Способы изучения микробов кратко

Обновлено: 02.07.2024

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

Микробиологический - (бактериологический, культурный) - посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одною вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

выделить чистую культуру микробов, плохо растущих на питательных средах;

изучить болезнетворные свойства микроба;

получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы - антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Морфология и физиология микробов микроскопический метод исследования

• Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой ("иммерсио" - погружение) В состав иммер­сионной системы входит иммерсионный объектив (х 90 ) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку по­казатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необ­ходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в ок­рашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клет­ки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно круп­ных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х 40 или х 8 ) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля".

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10 -6 м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в оку­ляр прозрачную линейку).

• Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп имеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть от­раженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнополъную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".

• Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличие от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участ­ков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

• Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изо­бражения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении ко­ротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цвет­ное изображение, обнаружить малое количество микробов, изучить их структуру и химический со­став, использовать метод иммунофлюоресценции.

• Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей спо­собностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стек­лянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Приготовление препарата для микроскопического исследования

Окраска по Граму.

1 этап - приготовление мазка.

Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокален­ной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия (ИХН). Затем в эту каплю вносят небольшое количество культуры бактерий, тща­тельно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных куль­тур готовят без предварительного нанесения ИХН.

2 этап - высушивание.

Стекло оставляют на воздухе до исчезновения влаги.

3 этап - фиксация.

Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накла­дывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон, смесь Никифоро­ва). Такая фиксация позволяет избежать грубых деформаций объекта исследования.

4 этап - окраска.

Различают простые и сложные (дифференцирующие) способы окраски. Простые способы по­зволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные спо­собы позволяют установить структуру микробов и часто их неодинаковое отношение к красите­лям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристаллвиолетом (3-5 минут), а сложных - окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.

Дифференцирующий метод Грача

После окраски этим методом одни бактерии, окрашиваются в темно-фиолетовый цвет (грамположительные, Гр+). другие - в бордово-красный (грамотрицательные, Гр-). Сущность этого способа окраски состоит в том, что Гр+ бактерии прочно фиксируют комплекс из генцианвиолета и йода, не обесцвечиваясь этанолом. Гр- бактерии после обесцвечивания докрашивают фуксином.

Гр + бактерии кокки

Гр - бактерии кокки

стафилококки, стрептококки; палочки (споро-образующие): бациллы, клостридии; папочки (неспорообразующие): коринебактерии, микобактерии, актиномицеты

нейссерии, вейллонеллы; палочки (неснорообразующие): энтеробактерии, вибрионы; извитые: спириллы, спирохеты, кампилобактерии.

В настоящее время проведение микробиологических исследований является важной и актуальной деятельностью в биологии и медицине, так как они позволяют с высокой степенью точности и достоверности подтвердить или опровергнуть факт присутствия в организме (или другом исследуемом объекте) возбудителей инфекционных заболеваний. Классические микробиологические методы исследования решают задачи выделения чистой культуры возбудителя с его последующей идентификацией по биохимическим, антигенным и другим признакам [1]. Основу микробиологической диагностики инфекционных заболеваний составляют микроскопические, микробиологические, биологические, серологические и аллергологические методы [3]. Благодаря микробиологическим методам исследования можно установить возбудителей тех или иных инфекционных заболеваний и подобрать правильный метод лечения этого заболевания.

Цель: Описать основные микробиологические методы исследований, применяемых в биологии и медицине.

Задачи:
- охарактеризовать основные методы исследований в микробиологии по литературным источникам;
- ознакомить учащихся с основными микробиологическими методами исследований в кратком изложении.

Микроскопический метод

Микроскопические методы исследования – это способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических и других исследованиях.
Микроскопические методы исследований включают в себя приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены явных морфологических (т.е. структурных) внешних и внутренних особенностей. Тем не менее микроскопией материала можно определить некоторые морфологические признаки возбудителей (например, наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить сам факт наличия или отсутствия микроорганизмов в исследуемых образцах.
Существуют световая, фазово-контрастная, темнопольная (ультрамикроскопия), люминесцентная, поляризационная, ультрафиолетовая и электронная микроскопия [2].

Микробиологический метод

Биологический метод

Биологические методы исследований направлены на определение наличия токсинов возбудителя в исследуемом материале и на обнаружение самого возбудителя (особенно при его незначительном исходном содержании в исследуемом образце). Методы включают в себя заражение лабораторных животных исследуемым материалом с последующим выделением чистой культуры патогена либо установлением факта присутствия микробного токсина и его природы.

Моделирование экспериментальных инфекций у чувствительных животных — важный инструмент изучения патогенеза заболевания и характера взаимодействий внутри системы микроорганизм-макроорганизм. Для проведения биологических проб используют только здоровых животных определённой массы тела и возраста. Инфекционный материал вводят внутрь, в дыхательные пути, внутривенно, внутримышечно, подкожно, в переднюю камеру глаза, через трепанационное отверстие черепа, субокципитально (в большую цистерну головного мозга). У животных прижизненно забирают кровь, экссудат (скопившуюся жидкость) из брюшной полости, после гибели — кровь, кусочки различных органов, экссудаты из различных полостей [3].

Серологический метод

Серологические методы исследований для выявления специфических антител и антигенов возбудителя — важный инструмент в диагностике инфекционных заболеваний. Особую ценность они имеют в тех случаях, когда выделить возбудителя не представляется возможным. При этом необходимо выявить повышение титров антител (т.е. их концентрации), в связи с чем исследуют парные образцы сыворотки, взятые в интервале 10-20 суток (иногда этот интервал может быть более длительным). Aнтитела обычно появляются в крови на 1-2-ю неделю заболевания и циркулируют в организме относительно долго, что позволяет использовать их выявление для эпидемиологических исследований.

Особое значение имеют методы выявления микробных антигенов, порождающих антитела. В значимых количествах они появляются уже на самых ранних сроках, что делает их идентификацию важным инструментом экспресс-диагностики инфекционных заболеваний, а количественное их определение в динамике инфекционного процесса служит критерием эффективности проводимой антимикробной терапии.

Аллергологический метод

Антигены многих возбудителей обладают сенсибилизирующим действием, т.е. способны вызывать аллергические реакции. Это используют для диагностики инфекционных заболеваний, а также при проведении эпидемиологических исследований. Наибольшее распространение нашли кожно-аллергические пробы, включающие внутрикожное введение Аг (аллергена). Кожные пробы нашли применение в диагностике таких заболеваний как сап, мелиоидоз, бруцеллёз. Наиболее известна проба Манту, используемая как для диагностики туберкулёза, так и для оценки невосприимчивости организма к возбудителю [4].

Заключение

В данной работе были кратко описаны основные методы исследований в микробиологии (микробиологические методы исследований):
1. Микроскопический метод.
2. Микробиологический метод.
3. Биологический метод.
4. Серологический метод.
5. Аллергологический метод.

С помощью методов, применяемых в микробиологии, люди научились выявлять и определять различного рода возбудителей тех или иных инфекционных заболеваний. Правильно выбранный метод способствует в дальнейшем правильному лечению заболеваний.
В настоящее время наиболее широко используются микроскопический, микробиологический и биологический методы исследования, потому что именно благодаря этим методам можно выявить причину возникновения и проявления инфекционных болезней у живых организмов и дать верную характеристику возбудителям этих болезней.

1. Методы исследования микроорганизмов: микроскопические, микробиологические, биологические, серологические и иммуно-химические, молекулярно-биологические.

Методы медицинской микробиологии

· Микроскопические (препараты для прижизненного исследования м/о и фиксированные препараты).

· Микробиологические (выделение м/о в чистой культуре и изучение физиолого-биохимических особенностей).

· Серологические (выявление антигенов м/о и антител в сыворотке крови).

· Биологические (заражение лабораторных животных и изучение инфекционного процесса)

Микроскопические методы исследования м/о

С использованием светового микроскопа

(предел разрешения 0,12мкм)

· Темнопольная микроскопия (до 0,01мкм)

С использованием электронного микроскопа

(предел разрешения до 0,1нм)

Микроскопические методы исследований включают приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены морфологических и тинкториальных особенностей. Тем не менее микроскопией материала можно определить некоторые морфологические признаки возбудителей (наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить факт наличия или отсутствия микроорганизмов в присланных образцах.

Биологические методы исследований направлены на определение наличия токсинов возбудителя в исследуемом материале и на обнаружение возбудителя (особенно при незначительном исходном содержании в исследуемом образце). Методы включают заражение лабораторных животных исследуемым материалом с последующим выделением чистой культуры патогена либо установлением факта присутствия микробного токсина и его природы. Моделирование экспериментальных инфекций у чувствительных животных — важный инструмент изучения патогенеза заболевания и характера взаимодействий внутри системы микроорганизм-макроорганизм. Для проведения биологических проб используют только здоровых животных определённых массы тела и возраста. Инфекционный материал вводят внутрь, в дыхательные пути, внутрибрюшинно, внутривенно, внутримышечно, внутрикожно и подкожно, в переднюю камеру глаза, через трепанационное отверстие черепа, субокципитально (в большую цистерну головного мозга). У животных прижизненно забирают кровь, экссудат из брюшины, после гибели — кровь, кусочки различных органов, СМЖ, экссудат из различных полостей.

Серологические методы исследований выявления специфических AT и Аг возбудителя — важный инструмент в диагностике инфекционных заболеваний. Особую ценность они имеют в тех случаях, когда выделить возбудитель не представляется возможным. При этом необходимо выявить повышение титров AT, в связи с чем исследуют парные образцы сыворотки, взятые в интервале 10-20 сут (иногда этот интервал может быть более длительным). AT обычно появляются в крови на 1-2-ю неделю заболевания и циркулируют в организме относительно долго, что позволяет использовать их выявление для ретроспективных эпидемиологических исследований. Определение классов Ig чётко характеризует этапы инфекционного процесса, а также может служить косвенным прогностическим критерием. Особое значение имеют методы выявления микробных Аг. В значимых количествах они появляются уже на самых ранних сроках, что делает их идентификацию важным инструментом экспресс-диагностики инфекционных заболеваний, а количественное их определение в динамике инфекционного процесса служит критерием эффективности проводимой антимикробной терапии.

Антигеном — веществом, против которого могут быть получены антитела, могут являться белки, полисахариды, реже — нуклеиновые кислоты, т. е. довольно крупные молекулы или клетки, на поверхности которых такие молекулы имеются. Таким образом, иммунохимические методы выявляют не возбудителя заболевания, а молекулы, сопутствующие ему, следовательно, они являются непрямыми методами анализа.

Молекулярно-биологические методы диагностики основаны на идентификации ДНК и РНК, специфичных для данного вида микробов, и включают гибридизацию на основе ДНК-зондов и диагностику на основе ПЦР.

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

2. Микробиологический - (бактериологический, культурный) - посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одною вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

3. Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

- выделить чистую культуру микробов, плохо растущих на питательных средах;

- изучить болезнетворные свойства микроба;

- получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы - антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

2. Микробиологический - (бактериологический, культурный) - посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одною вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

3. Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

- выделить чистую культуру микробов, плохо растущих на питательных средах;

- изучить болезнетворные свойства микроба;

- получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.




В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы - антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Бактерии относят к прокариотам, и долгое время из-за микроскопических размеров их морфология не была изучена на должном уровне.

Разнообразие бактерий в продуктах

Раздел микробиологии, изучающий морфологические формы бактерий, их строение, размеры, способы передвижения, размножение и спорообразование, называют морфологией. При изучении морфологических свойств необходимо учитывать то, что под влиянием различных факторов (питательная среда, температура, влажность) бактерии способны их менять.

Методы изучения бактерий

Для изучения морфологии бактерий применяют такие методы, как микроскопия и окрашивание. Наблюдение за живыми бактериями происходит с помощью световых и электронных микроскопов в неокрашенных препаратах. Для получения полной характеристики рассматриваемых бактерий применяют такие методы изучения:

  • Морфологический. Под микроскопом рассматривают морфологию бактерии, ее подвижность, споры и способы размножения.
  • Культуральный. Исследование бактерии в питательных средах. Изучают ее рост, величину, цвет колонии и скорость размножения.
  • Физиологический. Рассматривают такие свойства бактерий, как реакция на температуру, на внешние раздражители, на кислород, их способность к сбраживанию, реагирование на различные среды.

Девушка смотрит в микроскоп

Применение этих способов изучения позволяет установить вид микроорганизма и морфологию каждого из них. Это сложный и длительный процесс, занимающий много времени.

Способ окрашивания является наиболее точным и эффективным в распознании и изучении строения бактерий под микроскопом. Зачастую микробы в своей естественной среде невидны под микроскопом, а окрашивание позволяет не только изучить морфологию бактерии, а и правильно определить ее вид. Многие бактерии имеют одинаковую морфологию, но при окрашивании дают разные цвета. Для изучения бактерий применяют такие способы окрашивания:

  • Простой. Применяют одну краску: фуксин либо метиленовую синюю.
  • Сложный. Этот способ чаще всего применяется для выявления возбудителя инфекции, включает в себя два и более красителя. Чаще на практике применяют метод окрашивания по Граму и по Цилю.
  • Дифференцированный. Для окрашивания жгутиков используют метод Бениньетти. Для индицирования капсул применяют метод Гинса.

Окраска микроорганизмов по Граму

Классификация микроорганизмов

Многообразие форм, биохимическая нестабильность и простота в строении усложняют классификацию бактерий. До сих пор их классификация является предметом споров среди микробиологов. В основу классифицирования положены такие направления в изучении микроорганизмов:

  • их морфология;
  • типы питания;
  • источник энергии;
  • реакция на окрашивание;
  • разновидности форм.

Основные формы бактерий

Формы бактерий

При всем многообразии бактерий выделяют три основных формы: сферические, палочковидные и извитые.

Сферическая

Сферической формой обладают кокки. По тому, как располагаются клетки, разделяют на такие группы:

  • микрококки (маленькие) – каждая клетка отдельно;
  • диплококки (два) после деления клетки существуют парами;
  • стрептококки (цепочка) после деления образуют цепочку;
  • сарцины (связка) после деления образуют связку в трех направлениях;
  • стафилококки (гроздь) делятся во всех направлениях, образуя гроздь.

Золотистый стафилококк

Палочковидные

Палочковидные делят на группы в зависимости от формы (правильная или неправильная), от размеров и по тому, как располагаются клетки. Расположение клеток под микроскопом выглядит хаотично, потому что после деления каждая клетка живет отдельно.

Их делят на такие группы:

  • Риккетсии. Внутриклеточные паразиты очень малых размеров (до 2,0 мкм). Их владельцами чаще всего являются клещи, блохи и вши, сами разносящие инфекцию. В зависимости от условий существования они обладают свойством изменять форму и размер.
  • Хламидии. Являются строгими (облигатными) грамотрицательными бактериями. Их относят к клеточным паразитам, имеющим свойство размножаться только внутри клетки. За пределами клетки они имеют округлую форму и неактивны.
  • Микоплазмы. Эта группа не имеет клеточной стенки и существует в различных формах.

Хламидии под микроскопом

Извитые

Виды, имеющие извитую форму, разделяют по количеству оборотов и по характеру витков. Вибрионы имеют слегка изогнутый вид, спириллы – несколько завитков правильной формы, спирохеты – большое количество мелких завитков.

Строение клетки бактерий

Ультраструктура клетки изучается при помощи таких микроскопических методов:

  • светового;
  • люминесцентного;
  • сухого (когда между объективом и линзой есть воздух);
  • фазово-контрастного;
  • темнопольного.
  • интерференционного;
  • электронного.

Питательные среды

Ультраструктура бактериальной клетки считается показателем ее уникальности в организационных процессах.

Различают постоянные органоиды: аналог ядра, цитоплазматическая мембрана, цитоплазма, которые свойственны каждому виду. Имеются и временные включения: капсула, пили, клеточная стенка, споры, жгутики, имеющиеся не у всех микробов или возникающие при различных воздействиях.

Нуклеоид

Нуклеоид является прототипом ядра и не содержит таких структур, свойственных эукариотам, как ядрышки, ядерная оболочка и гистоны. Он обладает свойством хранения и передачи генной информации, содержащейся в одной хромосоме, имеющей вид замкнутого кольца. Еще носителями наследственной информации бактериальной клетки являются плазмиды.

Нуклеоид бактериальной клетки

Цитоплазма

Цитоплазм представляет собой сложную систему, включающую в себя такие включения:

  • рибосомы (отвечают за синтез белков);
  • гранулы (содержат гликоген, полисахариды);
  • волютин (полифосфаты);
  • плазмиды (обладают свойством повышать устойчивость клетки).

Цитоплазматическая мембрана

Под электронным микроскопом хорошо видно, что мембрана бактериальной клетки состоит из трех слоев. При росте клетки она имеет свойство образовывать своеобразные выпячивания ─ мезосомы. В жизни клетки она выполняет такие функции:

  • барьерную;
  • энергетическую;
  • транспортную.

ЦПР (цитоплазматическая мембрана) у бактерий

Капсула

Капсула является слизистой структурой с четко выраженными границами, хорошо различаемыми под микроскопом. Ее изучают с помощью окрашивания мазка, где краска вокруг нее создает темный фон. Она обладает защитными свойствами против фагоцитоза бактерий и реагирует на антитела.

Клеточная стенка

Клеточная стенка защищает бактериальную клетку и обеспечивает ее постоянную форму. Состоит из двух слоев: внешнего, обладающего свойством пластичности, и внутреннего, постоянного. Такое свойство клеточной стенки, как ее реакция на окрашивание, используется для определения видов.

Строение клеточной стенки грамположительных и грамотрицательных бактерий

Жгутики

Жгутики ─ это тонкие нити, обеспечивающие подвижность клетки микроорганизма и имеющие длину большую, чем она сама. Жгутики имеют белковую структуру, их число может колебаться от одного до тысяч. Морфология расположения у них разнообразна: от прикрепления к одному концу до прикрепления по всей поверхности.

Пили являются ворсинками, которые состоят из белкового вещества. Они выполняют такие функции:

  • прикрепление к поражаемой клетке;
  • несут ответственность за питание;
  • размножение;
  • водно-солевой обмен;
  • конъюгация (сближение).

Споры

споры бактерий

При неблагоприятных условиях роста и развития микробы образуют споры, способствующие сохранению вида и не являющиеся продолжением рода. Наличие многослойной оболочки и вялотекущих метаболических процессов позволяет спорам долгое время находиться в стадии спокойствия и ждать подходящих условий для развития.

Появление современных методов исследования привело к новому витку в изучении царства бактерий. Ежегодно микробиологи с помощью новых методик изучают морфологию и свойства новых, еще неизученных видов микроорганизмов, неподходящих ни под один тип классификации.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Читайте также: