Теория активированного комплекса кратко

Обновлено: 08.07.2024

Теория активированного комплекса, без сомнения, является развитием идей Аррениуса. Согласно этой теории, элементарная реакция протекает непрерывно от начального до конечного состояния и проходит через переходное состояние, характеризующееся максимальной энергией. Говорят, что соответствующий этому состоянию комплекс является активированным комплексом. Изменение энергии в ходе реакции может быть представлено диаграммой энергии, как на рис. 5-1. В такой диаграмме по оси ординат можно откладывать различные величины энергии. Поскольку мы рассматриваем реакции в растворах, где разность энергий измеряется при постоянном давлении, разумно использовать энтальпию. Тогда разность молярных энтальпий начального и конечного состояний является энтальпией реакции а соответствующая разность для начального и переходного состояний — энтальпией активации (Для обозначения величин, относящихся к активированному комплексу, используют надстрочный индекс в виде двойного крестика.) Абсцисса соответствует координате реакции, представляющей собой глубину протекания реакции. Следует заметить, что имеется несколько проблем, связанных с физическим смыслом таких диаграмм энергий. Проблема возникает из-за смешения микроскопического и макроскопического поведения вещества. Очевидно, координата реакции соответствует пути отдельной молекулы, а не совокупному поведению всех частиц, присутствующих в реакционном сосуде. Если бы все реагирующие частицы одновременно преодолевали энергетический барьер, это было бы несовместимо со вторым законом термодинамики. В то же время

Рис. 5-1. Диаграмма энергии для эндотермической элементарной реакции.

Предполагается, что активированный комплекс находится в равновесии с исходными реагентами, и уравнение элементарной реакции второго порядка

можно представить в виде

Тогда по аналогии с уравнением константу скорости реакции можно записать как

где К — константа равновесия, Константу скорости к можно рассматривать как частоту распада активированного комплекса, благодаря которой образуется продукт. Эйринг предложил считать к равной Отсюда

где — постоянные Больцмана и Планка соответственно. Константа равновесия связана с изменением свободной энергии Гиббса:

Гиббсову свободную энергию активации можно выразить через энтальпию активации и энтропию активации, т.е.

Подстановка (5-11) и (5-10) в приводит к уравнению Эйринга

или, в логарифмической форме,

которую удобно преобразовать к виду

Скорость химической реакции увеличивается с повышением температуры. Приблизительно оценить влияние температуры на скорость реакции можно по правилу Вант-Гоффа:

при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2 ¸ 4 раза.

где g - температурный коэффициент Вант-Гоффа.

k (T1) и k (T2) – константы скорости реакции при температурах Т1 и Т2 .

Для биологических процессов важен определенный температурный интервал, вне которого процесс прекращается. В этом интервале увеличение температуры активизирует протекание жизненно важных процессов до оптимального, а последующее повышение температуры быстро снижает скорость процесса вплоть до прекращения жизнедеятельности организма. Это связано с необратимой тепловой денатурацией белков биологических тканей, а также с инактивацией ферментов (биологических катализаторов).

Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса. Уравнение Аррениуса в дифференциальной форме:

где kск константа скорости реакции

R – универсальная газовая постоянная: R=8,314 Дж/моль∙К

Еа - энергия активации.

Энергия активации - та избыточная энергия (по сравнению со средней энергией молекул), которой должны обладать сталкивающиеся молекулы, чтобы быть способными к химической реакции (рис.)

Активация вызывается повышением температуры, действием электрического поля, действием квантов света и т.д. Энергия активации Еа постоянна в данном температурном интервале и определяется механизмом реакции.

Теоретические представления о механизме химических реакций.

Понятие о теории активных соударений.

Для того чтобы произошла химическая реакция, необходимо, чтобы частицы столкнулись. Скорость реакции пропорциональна общему числу двойных столкновений в единицу времени в единице объема

где q – коэффициент пропорциональности.

В теории соударений используются следующие допущения:

1. Частицы бесструктурны – это шары с радиусом r;

2. В момент соударения молекулы ведут себя как упругие шары. Т.е. суммарная энергия молекул до и после соударения остается постоянной, но может перераспределяться между молекулами.

3. Реагируют только молекулы, которые обладают энергией активации.

4. Число двойных активных столкновений определяется соотношением:

где zобщ – общее число столкновений,

zакт – число активных столкновений,

- доля активных столкновений, равная множителю Больцмана . Он тем меньше, чем больше энергия активации.

5. Процесс превращения исходных веществ в продукты происходит мгновенно в момент соударения активных молекул.

6. Скорость реакции А+В=С

Роль стерического фактора:

Стерический фактор характеризует вероятность реакции между молекулами, энергия которых и учитывает необходимость определенной ориентации реакционноспособных молекул в момент столкновения.

откуда предэкспоненциальный множитель А=Рz0.

Недостатки теории активных соударений.

1) бесструктурность частиц – они рассматриваются как шары

2) элементарный акт рассматривается как мгновенный, в действительности это сложный процесс перераспределения связей, требующий определенного времени.

Теория активных соударений объясняет много разнообразных факторов, но не объясняет влияния на скорость реакции растворителя, давления, добавок инертных газов, не позволяет сделать теоретическую оценку стерического фактора.

Понятие о теории активированного комплекса (переходного состояния)

Теория основывается на квантовых представлениях о строении молекул и химической связи. Она должна решить следующие задачи:

1) рассмотреть энергетику взаимодействия реагирующих частиц с целью определения энергии активации;

2) рассчитать константы скорости химической реакции при известной энергии активации.

Рассмотрим бимолекулярную реакцию

Считается, что частицы уже активированы, т.е. рассматриваем сам элементарный акт реакции, происходящий во времени.

При сближении активированных молекул взаимодействие между ними начинается еще до столкновения – старая связь ослабевает, но еще не разрушена, при этом одновременно образуется новая связь. Таким образом, образуется трехатомный конгломерат (активированный комплекс), который находится в равновесии с исходными веществами и затем распадается на продукты.

Активированный комплекс устойчив во всех направлениях, кроме пути реакции. Т.е. активированный комплекс может распасться только на продукты реакции.

Путь или координата реакции – это взаимосвязанное изменение совокупности межъядерных расстояний при переходе от начальной конфигурации атомов к конечной, сопровождающееся минимальным изменением потенциальной энергии. Сечение поверхности потенциальной энергии вдоль пути реакции называется профилем пути реакции

Из хода кривой видно, что в процессе элементарного акта химического превращения система должна преодолеть потенциальный барьер, равный энергии активации. Истинная энергия активации представляет собой разность энергий активированного комплекса и исходных молекул, отсчитанных от нулевого колебательного уровня. Ее обозначают . Область состояния вблизи потенциального барьера можно рассматривать как переходное состояние. Для большинства элементарных реакций система, достигнувшая области переходного состояния, неизбежно перейдет в конечное состояние, т.е. перевалит через барьер.

Для определения необходимо построить поверхность потенциальной энергии U(q), т.е. знать зависимость потенциальной энергии от координаты реакции. Для этого необходимо решить уравнение Шредингера, что возможно только для простейших систем.

Расчет константы скорости элементарной реакции при заданной энергии активации основан на постулатах:

1. Распределение молекул по энергиям и скоростям подчиняется распределению Максвелла-Больцмана. Превращение активных комплексов в продукты реакции не нарушает этого распределения, т.е. доля активных частиц в ходе реакции не изменяется, и поэтому концентрацию активных комплексов можно вычислить из распределения Максвелла-Больцмана.

2. Реакция протекает адиабатически. Адиабатическое приближение состоит в том, что система взаимодействующих атомов делится на две подсистемы – медленную подсистему ядер и быструю подсистему электронов, которая успевает быстро, безынерционно перестроиться при изменении конфигурации ядер. Поэтому можно рассматривать только одну поверхность потенциальной энергии для ядер, которые и должны преодолеть энергетический барьер в ходе реакции.

3. Активированный комплекс находится в равновесии с исходными веществами

Активированный комплекс существует не при определенном значении межъядерных расстояний, а в каком-то интервале δ, следовательно, время жизни комплекса

Серьезным недостатком теории переходного состояния является отсутствие экспериментальных данных о строении активированного комплекса, что затрудняет ее применение. Несмотря на это, благодаря сравнительной простоте математического аппарата она является наиболее широко используемой теорией кинетики элементарных химических реакций, позволяет правильно объяснить и полуколичественно предсказать много закономерностей для кинетики химических реакций.

Катализ

Явление катализаэто изменение скорости реакции под действием некоторых веществ, которые к концу реакции остаются в химически неизменном виде.

1) положительный – под действием некоторых веществ скорость реакции увеличивается;

2) отрицательный: под действием некоторых веществ скорость реакции уменьшается, такие вещества называются ингибиторами;

3) автокатализ: катализатором являются продукты реакции;

4) гомогенный: катализатор и реагенты находятся в одной фазе (газ или раствор);

5) гетерогенный: катализатор и реагенты находятся в разных фазах;

6) ферментативный: катализатором является биологический фермент.

1) катализатор принимает участие в химической реакции, образуя промежуточные продукты, но в конце реакции выделяется в химически неизменном виде. Физическое состояние катализатора, входящего в активный комплекс, может существенно изменяться, например, уменьшатся размеры зерен твердого катализатора, изменится структура поверхностных слоев;

2) катализатор не смещает положение равновесия, а лишь увеличивает скорость прямой и обратной реакции в равной степени;

3) действие катализатора является специфичным (селективным);

4) катализатор увеличивает скорость реакции за счет уменьшения Еакт, ведет реакцию по пути с меньшим энергетическим барьером.

Гомогенный катализ

Рассмотрим схему реакции, протекающей без катализатора:

В присутствии катализатора реакция протекает в несколько стадий:

Это уравнение лежит в основе кинетики гомогенных каталитических реакций. Из уравнения видно, что скорость процесса прямо пропорциональна концентрации катализатора, исключение составляют лишь случаи, когда катализатор находится в большом избытке, в результате чего скорость процесса лимитируется не кинетическими, а физическими закономерностями, например, диффузией растворенного вещества к катализатору.

Энергетический профиль каталитической реакции представлен на рисунке 4.


Рис.4. Энергетические профили
реакций с катализатором и без него.
Е1 – энергия активации некаталитической реакции,
Е2 – каталитической реакции

В ранних исследованиях предполагалось, что поверхность катализатора энергетически однородна (Лэнгмюр). В дальнейшем была экспериментально доказана адсорбционная неоднородность поверхности. Возникло представление о том, что каталитически активны только определенные участки поверхности, на которых имеются адсорбционные центры. Здесь вещество способно образовать активное для протекания данного каталитического процесса промежуточное поверхностное соединения, благодаря чему понижается энергия активации реакции.

Гетерогенный катализ

В случае гетерогенного катализа реакции происходят на границе раздела фаз.

Гетерогенный катализ состоит из следующих стадий:

1. массоперенос реагентов к катализатору;

2. абсорбция – образование абсорбированного комплекса между реагентом и катализатором;

3. каталитическая реакция – образование продукта в основном адсорбированном состоянии;

4. десорбция продукта;

5. внутренний массоперенос (изнутри катализатора);

6. внешний массоперенос (из области реакции).

Для придания катализаторам большей избирательности, термической стойкости, механической прочности и активности их часто применяют в форме многокомпонентных систем: смешанных, на носителях, промотированных катализаторов.

Промоторы - это вещества, которые не обладают каталитическими свойствами, но добавление их к катализатору значительно увеличивает его активность.

Каталитические яды - это вещества, понижающие активность катализатора.

Активность катализаторов оценивают либо количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы массы катализатора, или количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы поверхности катализатора.

Ферментативный катализ

Ферментативными реакциями называются такие химические процессы в биологических системах, скорость которых регулируется веществами биологического происхождения. Это белковые молекулы, называемые ферментами или энзимами.

Ферментативный катализ играет огромную роль в жизнедеятельности организма. Широкое применение получили ферментные препараты при нарушениях функции желудочно-кишечного тракта, связанных с недостаточной выработкой пищеварительных ферментов (пепсин, панкреатин). При ожогах, гнойных ранах, гнойно-воспалительных заболеваниях легких, когда необходимо разрушить накопившиеся в большом количестве белковые образования, применяются протолитические ферменты, приводящие к быстрому гидролизу белков и способствующие рассасыванию гнойных скоплений. Для лечения инфекционных заболеваний используются препараты лизоцина, которые разрушают оболочку некоторых болезнетворных бактерий. Очень важные ферменты, которые рассасывают тромбы (сгустки крови внутри кровеносных сосудов) – плазмин, трипсин, химотрипсин, на их основе с разными добавками созданы различные лекарственные препараты – стрептокиназа, стрептаза, и т.п., широко применяемые в медицине.

Выделения ферментов в особый класс катализаторов обусловлен особыми свойствами этих веществ:

1) высокая специфичность;

2) эффективность действия;

3) биологические катализаторы образуются и разрушаются в процессе
жизнедеятельности организма.

По своей каталитической активности биологические катализаторы в тысячи раз превышают неорганические. Специфичность действия связана с особенностями структуры фермента и субстрата. Одни части каталитической системы выполняют функции, главным образом связанные с пространственной организацией системы, другие в этой организационной системе осуществляют собственно катализ. Т.е., как и при неферментативном катализе, в каталитической реакции участвует не вся белковая молекула в целом, а лишь определенные ее участки – активные центры фермента.

Простейшая схема ферментативного катализа включает обратимое образование промежуточного комплекса фермента (Е) с реагирующим веществом (субстратом S) и разрушение этого комплекса с образованием продуктов реакции (Р):

Течение химических реакций может быть заторможено присутствием некоторых веществ. Ингибиторы ферментативного катализа, способны образовывать комплексы с ферментом или фермент-субстратным комплексом.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.011)


АКТИВИ́РОВАННОГО КО́МПЛЕКСА ТЕО́РИЯ (тео­рия аб­со­лют­ных ско­ро­стей ре­ак­ций, тео­рия пе­ре­ход­но­го со­стоя­ния), ме­тод ста­ти­стич. рас­чё­та ско­ро­сти хи­мич. ре­ак­ции. Ис­хо­дит из пред­став­ле­ния, со­глас­но ко­то­ро­му при не­пре­рыв­ном из­ме­не­нии от­но­сит. рас­по­ло­же­ния ато­мов, вхо­дя­щих в реа­ги­рую­щую сис­те­му мо­ле­кул, сис­те­ма про­хо­дит че­рез кон­фи­гу­ра­цию, от­ве­чаю­щую мак­си­му­му по­тен­ци­аль­ной энер­гии взаи­мо­дей­ст­вия, т. е. вер­ши­не по­тен­ци­аль­но­го барь­е­ра, раз­де­ляю­ще­го реа­ген­ты и про­дук­ты. А. к. т. бы­ла соз­да­на в 1930-х гг. Э. Виг­не­ром, М. По­ля­ни, М. Эван­сом, Г. Эй­рин­гом.

Читайте также: