Теория поля математика кратко

Обновлено: 04.07.2024

Известная также, как векторный анализ. А кому-то векторный анализ, известный как теория поля =) Наконец-то мы добрались до этой интереснейшей темы! Данный раздел высшей математики язык не поворачивается назвать простым, однако ж, в грядущих статьях я постараюсь достигнуть двух целей:

а) чтобы все понимали, о чём вообще идёт разговор;

Весь материал будет изложен в популярном стиле, и если вам нужна более строгая и полная информация, то можно взять, например, 3-й том Фихтенгольца или заглянуть в Вики.

Поле с травой, футбольное поле…. Ещё? Поле деятельности, поле экспериментов. Приветствую гуманитариев! …Из школьного курса? Электрическое поле, магнитное, электромагнитное…, так, хорошо. Гравитационное поле Земли, в котором мы находимся. Отлично! Так, кто это там сказал о поле действительных и комплексных чисел? …совсем какие-то монстры здесь собрались! =) Благо, алгебра уже пройдена.

На ближайших уроках мы познакомимся со специфическим понятием поля, конкретными примерами из жизни, а также научимся решать тематические задачи векторного анализа. Теорию поля лучше всего изучать, как вы правильно догадываетесь, на поле – природе, где есть лес, речка, озеро, деревенский домик, и я приглашаю всех погрузиться если и не в тёплую летнюю реальность, то в приятные воспоминания:

Во-первых, скаляр. Довольно-таки часто этот термин ошибочно отождествляют с числом. Нет, всё обстоит немного не так: скаляр – это величина, каждое значение которой может быть выражено лишь одним числом. В физике примеров масса: длина, ширина, площадь, объём, плотность, температура и др. Всё это скалярные величины. И, кстати, масса – тоже пример.

Во-вторых, вектор. Алгебраического определения вектора я коснулся на уроке о линейных преобразованиях и одну из его частных ипостасей не знать просто невозможно =) Типичный вектор выражается двумя или бОльшим количеством чисел (своими координатами). И даже для одномерного вектора лишь одного числа не достаточно – по той причине, что у вектора есть ещё направление. И точка приложения, если вектор не свободен. Векторами характеризуют силовые физические поля, скорость и многие другие величины.

Ну что же, теперь можно приступить к сбору алюминиевых огурцов урожая:

Скалярное поле

Если каждой точке некоторой области пространства поставлено в соответствие определённое число (чаще действительное), то говорят, что в этой области задано скалярное поле.

Рассмотрим, например, исходящий из земли перпендикулярный луч. Воткните для наглядности лопату =) Какие скалярные поля можно задать на этом луче? Первое, что напрашивается – это поле высоты – когда каждой точке луча поставлена в соответствие её высота над уровнем земли. Или, например, поле атмосферного давления – здесь каждой точке луча соответствует числовое значение атмосферного давления в данной точке.

Важнейшим свойством скалярного поля является его инвариантность относительно системы координат. Если перевести на человеческий язык, то с какой бы стороны мы на лопату / озеро ни посмотрели – скалярное поле (высота, глубина, температура и т.д.) от этого не изменятся. Более того, скалярное поле, скажем, глубины можно ведь задать и на другой поверхности, например, на подходящей полусфере, или непосредственно на самой водной поверхности. А почему нет? Разве нельзя каждой точке полусферы, расположенной над озером, поставить в соответствие число? Плоскость я предложил исключительно ради удобства.

Добавим ещё одну координату. Возьмите в руку камень. Каждой точке этого камня можно поставить в соответствие его физическую плотность. И опять – в какой бы системе координат мы его ни рассмотрели, как бы ни крутили в руке – скалярное поле плотности останется неизменным. Впрочем, некоторые люди могут оспорить этот факт =) Такой вот философский камень.

Надо сказать, ловким получился переход к следующему параграфу:

Векторное поле

Если каждой точке некоторой области пространства поставлен в соответствие вектор с началом в данной точке, то говорят, что в этой области задано векторное поле.

Большую группу векторных полей образуют так называемые поля скоростей. Посмотрите на поле (которое с травкой) и мысленно очертите над ним произвольную пространственную область. Представьте, что над полем дует ветер – небольшой такой ураганчик для пущей наглядности. Теперь зафиксируем некоторый момент времени и каждой точке построенной области поставим в соответствие несвободный вектор, который характеризует:

а) направление движения воздуха в данной точке;
б) и скорость его движения в данной точке – чем выше скорость, тем длиннее вектор. Если в какой-то точке штиль, то ей сопоставляется нулевой вектор.

Множество этих векторов и образует векторное поле скорости ветра в данный момент времени.

Аналогично устроено поле скоростей течения жидкости – так, например, каждой точке реки в некоторый момент времени можно поставить в соответствие вектор, указывающий направление и скорость течения жидкости в этой точке.

Да чего там ветер и река, поле скорости можно смоделировать собственноручно, для этого достаточно взмахнуть рукой. Или даже моргнуть глазом.

* Далее по умолчанию считаем, что все дела происходят в декартовой системе координат

! Обозначения: векторные поля также обозначают буквой либо , а их компоненты через либо соответственно.

Из вышесказанного давно и очевидно следует, что, по меньшей мере математически, скалярные и векторные поля можно определить и во всём пространстве. Однако с соответствующими физическими примерами я всё же поостерёгся, поскольку таких понятий, как температура, гравитация (или других) ведь где-то может и вовсе не существовать. Но это уже не ужасы, а научная фантастика =) И не только фантастика. Ибо внутри камней ветер, как правило, не дует.

Векторные линии

Векторная линия

Постараюсь сформулировать попроще: каждая точка векторной линии является началом вектора поля, который лежит на касательной в данной точке:

Разумеется, векторы линии в общем случае имеют разную длину, так на приведённом рисунке, при перемещении слева направо их длина растёт – здесь можно предположить, что мы приближаемся, например, к магниту. В силовых физических полях векторные линии так и называют – силовыми линиями. Другой, более простой пример – это гравитационное поле Земли: его силовые линии представляют собой лучи с началом в центре планеты, причём векторы силы тяжести расположены прямо на самих лучах.

Векторные линии скоростных полей называются линями тока. Множество линий тока даёт нам представление о потоке жидкости или газа в данный момент времени. К слову, линия тока и траектория движения частицы – это не одно и то же. Если поле скоростей не меняется с течением времени (например, река с устоявшимся течением), то, да – мусоринки будут плыть по линиям тока. Такое поле называют стационарным, и в нём траектории движения частиц совпадают с линиями тока. Но представьте пыльную бурю – здесь линии тока в каждый момент разные, и поэтому мусоринка будет лететь по своей уникальной траектории, а вовсе не по какой-то конкретной линии тока.

Вообще, многие понятия теории поля пришли из гидродинамики, с чем мы ещё не раз столкнёмся.

если , то нужно решить систему ;
если , то систему ;
и если , то .

И что-то непозволительно давно у нас не было практики:

Найти силовые линии векторного поля

Решение: в данной задаче , поэтому решаем систему:

Первый диффур вообще халява:

– семейство плоскостей, параллельных координатной плоскости (представили в уме!).

Второй диффур – почти она же:), ну а зачем нам скоропостижные трудности?

– семейство (внимание!) параболических цилиндров, параллельных оси .

Ответ: искомое множество векторных линий:

Аналогичная задачка для самостоятельного решения:

Найти силовые линии векторного поля

Охарактеризуйте получившееся множество линий. Кстати, в условии явно не сказано, о каком поле идёт речь – плоском или пространственном. В подобных ситуациях рекомендую решать задачу для пространства – не ошибётесь ;-)

Краткое решение и ответ в конце урока.

Векторное поле градиентов

В каких отношениях вы находитесь с производной по направлению и градиентом? …ничего страшного, от ненависти до любви – один шаг =) Напоминаю, что градиент функции в точке – это несвободный вектор, указывающий направление максимального роста функции в данной точке и определяющий скорость этого роста.

Нахождение векторной функции градиентов – есть популярный и распространённый способ получить из скалярного поля поле векторное. При условии существования соответствующих частных производных функции двух и трёх переменных:

Смысл очень прост. Так, если функция задаёт скалярное поле глубины озера, то соответствующая векторная функция определяет множество несвободных векторов, каждый из которых указывает направление наискорейшего подъёма дна в той или иной точке и скорость этого подъёма.

Если функция задаёт скалярное поле температуры некоторой области пространства, то соответствующее векторное поле характеризует направление и скорость наибыстрейшего прогревания пространства в каждой точке этой области.

Разберём общую математическую задачу:

Дано скалярное поле и точка . Требуется:

1) составить градиентную функцию скалярного поля;

2) найти градиент поля в точке и вычислить его длину;

3) вычислить производную по направлению нормального вектора к поверхности в точке , образующего с положительной полуосью тупой угол.

Непосредственно к решению задачи это не относится, но сразу обратим внимание, что скалярное поле не определено на всех трёх координатных плоскостях .

1) Быстренько вспоминаем, как находить частные производные функции трёх переменных:

Составим функцию, которая определяет векторное поле градиентов:

И ещё раз – в чём её смысл? Полученная векторная функция каждой точке области определения скалярного поля ставит в соответствие вектор , указывающий направление и максимальную скорость роста функции в данной точке.

И один из таких векторов нам предстоит найти в следующем пункте:

2) Вычислим частные производные в точке :

Мерилом же этой максимальной скорости как раз является длина градиента:

3) Вычислим производную по направлению нормального вектора к поверхности в точке , образующего с положительной полуосью тупой угол.

Получено верное равенство. ОК.

Что это за поверхность – нас не интересует, нам важен её нормальный вектор в точке , да не абы какой, а образующий с полуосью тупой угол.

Вспоминаем материал ещё одного урока: вектор нормали к поверхности в точке задаётся следующим образом:

В данном случае:

, следовательно, угол между этими векторами острый, что нас не устраивает!

И поэтому нужно выбрать противоположно направленный нормальный вектор:

Заметим заодно, что нормальные векторы в отличие от градиентов – свободны, их задача лишь указать направление.

Вычислим направляющие косинусы данного направления, или, что то же самое – координаты единичного вектора, сонаправленного с вектором :

Таким образом, искомая производная по направлению:

Напоминаю, что это значение характеризует скорость роста функции в точке по направлению вектора , и оно не может оказаться больше, чем (максимальной скорости роста в данной точке).

Ответ:

Небольшой пример для самостоятельного решения:

Найти угол между градиентами скалярных полей и в точке

Потенциальное векторное поле

В физике есть конкретная математическая модель, описывающая гравитационные силы, но в соответствии с направленностью сайта, я приведу только общие формулы. Итак:

Векторное поле является потенциальным, если оно представляет собой поле градиентов некоторого скалярного поля . Функцию называют потенциальной функцией или просто потенциалом.

Работа потенциального векторного поля по перемещению материальной точки из точки в точку не зависит от траектории её движения и выражается следующим криволинейным интегралом 2-го рода:

, который равен разности потенциалов .

Иными словами, в потенциальном поле имеет значение лишь начальная и конечная точка маршрута. И если эти точки совпадают, то суммарная работа сил по замкнутому контуру будет равна нулю:

Давайте поднимем пёрышко с земли и доставим его в исходную точку. При этом траектория нашего движения опять же произвольная; можно даже бросить перо, снова его поднять и т.д.

Почему итоговый результат нулевой?

Таким образом, суммарная работа сил равна нулю:

Как я уже отмечал, физическое и обывательское понятие работы отличаются. И это различие вам хорошо поможет понять не пёрышко и даже не кирпич, а, например, пианино :)

Дружно поднимите пианино и спустите его по лестнице вниз. Потаскайте по улице. Сколько захочется и где захочется. И если никто не вызвал дурку занесите инструмент обратно. Вы поработали? Конечно. До седьмого пота. Но с точки зрения физики никакой работы не совершено.

Ротор векторного поля

Или его вихревая составляющая, которая тоже выражается векторами.

Снова возьмём в руки пёрышко и аккуратно отправим его в плавание по реке. Для чистоты эксперимента будем считать, что оно однородно и симметрично относительно своего центра. Ось торчит вверх.

Рассмотрим векторное поле скорости течения (считаем, что оно неизменно во времени), и некоторую точку водной поверхности, над которой находится центр пера.

Если векторное поле задано функцией , то его роторное поле задаётся следующей векторной функцией:

И, наконец, отвечаем на поставленный выше вопрос: в любой точке потенциального поля его ротор равен нулю:

, а точнее, нулевому вектору.

Потенциальное поле также называют безвихревым полем.

После чего с чистой совестью и повышенным тонусом можно вернуться к практическим задачам:

Показать, что векторное поле является потенциальным и найти его потенциал

Решение: условие прямо утверждает потенциальность поля, и наша задача состоит в доказательстве этого факта. Найдём роторную функцию или, как чаще говорят – ротор данного поля:

Для удобства выпишем компоненты поля:

Таким образом:
, следовательно, поле потенциально, а значит, представляет собой градиентную функцию некоторого скалярного поля, заданного потенциалом .

Функцию обычно находят одним из следующих способов:

1) Способ первый. Коль скоро так (см. выше), то:

Дальнейший алгоритм напоминает решение дифференциального уравнения в полных дифференциалах, только с бОльшим количеством шагов:

Но, с другой стороны . Приравниваем и упрощаем:


Но с другой стороны, . Приравниваем и упрощаем:

– получаем тем самым, искомую потенциальную функцию.

Проверку тут выполнить легче лёгкого, находим частные производные 1-го порядка:

которые совпали с соответствующими компонентами исходного поля , в чём и требовалось убедиться.

2) Способ второй. Потенциальную функцию можно найти при помощи формулы:
, где – точка с переменными координатами, а – некоторая фиксированная точка скалярного поля .

Легко видеть, что этот криволинейный интеграл определяет работу векторного поля от точки до точки и численно равен разности потенциалов , откуда, собственно, и получается нужная функция

Запишем сумму трёх интегралов для поля :

И на этом шаге я по возможности рекомендую выбрать точку (если функция и её производные в ней определены). После чего решение значительно упрощается:

Ответ:

Если начало координат выбрать нельзя, то задачу придётся решать в общем виде, в результате чего должна получиться разность . Любители трудностей могут вернуться к примеру и прийти к разности . Разумеется, это легальный и рабочий вариант – можно решать и так.

Пара полей для самостоятельного решения:

Выяснить, является ли следующие векторные поля потенциальными, и если да, то найти их потенциалы:

Обязано ли поле быть потенциальным в таких задачах? Конечно, нет, и отрицательный ответ – это тоже полноценный ответ. Примерный образец чистового оформления заданий внизу страницы.

Ну что же, теперь пришло время немного отдохнуть и увеличить ротор реки =) А именно нырнуть, искупаться и позагорать на солнце. Чтобы с новыми силами вернуться к столь увлекательной теме, а именно к потоку и циркуляции векторного поля

Спасибо за внимание и до скорых встреч!

Решения и ответы:

Пример 2: Решение: составим и решим систему:

Из 1-го уравнения:

Из 2-го уравнения:

Константу переобозначим через

Ответ: – семейства эллипсов, расположенные в плоскостях , параллельных плоскости .

Пример 4: Решение: вычислим частные производные функции в точке :

Составим градиент данного скалярного поля в точке и вычислим его длину:

Аналогично найдём градиент второго скалярного поля:

В результате:

Угол между градиентами найдём по формуле:

Таким образом:

Пример 6: Решение:

а) проверим, равен ли нулю ротор векторного поля:
.
В данном случае:

Следовательно,

Ответ: поле не потенциально.

Ответ: поле потенциально,

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Читайте также: