекул, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости, равно числу молекул пара, которые возвращаются в жидкое состояние. Динамическое равновесие означает, что скорость процессов испарения и конденсации примерно одинаковы. Пары газа, которые находятся в равновесии с жидкостью, называются насыщенным газом.

Число молекул, которые превращаются в жидкость, зависит от концентрации молекул пара газа и скорости их теплового движения, зависящей от температуры паров газа. Следовательно, в состоянии динамического равновесия температура вещества в жидком и газообразном состоянии является равновесной. "Давление насыщенного пара вещества зависит только от его температуры и не зависит от объема" [2]. Этим объясняется, что в двухфазной системе изотермы реальных газов содержат горизонтальные участки, как показано на рисунке 1.

Теплообмен при конденсации и кипении

Рисунок 1 – Изотермы реального газа [7]

На рисунке цифрами отмечено:

I – жидкое состояние вещества; II – двухфазная система "жидкость + насыщенный пар"; III – газообразное состояние вещества.

При увеличении температуры (Т) возрастает давление и плотность насыщенного пара вещества, а плотность жидкости уменьшается из-за теплового расширения. При условии Т = Т кр плотности пара и жидкости вещества становятся одинаковыми. При условии Т > Т кр физические отличия жидкого и газообразного состояния вещества нивелируются. Если при условии Т кр изотермически сжимать ненасыщенный пар, то давление пара будет увеличиваться до тех пор, пока не сравняется с давлением насыщенного пара. Дальнейшее уменьшение объема приведет к тому, что на дне сосуда образуется жидкость и установится динамическое равновесие, при уменьшении объема все большая часть паров газа будет конденсироваться, при этом давление меняться не будет, когда все пары газа возвратятся в жидкое состояние, давление резко увеличивается при дальнейшем сокращении объема по причине малой сжимаемости жидкости. При этом процесс преобразования вещества из паров газа в жидкость может произойти миновав двухфазную область, как показывает линия ABC.

Давление насыщенного пара с ростом температуры увеличивается очень быстро и при постоянной концентрации молекул возрастает прямо пропорционально росту температуры газа. При этом рост температуры обуславливает не только увеличение средней кинетической энергии молекул, но и их концентрации, поэтому давление насыщенного пара увеличивается быстрее, чем давление идеального газа при постоянной концентрации молекул вещества.

С точки зрения естественнонаучного содержания,

Процесс теплоотдачи при конденсации насыщенного пара является одновременным переносом теплоты и массы.

Перенос теплоты определяется теплотой парообразования, масса – количеством сконденсированного пара. При процессе конденсации молекулы пара находятся в состоянии турбулентного потока, вихри которого переносят молекулы вещества в газообразном состоянии к охлаждаемой стенке сосуда, на которой они конденсируются. Следствием является резкое уменьшение объема пара, в результате создается собственное поступательное движение молекул вещества в газообразном состоянии к стенке сосуда. Образовавшийся на стенке сосуда конденсат стекает по ней, а к стенке подходит собственный пар. При этом в научно-прикладном аспекте процесс переноса теплоты и основной массы вещества в газообразном состоянии к стенке сосуда происходит настолько быстро, что степень турбулентности потока молекул вещества в газообразном состоянии не оказывается сколько-нибудь значимого влияния на сам процесс конденсации.

Процесс конденсации неразрывно связан с теплообменом, так как при конденсации паров газа выделяется теплота фазового перехода, поэтому справедливы два условия: "температура стенки сосуда должна быть ниже температуры насыщения при данном давлении и необходим отвод теплоты от поверхности, на которой образуется конденсат" [3]. При пленочной конденсации конденсат стекает с поверхности теплообмена в виде простой пленки, для этого должно соблюдаться условие смачивания жидкостью данной поверхности. В случае, если поверхность теплообмена не смачивается или, например, находится в загрязненном состоянии, то будет иметь место конденсация капельного типа, когда конденсат будет формироваться в виде капель разного размера. Наконец, смешанная конденсация подразумевает, что на различных участках поверхности теплообмена может проходить процесс конденсации пленочного и капельного типа одновременно.

Следует отметить, что для разных типов процесса конденсации интенсивность теплообмена отличается следующим образом:

  • интенсивность теплообмена при конденсации пленочного типа будет ниже, чем при конденсации капельного типа;
  • интенсивность теплообмена при конденсации смешанного типа будет зависеть от характера и соотношения типов конденсации, находясь в пределах минимального и максимального значений для соответствующих типов конденсации [8].

В этой связи в практике проектирования и применения теплообменных устройств превалирует пленочная конденсация из-за того, что интенсивность процесса теплоотдачи при конденсации пленочного типа ниже капельного из-за термического сопротивления пленки конденсата, тогда как организация процесса капительной конденсации в устройствах теплообмена дороже организации процесса пленочной конденсации.

Теплообмен при конденсации и кипении

Рисунок 2 – Термическое сопротивление пленки определяется механизмом переноса теплоты, зависящим от режима течения конденсата [6]

В процессе конденсации процесс теплообмена при пленочной конденсации не является лимитирующем, при конденсации пленочного типа вещества в газообразном состоянии термическое сопротивление сосредоточено в пленке конденсата.

Теплообмен при кипении жидкости

В закрытом сосуде процесс кипения жидкости происходить не может, так как при каждом значении температуры устанавливается равновесие вещества в жидком и газообразном состоянии, при этом пары газа вещества являются насыщенным паром. По кривой равновесия давления и температуры р0 (Т) можно определять температуру кипения жидкости при разных давлениях. При этом необходимо отметить, что из газообразного и жидкого состояния любое вещество может перейти в твердое состояние. Термодинамическое равновесие между двумя фазами вещества может сохраняться при заданной температуре и давлении в системе.

Зависимость равновесного давления от температуры представляет собой кривую фазового равновесия. На рисунке 3 изображена фазовая диаграмма вещества, кривые равновесия разделяют систему координат на отдельные области, соответствующие твердому, жидкому и газообразному состоянию вещества.

Теплообмен при конденсации и кипении

Рисунок 3 – Фазовая диаграмма вещества [7]

На рисунке цифрами обозначено:

I – твердое состояние вещества, II – жидкое состояние вещества, III – газообразное состояние вещества.

Кривая 0Т соответствует равновесию между твердым и газообразным состоянием вещества и называется кривой сублимации. Кривая ТК соответствует равновесию между жидким и газообразным состоянием вещества, обрываясь в критической точке К, и называется кривой испарения. Кривая ТМ соответствует равновесию между твердым и жидким состоянием вещества и называется кривой плавления. В точке тройной точке Т могут сосуществовать в равновесии все три фазы.

"Кипение соответствует процессу интенсивного образования пара внутри объема жидкости при температуре насыщения или выше этой температуры" [2]. В ходе данного процесса поглощается теплота фазового перехода, следовательно, чтобы кипение было осуществимо, требуется обеспечивать нагрев вещества, иными словами, подводить теплоту. Существует поверхностное и объемное кипение, причем последнее встречается достаточно редко. При объемном кипении, например, в результате резкого уменьшения давления, наблюдается значительный перегрев жидкости, а температура вещества превышает температуру насыщения при таком давлении. Поверхностное кипение происходит вследствие подвода теплоты к жидкости от твердой поверхности, которая соприкасается с веществом, находящимся в жидком состоянии.

При кипении высокая интенсивность теплообмена и сам процесс кипения широко используется на практике и производстве: выпаривание, перегонка, испарители, кипячение, преобразование веществ для изменения свойств и т.д. При этом для возникновения кипения необходимо, чтобы температура жидкости была больше температуры насыщения, т.е. соблюдалось бы условие Т жидк > Т насыщ , а также наличие центров парообразования. Чтобы теплота передавалась от стенки к кипящей жидкости, необходим перегрев стенки относительно температуры насыщения: ∆Т = Т ст – Т кип

На рисунке 4 показана зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т.

Теплообмен при конденсации и кипении

Рисунок 4 – Зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т [4]

В области АВ перегрев еще мал, активных центров парообразования недостаточно, а теплообмен определяется законами свободной конвекции около стенки α ~ ∆Т1.3. В области ВС перегрев выше, становится больше центров парообразования, теплообмен резко увеличивается, при этом наблюдается турбулизация пограничного слоя около стенки. Эта область называется пузырчатым кипением. Схема процесса теплоотдачи при пузырчатом кипении показана на рисунке 5.

Теплообмен при конденсации и кипении

Рисунок 5 – Схема процесса теплоотдачи при пузырчатом кипении [8]

Часть жидкости испаряется, образуя таким способом пузырьки вещества в газообразном состоянии. Пузырьки вещества увлекают значительные массы жидкости, когда они поднимаются и увеличиваются в объеме, на место увлеченной и испарившейся жидкости поступает свежие потоки жидкости, за счет чего происходит циркуляция жидкости у поверхности нагрева, что приводит к ускорению процесса теплоотдачи. В этот момент α ~ ∆Т 2/3 . Высокий уровень интенсивности теплообмена при пузырчатом режиме кипения обусловлен степенью турбализации пограничного слоя у поверхности, которая пропорциональна числу и объему пузырьков, которые формируются в микровпадинах на поверхности нагрева.

В точке С коэффициент теплоотдачи достигает своего максимального значения, что соответствует максимальному значению удельной тепловой нагрузки q, далее будет наблюдаться резкое снижение коэффициента теплоотдачи. При соблюдении условия ∆Т ≥ ∆Т кр происходит слияние пузырьков, которые находятся близко друг от друга или образуются рядом, у поверхности стенки будет возникать паровая пленка, которая будет создавать дополнительное термическое сопротивление процессу теплоотдачи. Значение коэффициента теплоотдачи α резко падает. Этот режим процесса кипения называется пленочным. Следует отметить, что хотя пленка вещества в газообразном состоянии очень нестабильна, постоянно разрушаясь и возникая вновь, такой режим кипения серьезно ухудшает теплообмен, соответственно, на практике он крайне нежелателен.

Выводы

По итогам рассмотрения процессов кипения и конденсации можно судить о том, что они имеют большое значение в прикладных аспектах бытовой жизнедеятельности человека и производственных процессах.

В ходе изучения вопросов, связанных с теплообменом при протекании процессов конденсации и кипении, было установлено, что эти привычные человеку процессы имеют весьма сложную молекулярно-кинетическую природу. От протекания данных процессов зависит решение не только бытовых задач в повседневной деятельности человека, но и различные и многосторонние аспекты функционирования сложных технических систем, производственных комплексов, а также отдельных объектов и элементов инфраструктуры жилищно-коммунального хозяйства.

Процесс теплообмена при конденсации пара протекает при изменении агрегатного состояния теплоносителей. Специфика процесса конденсации состоит в том, что процесс теплообмена происходит при постоянной температуре.

При пузырчатом кипении теплообмен состоит из переноса теплоты от стенки к жидкости, затем жидкостью теплота передается внутренней поверхности пузырьков пара вещества в виде теплоты испарения. Следует отметить, что теплообмен между стенкой и непосредственно пузырьками вещества в газообразном состоянии ничтожно мал, так как мала поверхность соприкосновения пузырьков пара со стенкой и мала теплопроводность пара. Для осуществления теплообмена жидкость должна иметь температуру несколько выше температуры пара, следовательно, при кипении температура жидкости выше температуры насыщенного пара над поверхностью жидкости.

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, находящейся при температуре насыщения или несколько перегретой относительно температуры насыщения, с образованием паровых пузырей. В процессе фазового превращения поглощается теплота парообразования. Процесс кипения обычно связан с подводом теплоты к кипящей жидкости.

3.1.1 Режимы кипения жидкости.

Различают кипение жидкостей на твердой поверхности теплообмена, к которой извне подводится теплота, и кипение в объеме жидкости.

При кипении на твердой поверхности образования паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости в виде отдельных пузырьков пара. Объемное кипение может происходить лишь при более значительном перегреве жидкой фазы относительно температуры насыщения при данном давлении, чем кипение на твердой поверхности. Значительный перегрев может быть получен, например, при быстром сбросе давления в системе. Объемное кипение может иметь место при наличии в жидкости внутренних источников тепла.

В современной энергетике и технике обычно встречаются процессы кипения на твердых поверхностях нагрева (поверхности труб, стенки каналов и т.п.). Этот вид кипения в основном и рассматривается далее.

Механизм теплообмена при пузырьковом кипении отличается от механизма теплоотдачи при конвекции однофазной жидкости наличием дополнительного переноса массы вещества и теплоты паровыми пузырями из пограничного слоя в объем кипящей жидкости. Это приводит к высокой интенсивности теплоотдачи при кипении по сравнению с конвекцией однофазной жидкости.

Для возникновения процесса кипения необходимо выполнение двух условий: наличие перегрева жидкости относительно температуры насыщения и наличие центров парообразования.

Перегрев жидкости имеет максимальную величину непосредственно у обогреваемой поверхности теплообмена. На ней же находятся центры парообразования в виде неровностей стенки, пузырьков воздуха, пылинок и др. Поэтому образование пузырьков пара происходит непосредственно на поверхности теплообмена.


Рисунок 3.1 – режимы кипения жидкости в неограниченном объеме: а) -пузырьковый; б) – переходный; в) - пленочный

На рис. 3.1. схематически показаны режимы кипения жидкости в неограниченном объеме. При пузырьковом режиме кипения (рис. 3.1,а) по мере увеличения температуры поверхности нагрева tc и соответственно температурного напора число действующих центров парообразования растет, процесс кипения становится все более интенсивным. Паровые пузырьки периодически отрываются от поверхности и, всплывая к свободной поверхности, продолжают расти в объеме.

При повышении температурного напора Δt значительно возрастает поток теплоты, который отводится от поверхности нагрева к кипящей жидкости. Вся эта теплота в конечном счете расходуется на образование пара. Поэтому уравнение теплового баланса при кипении имеет вид:

где Q — тепловой поток, Вт; r — теплота фазового перехода жидкости, Дж/кг; Gп — количество пара, образующегося в единицу времени в результате кипения жидкости и отводимого от ее свободной поверхности, кг/с.

Тепловой поток Q при увеличении температурного напора Δt растет не беспредельно. При некотором значении Δt он достигает максимального значения (Рис. 3.2), а при дальнейшем повышении Δt начинает уменьшаться.


Рисунок 3.2 – Зависимость плотности теплового потока q

от температурного напора Δt при кипении воды в большом объеме при атмосферном давлении: 1- подогрев до температуры насыщения; 2 – пузырьковый режим; 3 – переходный режим; 4 – пленочный режим.

Дать участки 1 2 3 и 4

Пузырьковый режим кипения имеет место на участке 2 (Рис. 3.2) до достижения максимального теплоотвода в точке qкр1 , называемой первой критической плотностью теплового потока. Для воды при атмосферном давлении первая критическая плотность теплового потока составляет ≈ Вт/м 2 ; соответствующее критическое значение температурного напора Вт/м 2 . (Эти значения относятся к условиям кипения воды при свободном движении в большом объеме. Для других условий и других жидкостей значения будут иными).

Наконец, при некотором температурном напоре вся поверхность нагрева покрывается сплошной пленкой пара, оттесняющей жидкость от поверхности. С этого момента имеет место пленочный режим кипения (рис. 3.1, в). При этом перенос теплоты от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая (участок 4 на рис. 3.2). Паровая пленка испытывает пульсации; пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Это соответствует на рис. 3.2 точке qкр2, называемой второй критической плотностью теплового потока. При атмосферном давлении для воды момент начала пленочного кипения характеризуется температурным напором ≈150 °С, т. е. температура поверхности tc составляет примерно 250°С. По мере увеличения температурного напора все большая часть теплоты передается за счет теплообмена излучением.

Все три режима кипения можно наблюдать в обратном порядке, если, например, раскаленное массивное металлическое изделие опустить в воду для закалки. Вода закипает, вначале охлаждение тела идет относительно медленно (пленочное кипение), затем скорость охлаждения быстро нарастает (переходный режим), вода начинает периодически смачивать поверхность, и наибольшая скорость снижения температуры поверхности достигается в конечной стадии охлаждения (пузырьковое кипение). В этом примере кипение протекает в нестационарных условиях во времени.

На рис. 3.3 показана визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке, находящейся в воде.



рис. 3.3 визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке: а) - пузырьковый и б) - пленочный режим кипения.

Итак, в условиях фиксированного значения плотности теплового потока q, подводимого к поверхности нагрева, оба перехода от пузырькового к пленочному и обратно носят кризисный характер. Они происходят при критических плотностях теплового потока qкр1 и qкр2 соответственно. В этих условиях переходный режим кипения стационарно существовать не может, он является неустойчивым.

На практике широко применяются методы отвода теплоты при кипении жидкости, движущейся внутри труб или каналов различной формы. Так, процессы генерации пара осуществляются за счет кипения воды, движущейся внутри котельных труб. Теплота к поверхности труб подводится от раскаленных продуктов сгорания топлива за счет излучения и конвективного теплообмена.

Для процесса кипения жидкости, движущейся внутри ограниченного объема трубы (канала), описанные выше условия остаются в силе, но вместе с этим появляется ряд новых особенностей.

Вертикальная труба. Труба или канал представляет собой ограниченную систему, в которой при движении кипящей жидкости происходят непрерывное увеличение паровой и уменьшение жидкой фаз. Соответственно этому изменяется и гидродинамическая структура потока, как по длине, так и по поперечному сечению трубы. Соответственно изменяется и теплоотдача.

Наблюдается три основные области с разной структурой потока жидкости по длине вертикальной трубы при движении потока снизу вверх (рис. 3.4): I – область подогрева (экономайзерный участок, до сечения трубы, где Тсн); II – область кипения (испарительный участок, от сечения, где Тсн, iж 90° - не смачивает. Значение краевого угла зависит от природы жидкости, материала, состояния и чистоты поверхности. Если кипящая жидкость смачивает поверхность нагрева, то паровые пузырьки имеют тонкую ножку и от поверхности отрываются легко (рис. 3.7, а). Если же жидкость не смачивает поверхность, то паровые пузырьки имеют широкую ножку (рис. 3.7, б) и отрываются по перешейку, или парообразование происходит по всей поверхности.


Рисунок 3.7 – Форма паровых пузырьков на смачиваемой (а) и несмачиваемой (б) повехностях


Рисунок 3.6 – Форма мениска и краевой угол θ пр и смачивании (а) и несмачивании (б) поверхности жидкость

Обычные жидкости: вода, спирты, бензол, ацетон и др.— смачивают чистые металлические поверхности нагрева. Смачивающая способность воды значительно снижается, если металлическая поверхность покрыта жирной пленкой. Примером несмачивающей жидкости может служить ртуть (θ ≈ 140°).

При кипении обычных жидкостей на металлических поверхностях нагрева средние отрывные диаметры пузырьков D0 при атмосферном давлении составляют примерно 1—2 мм. При увеличении давления значения D0 уменьшаются. На рис. 3.8 представлены значения D0 при кипении воды в большом объеме на горизонтальной поверхности [32, 119] в диапазоне давлений (0,2…100)·10 5 Па. Резкое увеличение D0 при снижении давления ниже атмосферного объясняется возрастанием влияния силы инерции, препятствующей отрыву пузырьков.

Коэффициент теплоотдачи α при кипении принято относить к температурному напору

Теплоотдача при конденсации и кипении жидкости

В первом абзаце этой главы тепло рассматривается в процессе конденсации пара на твердой поверхности. Композиция относится к процессу испарения, характеризующемуся появлением новой свободной границы раздела между жидкой и газообразной фазами в жидкости, нагретой выше температуры насыщения. Во 2-м и 3-м абзацах этой главы мы рассмотрим теплообмен от твердой поверхности к кипящей жидкости. Поскольку работа многих теплообменников сопровождается конденсацией или кипением, необходимо учитывать теплообмен в этих условиях.

Во время конденсации пленки(если температура поверхности жидкой пленки ниже температуры насыщения при заданном давлении. Людмила Фирмаль

Теплопередача при конденсации пара Когда температура пара поддерживается ниже температуры насыщения при заданном давлении, пар начинает конденсироваться на поверхности. Различают конденсацию пленки и капли. Мембранная конденсация-это процесс, при котором вещество переходит из газообразного состояния в жидкое на твердой гидрофильной(жидкой и смачиваемой) поверхности, образуя сплошную пленку конденсата.

Капельная конденсация — это процесс перехода из газообразного состояния вещества в жидкое на гидрофобной (не смачиваемой жидкостью) поверхности твердого тела, на которой образуются отдельные капли конденсата процесс конденсации будет продолжаться) толщина пленки будет увеличиваться, и под действием силы тяжести пленка будет стекать вниз по вертикали. Капля. r’i. i. t и Вода x.= 7-10 ″ 4-х сторонняя не растет.

Атмосферное давление коэффициент испарения 4-12-103W! (Я-град).При нагревании образуются капли, которые достигают определенного времени и втягиваются в другие условия для передачи тепла, обмена и даже нагрева transfer. As результат конденсации водяного пара, величина порядка атм 40-103 4-100 На нем можно получить компактную конденсацию. Например, были условия, при которых это происходит путем добавления гидрофобизирующего агентак водяному пару или поверхности стенки.

Однако этот способ усиления отдачи в момент конденсации еще не получил широкого распространения distributed. In современные конденсаторы, это почти всегда делается Передача тепла во время конденсации пара. Крыса. Усиление теплопередачи. Методы определения коэффициента> m в пленке разработаны давно. Б: а потом привел формулу для принятия решения Давайте на самом деле рассмотрим процесс нагрева пара вдоль вертикальной траектории Игнорировать силы инерции .

Абсолютное значение теплового потока, проходящего через мембрану конденсатора, выражается в следующих 2 формах: Объединение уравнений (XII-4)и (XI1-5)、 (HP-5) (HP-6) Из (КП-6) можно найти локальный коэффициент теплоотдачи а *при конденсации жидкости на твердой поверхности на расстоянии х от верхней кромки стенки (начало координат, см. Рисунок КП-1).Расстояние X от начала координат. Определите толщину конденсированной пленки.

Если мы интегрируем уравнение движения (XI1-2) при граничном условии (XI1-3),、 (ХІІ-7) — Параболическое распределение скорости wx относительно толщины конденсированной пленки. Количество конденсата, образующегося на единицу площади поверхности пленки в единицу времени на расстоянии х от начала координат, равно Куда? (HP-8) g-теплота испарения (теплота конденсации). Количество конденсата Gₓ, протекающего через поперечное сечение на расстоянии не менее верхнего конца пластины, по ширине равно 1 пленке, толщиной 6 г, за единицу времени.

Рейнольдса пленки жидкости в следующем виде: =(Привет-19) Где G-количество конденсированной воды, протекающей через сечение L (L-длина пластины).Ширина секции 1 л и высота 6. Исходя из (КП-8), G представляется в следующем виде (HP-20) Объедините выражения (KP-19 и KP-20), чтобы получить следующее: Re= 21 * 12:= — JL. (HP-21) Преобразование с помощью (KP-21) (KP-18) позволяет получить нужный формат. Nu-Ga3= 0. 925Re3 4 (^.) T_0. 925 ^ −7、 (HP-22) (ХІІ-23) Где-характерный размер, М В статьях 145 и 49] был определен коэффициент теплопередачи ламинарного течения пленки с учетом сил инерции в пленке и конвективного теплообмена.

При сохранении ламинарного состояния движение конденсатной пленки может быть волнообразным. Людмила Фирмаль

Если сравнить полученные результаты (45, 49) и Нуссельта (КП-17)、 C3 — ^> 5111 Pr 100、 Разница составляет несколько процентов и может быть проигнорирована. Влияние температуры и температуры на теплопередачу жидкости физические константы, коэффициент (Pr7Prz) по уравнению (CP-18) вводят>!вводя приблизительно, Вы можете почти считаться. Вот, ПР ’и ПРЗ,. Волна пленки начинается с определенного соотношения силы тяжести, вязкости и поверхностного натяжения. Академик П.

Л. Капица 1331 установил, что при волновом движении средняя толщина пленки меньше, чем рассчитанная по формуле (XI1-15), тепловое сопротивление мембраны уменьшается, а коэффициент теплопередачи увеличивается на 21% при значении, рассчитанном по формуле ХП-17).Эта поправка (по 21%) была получена в предположении, что волновое течение имеет регулярные периодические характеристики, а температура пленки равна constant. In на самом деле, физическая ситуация во время волны фильма намного сложнее. По-видимому, волна становится трехмерной и имеет нерегулярный характер.

Эти ситуации могут привести к нарушениям в потоке конденсата. Перечисленные факторы, возникающие в реальных условиях при волновом течении пленки, усиливают теплообмен. Теоретически их влияние пока не учитывается account. So, поправка с учетом волнового движения пленки вдоль вертикальных стейков была определена экспериментально и введена в формулы (КП-17, КП-18 и КП-22). в результате была получена следующая формула для определения среднего коэффициента теплоотдачи(45): (HP-24) Ню = л,13(га-пр-к)〜 Ню-га — = л, 18Re_ ^.

(HP-25) Капица П. Л. Что поток пленки превращается в волну Где Re,= — число волн Рейнольдса, образующихся на поверхности ламинарной пленки. Значения численных значений различных веществ приведены в таблице. НР-1. 100.0 300.0 180.0 360.0 д 8.2 8.3 9.3 5.7 10.0 6.7. Пропан 34.0 51.0 60.0 84 6.4 6.1 6.1 5.0 Этиловый спирт 78,0 141,0 182,0 231,0 4.9 7.С 6.1 4.4 Турбулентность, не фильм По мере прохождения пленки жидкости через вертикальную стенку изменяется число Рейнольдса Re (KP-19).

Некоторые важные В ReFp ламинарная область пленки становится турбулентной. RcKₚ находится в следующих пределах: 100 ReKₚ 500. (ХІІ-26) (45), было отмечено, что при конденсации водяного пара уже наблюдается переход от ламинарного к турбулентному течению водной пленки при Re> 100. В условиях турбулентного режима мембранного потока теплообмен усиливается по сравнению с ламинарным режимом мембранного потока.

В ламинарном потоке пленки тепло передается только за счет теплопроводности молекул, а в турбулентном потоке-за счет пульсации турбулентной flow. It уже отмечалось, что теоретическое определение коэффициента теплоотдачи при турбулентном состоянии потока жидкости до сих пор невозможно(Глава VII).Поэтому расчетные зависимости основаны на экспериментальных данных. Ниже приведена формула для определения среднего коэффициента теплоотдачи при конденсации в турбулентном режиме пленочного течения жидкости 119] (HP-27).

При определении среднего коэффициента теплоотдачи всей поверхности вертикальной стенки следует учитывать, что в верхней части мембранный поток является ламинарным, а в нижней-турбулентным. Средний коэффициент теплопередачи по всей поверхности можно определить из уравнения Куда? ,- Расстояние от верхнего края вертикальной стенки до места, где происходит переход пленки из ламинарного в турбулентное течение. al и является средним коэффициентом теплопередачи в ламинарной и турбулентной областях пленки соответственно.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Кипение. Удельная теплота парообразования и конденсации

На этом уроке мы уделим внимание такому виду парообразования, как кипение, обсудим его отличия от рассмотренного ранее процесса испарения, введем такую величину, как температура кипения, и обсудим, от чего она зависит. В конце урока введем очень важную величину, описывающую процесс парообразования – удельную теплоту парообразования и конденсации.

Читайте также: