Свойства искусственных радионуклидов кратко

Обновлено: 05.07.2024

Ю.А. Александров
Основы радиационной экологии
Учебное пособие. – Йошкар-Ола: Мар. гос. ун-т, 2007. – 268 с.

2.4. Экологическая характеристика искусственных радиоактивных изотопов

В эту группу входят радионуклиды, которых нет в природе. Лишь некоторые из них в ничтожных количествах встречаются в горных породах. Основная же их масса появилась в середине XX столетия в результате деятельности человека. Это продукты деления радиоизотопов, используемых при атомных взрывах и управляемых ядерных реакциях.

Искусственные радионуклиды легко включаются в пищевые цепи и накапливаются в живых организмах. Энергия частиц, испускаемых этими изотопами, колеблется от 0,1 до 5 МэВ. Искусственные радионуклиды приведены в таблице 24. В этом списке отсутствуют крайне короткоживущие радиоизотопы, которые не представляют интереса для экологии.

Таблица 24 – Искусственные радиоактивные изотопы, имеющие
важное значение в экологии

Появление искусственных радионуклидов обусловлено деятельностью человека. Главными физическими процессами, в результате которых образуются искусственные радионуклиды, являются ядерное деление, ядерный синтез и нейтронная активация.

Среди искусственных радионуклидов основное экологическое значение имеют изотопы цезия, стронция, рутения, церия, йода и плутония, поскольку они обладают высоким выходом в ядерных реакциях.

Несмотря на то что большая часть (рис. 11.3) радиационного воздействия на человека связана с естественными радионуклидами, именно техногенное воздействие может быть сконцентрировано во времени и пространстве в густонаселенных районах и представляет наибольшую опасность для населения.

Захоронение радиоактивных материалов. Халатное отношение к хранению и использованию технических устройств, в которых используются радиоизотопы.

Наиболее крупные очаги загрязнения природной среды радионуклидами формируются при ядерных испытаниях и авариях на АЭС. Данные о выбросах некоторых радиоактивных изотопов при ядерных взрывах и авариях приведены в табл. 11.5.

В России и на территории сопредельных государств существуют пять крупных специфических очагов загрязнения: Новоземельский (Россия), Чернобыльский (Украина, Россия, Белоруссия), Южно- Уральский (Россия), Семипалатинский (Казахстан), Лобнорский (Монголия) (Панин, 2002).

Источники загрязнения внешней среды радиоактивными изотопами. Биологическое действие йода-131, накопление радионуклида в органах и профилактика поступления в организм человека. Определение 137Сs в организме. Ингаляционное поступление изотопов плутония.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 14.03.2013
Размер файла 20,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Краткая характеристика радионуклидов

1. Йод-131

Йод-131 - радионуклид с периодом полураспада 8.04 сут., бета- и гамма-излучатель. Источниками загрязнения внешней среды являются ядерные взрывы и предприятия ядерно-энергетического цикла. Йод характеризуется высокой миграционной способностью. Поступая во внешнюю среду и включаясь в биологические цепи миграции, он становится источником внешнего и внутреннего облучения. Радиоактивные изотопы могут поступать в организм человека через органы пищеварения, дыхания, кожу, раневые и ожоговые поверхности. Как источник поступления в организм человека йода особое значение могут иметь продукты питания животного и растительного происхождения, особенно молоко, свежие молочные продукты, листовые овощи.

Биологическое действие йод-131 связано с особенностями функционирования щитовидной железы. Ее гормоны имеют в своем составе атомы йода. Поэтому в норме щитовидная железа поглощает около 50% поступающего в организм йода. Естественно, железа не отличает радиоактивные изотопы йода от стабильных. Щитовидная железа детей в три раза активнее поглощает попавший в организм радиойод. Кроме того, йод-131 легко проникает через плаценту и накапливается в железе плода. Накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу - дисфункции щитовидной железы. Возрастает также риск злокачественного перерождения тканей. У женщин риск развития опухолей в четыре раза выше, чем у мужчин, у детей в три-четыре раза выше, чем у взрослых.

Величина и скорость всасывания, накопление радионуклида в органах, скорость выведения из организма зависят от возраста, пола, содержания стабильного йода в диете и других факторов. В этой связи при поступлении в организм одинакового количества радиоактивного йода поглощенные дозы значительно различаются. Особенно большие дозы формируются в щитовидной железе детей, что связано с малыми размерами органа, и могут в 2-10 раз превышать дозы облучения железы у взрослых.

Йод, поступающий в организм, быстро всасывается в кровь и лимфу, концентрируется в органах и тканях в следующем убывающем порядке: щитовидная железа, почки, печень, мышцы, кости. Основным органом выделения йода-131 являются почки. Период полувыведения: из целостного организма-138 суток, щитовидной железы-138, печени-7, почек-7, селезенки-7, скелета-12 суток.

Профилактика поступления йода-131 в организм человека

Эффективно предотвращает поступление радиоактивного йода в щитовидную железу прием препаратов стабильного йода. При этом железа полностью насыщается йодом и отвергает попавшие в организм радиоизотопы. Прием стабильного йода даже через 6 ч после разового поступления 131I может снизить потенциальную дозу на щитовидную железу примерно в два раза, но если отложить йодопрофилактику на сутки, эффект будет небольшим. Поступление йода-131 в организм человека может произойти в основном двумя путями: ингаляционным, т.е. через легкие, и пероральным - через потребляемые молоко и листовые овощи.

При работе в зоне, загрязненной радиоизотопами йода, с целью профилактики прием ежедневно йодида калия (под врачебным присмотром). Дезактивация кожных покровов водой с мылом, промывание носоглотки и полости рта. Рвотные средства или промывание желудка. Отхаркивающие с повторным назначением йодистых солей и тереостатиков. Обильное питье, мочегонные.

2. Цезий-137

Цезий-137 - бета-излучатель с периодом полураспада 30.174 года. 137Сs открыт в 1860 г. немецкими учеными Кирхгофом и Бунзеном. Название получил от латинского слова caesius - голубой, по характерной яркой линии в синей области спектра. В настоящее время известно несколько изотопов цезия. Наибольшее практическое значение имеет 137Сs, один из наиболее долгоживущих продуктов деления урана. В небольших количествах радиоактивные изотопы цезия содержатся практически во всех объектах внешней среды.

Ядерная энергетика является источником поступления 137Сs в окружающую среду. Согласно опубликованным данным в 2000 году реакторами АЭС всех стран мира в атмосферу было выброшено около 22,2 х 1019 Бк 137Сs. Выброс 137Сs осуществляется не только в атмосферу, но и в океаны с атомных подводных лодок, танкеров, ледоколов, оснащенных ядерно-энергетическими установками.

После аварии на ЧАЭС во внешнюю среду поступило 1.0 МКи цезия-137. В настоящее время это основной дозообразующий радионуклид на территориях, пострадавших от аварии на Чернобыльской АЭС. От его содержания и поведения во внешней среде зависит пригодность загрязненных территорий для полноценной жизни.

Почвы Украинско-Белорусского Полесья имеют специфическую особенность - цезий-137 плохо фиксируется ими и, как следствие, он легко поступает в растения через корневую систему. Поэтому еще в доаварийные времена содержание этого радионуклида в выращенной здесь продукции было в 35-40 раз выше, чем в центральных районах страны. После аварии на ЧАЭС людей пришлось отселять из наиболее пострадавших районов вовсе не из-за опасно высокого радиационного фона - там стало невозможным ведение сельского хозяйства.

Изотопы цезия, являясь продуктами деления урана, включаются в биологический круговорот и свободно мигрируют по различным биологическим цепочкам. В настоящее время 137Сs обнаруживается в организме различных животных и человека. Следует отметить, что стабильный цезий входит в состав организма человека и животных в количествах от 0,002 до 0,6 мкг на 1 г мягкой ткани.

Всасывание 137Сs в ЖКТ животных и человека составляет 100%. В отдельных участках ЖКТ всасывание 137Сs происходит с различной скоростью. По данным ученых через час после введения всасывается по отношению к введенной дозе: в желудке всасывается 7% 137Сs, в двенадцатиперстной кишке-77%, в тощей-76%, в подвздошной-78%, в слепой-13%, в поперечно-ободочной кишке-39%.

Через дыхательные пути в организм человека поступление 137Сs составляет 0,25% величины, поступающей с пищевым рационом. После перорального поступления цезия значительные количества всосавшегося радионуклида секретируются в кишечник, затем реабсорбируются в нисходящих отделах кишечника. Степень реабсорбции цезия может существенно различаться у разных видов животных. Поступив в кровь, он сравнительно равномерно распределяется по органам и тканям. Путь поступления и вид животного не влияют на характер распределения изотопа.

В организме северных оленей, после однократного введения, 137Сs распределятся таким образом: в мышцах накапливается 100%, в почках - 79, сердце - 67, селезенке - 60, легких - 55, печени - 48%.

Определение 137Сs в организме человека проводят по измерению гамма-излучения от тела и бета-, гамма-излучению от выделений (моча, кал). Для этой цели используют бета-гамма-радиометры и счетчик излучений человека (СИЧ). По отдельным пикам спектра, соответствующим различным гамма-излучателям, можно определить их активность в организме. С целью профилактики радиационных поражений 137Сs все работы с жидкими и твердыми соединениями рекомендуется проводить в герметичных боксах. Для предупреждения попадания цезия и его соединений внутрь организма необходимо использовать средства индивидуальной защиты и соблюдать правила личной гигиены.

Неотложная помощь при остром поражении изотопами цезия

Неотложная помощь при поражении изотопами 137Сs заключается в дезактивации рук и лица водой с мылом, моющими порошками. Необходимо провести промывание носоглотки и ротовой полости водой или физиологическим раствором. Для ускорения выведения цезия из организма рекомендуют применять в качестве сорбентов: ферроцин или бентонит, с последующим вызыванием рвоты или обильное промывание желудка водой. Внутривенное введение лимоннокислого натрия 10%. Мочегонные с водной нагрузкой. Внутрь димедрол, антибиотики. Допустимое поступление 137Сs в организм человека не должно превышать 7,4х102 Бк/сутки.

3. Стронций-90

Стронций -90 - чистый бета-излучатель с периодом полураспада 29.12 лет. Как и 137Сs, 90Sr может находиться в растворимой и нерастворимой в воде формах. После аварии на Чернобыльской АЭС во внешнюю среду его попало сравнительно немного - суммарный выброс оценивается в 0,22 МКи. Практически весь попавший в организм стронция-90 концентрируется в костной ткани. Объясняется это тем, что стронций - химический аналог кальция, а соединения кальция - основной минеральный компонент кости. У детей минеральный обмен в костных тканях интенсивней, чем у взрослых, поэтому в их скелете стронций-90 накапливается в большем количестве, но и выводится быстрее.

Радиоактивный стронций поступает в организм через ЖКТ, легкие, кожу, быстро всасывается из легких. Уровни всасывания из ЖКТ колеблются от 5 до 100%.

Величина всасывания радионуклида из ЖКТ уменьшается с увеличением возраста, с повышением содержания кальция и фосфора в диете, при введении высоких доз тироксина. Всасывание стронция увеличивается в период лактации.

Независимо от пути и ритма поступления в организм растворимые соединения радиоактивного стронция избирательно накапливаются в скелете. В мягких тканях задерживается менее 1%.

Для человека период полувыведения стронция-90 - 90-154 суток. От депонированного в костной ткани стронция-90 страдает, в первую очередь, красный костный мозг - основная кроветворная ткань, которая к тому же очень радиочувствительная.

От стронция-90 накопленного в тазовых костях, облучаются генеративные ткани. Поэтому для этого радионуклида установлены низкие ПДК - примерно в 100 раз ниже, чем для цезия-137.

В организм стронций-90 поступает только с пищей, причем в кишечнике всасывается до 20% от его поступления.

После аварии на чернобыльской АЭС вся территория со значительным загрязнением стронцием-90 оказалась в пределах 30 - километровой зоны. Большое количество стронция-90 попало в водоемы, но в речной воде его концентрация нигде не превышала предельно допустимой для питьевой воды.

4. Плутоний-239

В декабре 1940 года был открыт изотоп плутония Pu-238, с периодом полураспада ~90 лет, через год - более важный Pu-239 с периодом полураспада ~24 000 лет, альфа-распад (гамма).

В природе плутоний-239 образуется в урановых рудах. Изотопы плутония получаются в урановых реакторах, а также образуются при испытаниях ядерного оружия.

Поверхностные слои почвы и донные отложения в настоящее время являются основным резервуаром плутония (более 99% поступившего в окружающую среду элемента). Основное количество плутония, находящегося в почве, присутствует в нерастворимой форме. В зависимости от источника поступления и состава почвы до 10% всего количества плутония может находиться в растворимой, доступной для усвоения растениями форме.

Ингаляционное поступление изотопов плутония наблюдается у работников плутониевых заводов, у проживающих вблизи предприятий по переработке ядерного топлива, у людей, вдыхающих глобальный плутоний. Период полувыведения плутония из легких человека составляет 250-500 суток.

Токсическое действие определяется воздействием альфа-излучения на органы и ткани. Особую опасность представляет инкорпорация плутония, т.к. в этом случае энергия альфа-частиц будет реализована полностью. Различают острое, подострое и хроническое лучевое поражение плутонием.

Плутоний-239 в 2-45 раз токсичнее радия-226, в 45-200 раз токсичнее стронция.

Сегодня в мире много людей, облученных плутонием. Плутоний концентрируется в жизненно важных органах - костном мозге, печени, что опасно для человека. До сих пор наука не дала ответа, как, в каких количествах распределяется этот элемент в разных частях организма.

С воздухом в организм человека поступает едва ли больше 1% всей радиоактивности, примерно 5% попадает с водой, но основная опасность - это радионуклиды в пище (94%).

загрязнение изотоп плутоний йод

При радиационных авариях основную опасность представляет радиоактивное загрязнение. Радиоактивные изотопы - радионуклиды попадают внутрь организма при вдыхании радиоактивных частиц, с продуктами питания. Они накапливаются в определенных органах и тканях, что приводит к их облучению. В основе профилактики поражения от радионуклидов, попавших в организм, лежит ускорение выведения их из организма, а также общее повышение сопротивляемости организма различным заболеваниям.

Защита человека от вредного воздействия радиации обеспечивается системой нормативов, основанных на современных знаниях и представлениях о характере биологического действия ионизирующего излучения.

Обеспечение радиационной безопасности, в соответствии с нормами, базируется на трех принципах:

1) Нормирования, согласно которому не должны быть превышены допустимые пределы облучения граждан от всех источников излучения.

2) Обоснования, запрещающего использование источников излучения, если вред, причиненный дополнительным облучением от этих источников, будет больше, чем польза от их использования для человека и общества.

3) Оптимизации, т.е. поддержания индивидуальных доз облучения и числа облучаемых людей на возможно низком и достижимом уровне, с учетом экономических и социальных факторов.

Список источников

1. Основы радиационной безопасности под редакцией И.Я. Гапановича, Мн., БГЭУ 2002;

2. Радиоэкология йода Ф.А. Тихомиров, 1983;

3. Бударников В.А., Киршин В.А., Антоненко А.Е. Радиобиологический справочник. - Мн., 1992

Подобные документы

Ядерные ионизирующие излучения, их источники и биологическое воздействие на органы и ткани живого организма. Характеристика морфологических сдвигов на системном и клеточном уровнях. Классификация последствий облучения людей, радиозащитные средства.

презентация [3,8 M], добавлен 24.11.2014

Определение удельного выгорания топлива ядерного реактора. Содержание изотопов урана в природном и обогащенном его вариантах. Анализ эволюции изотопов плутония во время кампании, изменение весового соотношения продуктов деления к концу кампании.

курсовая работа [678,8 K], добавлен 11.03.2013

Расчет скорости удельного выгорания. Содержание изотопов урана в природном и обогащенном топливе. Изменение активности для 10 временных точек в абсолютных единицах. Характеристики радионуклидов цепочки. Определение содержания стабильного радионуклида.

курсовая работа [234,6 K], добавлен 22.06.2015

Природа ультрафиолетового излучения, его диапазон и действие на клетку, кожу и атмосферу. Искусственные источники ультрафиолетового излучения: бактерицидные лампы и облучатели. Бактерицидное и биологическое действие ультрафиолетового излучения.

курсовая работа [83,1 K], добавлен 01.02.2011

Электромагнитное поле, его характеристики и источники. Влияние электромагнитных лучей, исходящих от сотовых телефонов, на организм человека. Источники радиационного излучения: естественные и созданные человеком. Термины и единицы измерения радиации.

Явление радиоактивности было открыто в 1896 году Беккерелем. Он обнаружил, что соли урана испускают лучи, способные проникать через слои прозрачных веществ, ионизировать воздух, действовать на фотографическую пластинку, вызывать люминесценцию ряда веществ.

Радиоактивность - это самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента.

Это явление сопровождается убылью вещества и часто называется радиоактивным распадом.

Особенности:

a. Всегда происходит с выделением энергии.

b. Осуществляется по единому закону (закону радиоактивного распада).

c. Ограничен ≈ 10 видами распада (α-распад, β-распад, γ-распад, нейтронный, протонный и т.д. распады).

Радиоактивность
Естественная. Искусственная.
¯ ¯
Не зависит от внешних условий, происходит в естественно встречающихся элементах вещества. Осуществляется за счет естественных радиоактивных изотопов - первичных и вторичных. Радиоактивность элементов веществ, созданных человеком, независимо от того, существуют они в природе или нет.

Оба вида радиоактивности не имеют физических различий и подчиняются одинаковым законам.

Естественные радиоактивные изотопы и их характеристика.

Естественная радиоактивность осуществляется за счёт радиоактивных изотопов.

Изотопы - это разновидность атомов с одинаковыми зарядами ядра, но с разными массовыми числами: 1 1H(протий), 2 1H (дейтерий), 3 1H (тритий).

Естественные радиоактивные изотопы делят на первичные и вторичные.

1. Первичные - образованы в земной коре при формировании Земли. Сейчас остались только первичные изотопы, имеющие период полураспада Т > 10 8 лет. К ним относятся члены радиоактивных семейств:

A. Семейство урана - радия.

Уран (238) - родоначальник семейства 238 92U в результате 14 радиоактивных превращений дает устойчивый изотоп свинца. 206 82Pb

Б. Семейство тория 232 90Th (Т = 1,39 · 10 10 лет) в результате 10 превращений даёт изотоп свинца. 208 32Pb

B. Семейство актиния 235 92U (Т = 7,3 · 10 8 лет) в результате 11 превращений даёт изотоп свинца. 207 32Pb

2. Вторичные - образуются под действием первичных изотопов или под действием космических лучей (протоны, α - частицы, ядра С, N, O2, фотоны).

А. Подчиняются законам динамического равновесия: их образование уравновешивается распадом.

Б. Они включены в состав живых организмов. Большое биологическое значение имеет вторичный изотоп 14 С, который образуется из атмосферного азота под действием космических нейтронов. Изотоп углерода 14 С в виде СО2 (углекислого газа) усваивается растениями => животными => человеком. При гибели живых растении и животных радиоактивность в них начинает убывать и по степени убыли можно определить возраст различных ископаемых.

Искусственные радиоактивные изотопы, их виды и характеристика.

Искусственная радиоактивность была открыта в 1934 году Ирен и Фредериком Кюри. Они обнаружили, что если долго облучать некоторые вещества α - частицами, то эти вещества сами становятся радиоактивными.

Радиоактивные изотопы (радионуклиды) можно получить при бомбардировке протонами, нейтронами, α - частицами, при поглощении γ - квантов большой энергии. Радиоактивные изотопы изготавливают на ядерных реакторах и в ускорителях заряженных частиц. В настоящее время получены радиоактивные изотопы всех химических элементов, встречающихся в природе. Они активно используются в науке и технике.

Различают 3 основных метода:

1. Метод меченых атомов - использует радиоактивность как сигнал о присутствии данного изотопа. В качестве "метки" используют радионуклиды, которые можно легко обнаружить и измерить, зная их период полураспада, тип и энергию излучения. В качестве радиоактивных меток применяют: 3 Н, 14 С, 32 Р, 35 Са, 59 Fe, 131 I, 95 Nb, 60 Co, 24 Na

2. Методы, использующие большую проникающую способность радиоактивного излучения - определение структуры молекул.

3. Методы, использующие действие самого излучения - используют для изучения распределения веществ в системе и пути их перемещения, для выяснения механизма химической реакции, для количественного анализа.

Медицинское применение.

В медицине широко используются радиоактивные изотопы, т.к. они довольно быстро выводятся из организма, относительно недороги и обладают необходимой избирательностью действия. Применяются в диагностике, исследовании и лечении некоторых заболеваний.

1. Радиоизотопная диагностика - это физический метод применения радиоактивных изотопов для распознавания болезней и изучения функций организма.

Особенности:

A. Очень высокая чувствительность (10 -19 гр. вещества)

Б. Высокая специфичность метода (при анализе нельзя спутать 2 изотопа, каждый имеет свой спектр).

B. Возможность применения малых доз изотопа.

Г. Не разрушаемость живого организма.

Д. Простота и точность регистрации.

Виды методов:

1. Метод разведения. Суть: вводят изотоп в организм в определённой концентрации, берут пробы, сравнивают активность пробы с активностью введённого препарата и судят о разведении изотопа в организме.

2. Метод изучения скорости введения изотопа. После введения изотопа через некоторое время берут пробы и сравнивают активность; делают вывод, например, о выделительной функции почек.

3. Метод распределения изотопов (метод меченых атомов). Основан на избирательном скоплении изотопов в отдельных тканях. С помощью специальной аппаратуры определяют топографию и особенности щитовидной железы ( 131 I), определяют скорость кровотока ( 24 Na) и т.д.

2. Радиоизотопная терапия - совокупность методов лечения заболеваний радиоактивными изотопами. В её основе лежит биологическое действие радиоактивного излучения и избирательное накопление изотопов при их введении внутрь.

A. Для лечения злокачественных опухолей:

60 Сo помещается в излучатель специальной формы, и излучение направляется на участок, подлежащий лечению.

198 Au вводится в виде коллоидного раствора непосредственно в опухоль. Золото не вступает в биохимическую реакцию с тканями и облучение тканевых клеток продолжается до тех пор, пока сохраняется активность препарата. Лучевого поражения при этом не возникает, т.к. Т = 2,7 суток.

Б. Для лечения болезней крови.

32 Р концентрируется в трубчатых костях и, распадаясь, излучает β - лучи, которые облучают костный мозг, что во многих случаях восстанавливает функцию кроветворения.

B. Для лечения кожных и глазных заболеваний.

32 Р и 90 Sr - фильтрованную бумагу пропитывают раствором радиоактивного изотопа и в целлофановом конверте накладывают на поражённый участок. При распаде изотопы излучают β - лучи, которые не проникают глубоко в организм и не повреждают здоровые ткани.

Г. Для лечения органов пищеварения, дыхания, воздействия на кожу.

222 Rn вводится внутрь с помощью иглы, распадаясь, излучает α - лучи. Дополнительные пути воздействия - через ванны, питьё, ингаляции.

3. "α", "β" и "γ" излучения и их характеристика.

Излучение радиоактивных веществ состоит из трёх компонентов:

1. α-лучи (α - частицы) - ионизированное излучение, несущее положительный заряд. | q | = | 2е | = 3,2 · 10 -19 Кл. Имеет структуру ядра гелия 4 2 He

А = 4 - массовое число.

Z = 2 - порядковый номер (заряд ядра).

A. Отклоняются электрическим и магнитным полями.

B. Пробег α - частицы зависит от вида среды

в воздухе - 1 см.

Г. Обладают невысокими проникающими способностями (легко поглощаются тонкими слоями вещества; защитой от него являются лист картона, х/б ткань и т.п.).

Д. Имеют самую большую ионизационную способность из всех видов радиоактивных излучений (30 - 40 тысяч пар ионов на 1 см пути пробега в воздухе).

Е. При прохождении через слой вещества число α - частиц не изменяется, а постепенно изменяется их скорость. Когда толщина слоя достигает определенной величины, α-частицы поглощаются веществом все сразу.

2. β-лучи (β - частицы) - ионизированное излучение, состоящее из положительных и отрицательных β - частиц.

β - или 0 -1е - электроны q е= 1,6 · 10 -19 Кл

β + или 0 +1е - позитроны me = 9 · 10 -31 кг

Электроны и позитроны испускаются при ядерных превращениях или образуются при распаде нейтрона. Свойства:

А. Отклоняются электрическим и магнитным полем.

В. Пробег β - частиц в среде зависит от вида среды и энергии β - частиц

в воде - до 1, 5 см

в воздухе - до 100 см

Г. Обладают более высокой проникающей способностью, чем α - лучи (защитой от него является слой металла толщиной 3 мм).

Д. Ионизационная способность меньше, чем у α - лучей (300 - 400 пар ионов на 1 см пути пробега в воздухе).

E. Электронный β- распад наблюдается в основном у тех ядер, у которых число нейтронов ( 0 1n) больше числа протонов ( 1 1Pb)

Позитронный β - распад наблюдается, если число протонов больше числа нейтронов

Nn -5 нм) возникает как вторичное явление при α и β - распаде. Имеет природу, схожую с природой рентгеновского излучения.

A. Не отклоняется электрическим и магнитным полями.

Еγ = от 10 кэВ до 10 МэВ.

B. Обладает ионизационной способностью меньшей, чем у α и β - лучей (3-4 пары ионов на 1 см пути пробега в воздухе).

Г. Длина пробега γ- лучей в воздухе - до нескольких сот метров.

Д. Обладает очень высокой проникающей способностью (защитой является слой свинца, толщиной 20 см и больше).

В медицине широко используется для лечения глубоко расположенных злокачественных опухолей, в фармации — для стерилизации лекарств и лекарственных смесей.

4. Законы смещения при "α" и "β" распаде.

Законы смещения - это законы, по которым изменяются ядра радиоактивных элементов при "α" и "β" распаде.

При формулировке необходимо учитывать закон сохранения массы и закон сохранения заряда.

Закон сохранения массы:

Массовое число исходного продукта должно быть равно сумме массовых продуктов реакции.

Закон сохранения заряда:

Заряд ядра исходного продукта должен быть равен сумме зарядов ядер продуктов реакции.

1. Закон "α" - распада.

При α - распаде образуется новое ядро с массовым числом на 4 единицы и порядковым номером на 2 единицы меньше, чем у исходного.

A ZX→ 4 2 He+ A-4Z-2Y

226 88Ra→ 4 2 He+ 222 86 Rn(при этом получается фотон с Е = 0,188 МэВ)

Особенность: в естественных условиях встречается у элементов с порядковым номером Z > 83.

2. Законы электронного "β" – распада - (β - ).

При электронном β - распаде образуется новое ядро с тем же массовым числом и порядковым номером на 1 больше, чем у исходного:

A ZXA Z+1Y+ 0 -1 e

4019K→ 4020Ca+ 0 -1 e - распад изотопа калия с превращением его в кальций

3. Закон позитронного "β" - распада (β + )

При позитронном β - распаде образуется новое ядро с тем же массовым числом и порядковым номером на 1 меньше, чем у исходного.

A ZX → A Z-1Y+ 0 +1 e

3015P→ 3014Si+ 0 +1 e Распад изотопа фосфора

Следствия из 1, 2 и 3 законов:

"α" и "β" - распаду в некоторых случаях сопутствует излучение "γ" - квантов. Это излучение наблюдается так же при изомерном переходе ядер (из возбужденного в невозбужденное состояние);

(X) * = X + nγ ® число γ – квантов

4. Электронный захват.

При захвате электрона исходным ядром образуется новое ядро с тем же массовым числом, и порядковым номером на 1 меньше, чем у исходного.

Читайте также: