Структурные средние величины кратко

Обновлено: 04.07.2024

Т.В. Чернова
Экономическая статистика
Учебное пособие. Таганрог: Изд-во ТРТУ, 1999

Глава 5. Средние величины. Показатели вариации

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где Xi – варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


№ п/п Возраст
(лет)
№ п/п Возраст
(лет)
№ п/п Возраст
(лет)
№ п/п Возраст
(лет)
1
2
3
4
5
18
18
19
20
19
6
7
8
9
10
20
19
19
19
20
11
12
13
14
15
22
19
19
20
20
16
17
18
19
20
21
19
19
19
19

Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

Возраст, Х лет 18 19 20 21 22 Всего
Число студентов 2 11 5 1 1 20

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым [1] . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3. in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:

Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

где XMe – нижняя граница медианного интервала;
hMe – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
SMe-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
mMe – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где ХMo – нижнее значение модального интервала;
mMo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
mMo-1 – то же для интервала, предшествующего модальному;
mMo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax ) и минимальным (Xmin) наблюдаемыми значениями признака:

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2 ) определяется на основе квадратической степенной средней:

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений ( (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

[1] Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, являются средние показатели (средняя величина).

Средняя величина – представляет обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени.

Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

  • Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу.

Сущность средней заключается, в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

ВИДЫ СРЕДНИХ ВЕЛИЧИН наиболее часто применяемых на практике:

Выбор средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

  • Средняя арифметическая простая (невзвешенная) – вычисляется когда каждый вариант совокупности встречается только один раз.
  • Средняя арифметическая (взвешенная)вариантыповторяютсяразличное число раз , при этом число повторений вариантов называется частотой, или статистическим весом.

ФОРМУЛЫ СРЕДНИХ ВЕЛИЧИН

  • Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле (8.8):

Пример формула 8.9

  • гдехi – вариант,аn – количество единиц совокупности.
  • Пример вычисления средней арифметической простой. Провели опрос о желаемом размере заработной платы у пяти сотрудников офиса. По результатам опроса выяснили, что желаемый размер заработной платы составляет соответственно для каждого сотрудника: 50000, 100000, 200000, 350000, 500000 рублей человек. Рассчитаем среднюю арифметическую простую по формуле (8.8):Вывод: в среднем желаемый размер заработной платы по результатам опроса 5-ти человек составил 240 тысяч рублей.
  • Средняя арифметическая взвешенная формула 8.9.

Особый вид средних величин – структурные средние – применяются для изучения внутреннего строения рядов распределения значений признака. К таким показателям относятся мода и медиана.

Модой (Мо) называется чаще всего повторяющееся значение признака, а медианой (Ме) – величина признака, которая делит упорядоченную последовательность его значений на две равные по численности части.

Мода широко используется в коммерческой практике при изучении покупательского спроса, например, при определении размеров одежды и обуви, которые пользуются широким спросом.

Если изучаемый признак имеет дискретные значения, то для определения моды достаточно подсчитать частоты отдельных значений и определить среди них наибольшую (на практике может быть несколько значений моды), а для определения медианы необходимо упорядочить ряд и найти средний по порядку элемент (при четном количестве отдельных единиц, можно вычислить медиану как полусумму двух средних элементов).

Пусть получены следующие значения признака:

12,5 14 13 11,5 12,5 16 12

Для этого ряда значений модой будет являться число – 12,5. Медианой будет являться число 12,5 (значения предварительно следует расположить по возрастанию).

Если изучаемый признак имеет дискретные значения, то для определения моды достаточно подсчитать частоты отдельных значений и определить среди них наибольшую (на практике может быть несколько значений моды), а для определения медианы необходимо упорядочить ряд и найти средний по порядку элемент (при четном количестве отдельных единиц можно вычислить медиану как полусумму двух средних элементов). Если же данные о значениях признака представлены в виде упорядоченных интервалов его изменения, т.е. интервальных рядов, то расчеты несколько усложняются. Для определения моды в этом случае находится так называемый модальный интервал, т.е. тот интервал, который имеет наибольшую частоту и мода вычисляется по формуле:

формула расчета моды

где X Мо – нижняя граница модального интервала; h – величина интервала; f Мо – частота, соответствующая модальному интервалу; f Мо-1 – частота предшествующего интервала; f Мо+1 – частота последующего интервала.

Для вычисления медианы в интервальных рядах сначала определяем медианный интервал по данным о накопленных частотах, а затем находим медиану по формуле:

формула для расчета медианы

где X Ме – нижняя граница медианного интервала, h – величина интервала; Sf/2 – половина от общего числа наблюдений; S Ме–1 – сумма накопленных частот, предшествующих медианному интервалу; f Ме – частота, соответствующая медианному интервалу.

При статистическом изучении совокупности сравнение значений средней арифметической, моды и медианы позволяет делать определенные выводы. Если они совпадают, то данная группа симметрична. Если Ме ср , то группа немногочисленна с очень высокими числами, если Ме > x ср , то нет очень больших чисел и данные концентрируются. Примерно такие же соотношения наблюдаются при сравнении средней величины и моды.

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (Мо ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где хо – нижняя граница модального интервала;

h – величина модального интервала;

fm – частота модального интервала;

fт—1 – частота интервала, предшествующего модальному;

fm+1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (Me – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где хме– нижняя граница медианного интервала;

iMe – величина медианного интервала;

f/2 – полусумма частот ряда;

SMe—1 – сумма накопленных частот, предшествующих медианному интервалу;

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Структурные продукты

Структурные продукты Блог об инвестициях с ограниченным риском –

МОДА НА ИНВЕСТИЦИИ

МОДА НА ИНВЕСТИЦИИ Все больше российских граждан открывают для себя рынок коллективных инвестиций. Главное, чтобы коррекция фондового рынка не убила в инвесторах желание вкладывать.В момент написания этой статьи российский фондовый рынок пребывал в состоянии, близком

Структурные проблемы?

Структурные проблемы? Я убежден, что наша нынешняя система обеспечения рабочей силой необыкновенно негибка и не подготовлена к решению каких бы то ни было задач. Она не способна адекватно реагировать на возможности, которые может предложить промышленность. Это создает

Структурные подразделения

Структурные подразделения В небольшой организации каждый сотрудник может выполнять ту или иную функцию или совмещать несколько функций. По мере увеличения численности уже несколько работников начинают выполнять те же самые или подобные обязанности. На этом этапе

23. Средние величины и общие принципы их исчисления

23. Средние величины и общие принципы их исчисления Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количе–ства индивидуальных

25. Мода и медиана

25. Мода и медиана Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значи–тельной

ЛЕКЦИЯ №5. Средние величины и показатели вариации

ЛЕКЦИЯ №5. Средние величины и показатели вариации 1. Средние величины и общие принципы их исчисления Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на

1. Средние величины и общие принципы их исчисления

1. Средние величины и общие принципы их исчисления Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений

59. Относительные и средние величины

59. Относительные и средние величины Экономический анализ начинается по своей сути с исчисления величины относительной. Относительные величины незаменимы при анализе явлений динамики. Понятно, что эти явления можно выразить и в абсолютных величинах, но доходчивость,

4.3.1 Структурные реформы

4.3.1 Структурные реформы В перспективе для серьезного улучшения инвестиционного климата в России, роста производства и производительности исключительно важно выравнивание условий конкуренции и дальнейшая либерализация экономики. Неэффективные предприятия не должны

ЛЕКЦИЯ № 7. Средние величины

ЛЕКЦИЯ № 7. Средние величины 1. Общая характеристика В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.Задача средних величин – охарактеризовать все единицы

3. Структурные средние величины. Мода и медиана

3. Структурные средние величины. Мода и медиана Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.Мода (Мо ) – чаще всего встречающийся вариант. Модой называется

Мотоциклы, высокая мода и карнавал

Мотоциклы, высокая мода и карнавал Шоу Кренза 1997 года превратило освященный белыми рамами Гуггенхейм в место стоянки сотен блестящих, новеньких мотоциклов, которые представляли собой "новаторские стили" столетия[91]. Классические художественные школы были возмущены; они

18.4.5.2. Медиана репутации

18.4.5.2. Медиана репутации Как обсуждалось в предыдущем разделе, репутация, измеренная через среднее арифметическое (или соответствующие суммы) оценок, может быть хорошим показателем репутации. Тем не менее он все еще далек от преодоления уклона репутации, производимого

Основная мода России

Читайте также: