Сетевые хранилища данных кратко

Обновлено: 02.07.2024

Часто возникает задача обеспечения хранения большого объема данных. Многие не знакомы с подобными системами, на слуху технология Fibre Channel (FC), которая, несомненно, имеет свои плюсы по возможностям масштабирования, но, как правило, очень дорогая и требует поддержки серьезных специалистов, и не всегда оптимально отвечает запросам предприятий.

В данной статье, мы рассмотрим, какие виды систем хранения данных (СХД) на сегодняшнее время существуют, так же рассмотрю одни из основных компонентов СХД – внешние интерфейсы подключения (протоколы взаимодействия) и накопители, на которых хранятся данные. Так же проведем их общее сравнение по предоставляемым возможностям. Для примеров мы буду ссылаться на линейку СХД, представляемую компанией DELL.

  • Существующие типы систем хранения данных
  • Архитектура системы хранения DAS (Direct Attached Storage)
  • Примеры моделей DAS
  • Архитектура системы хранения NAS (Network Attached Storage)
  • Примеры моделей NAS
  • Архитектура системы хранения SAN (Storage Area Network)
  • Примеры моделей SAN
  • Типы носителей информации и протокол взаимодействия с системами хранения данных Протокол Fibre Channel
  • Протокол iSCSI
  • Протокол SAS
  • Сравнение протоколов подключения систем хранения данных

Существующие типы систем хранения данных

В случае отдельного ПК под системой хранения данных можно понимать внутренний жесткий диск или систему дисков (RAID массив). Если же речь заходит о системах хранения данных разного уровня предприятий, то традиционно можно выделить три технологии организации хранения данных:

  • Direct Attached Storage (DAS);
  • Network Attach Storage (NAS);
  • Storage Area Network (SAN).

Устройства DAS (Direct Attached Storage) – решение, когда устройство для хранения данных подключено непосредственно к серверу, или к рабочей станции, как правило, через интерфейс по протоколу SAS.

Устройства NAS (Network Attached Storage) – отдельно стоящая интегрированная дисковая система, по-сути, NAS-cервер, со своей специализированной ОС и набором полезных функций быстрого запуска системы и обеспечения доступа к файлам. Система подключается к обычной компьютерной сети (ЛВС), и является быстрым решением проблемы нехватки свободного дискового пространства, доступного для пользователей данной сети.

Storage Area Network (SAN) –это специальная выделенная сеть, объединяющая устройства хранения данных с серверами приложений, обычно строится на основе протокола Fibre Channel или протокола iSCSI.

Теперь давайте более детально рассмотрим каждый из приведенных выше типов СХД, их положительные и отрицательные стороны.

Архитектура системы хранения DAS (Direct Attached Storage)

К основным преимуществам DAS систем можно отнести их низкую стоимость (в сравнении с другими решениями СХД), простоту развертывания и администрирования, а также высокую скорость обмена данными между системой хранения и сервером. Собственно, именно благодаря этому они завоевали большую популярность в сегменте малых офисов, хостинг-провайдеров и небольших корпоративных сетей. В то же время DAS-системы имеют и свои недостатки, к которым можно отнести неоптимальную утилизацию ресурсов, поскольку каждая DAS система требует подключения выделенного сервера и позволяет подключить максимум 2 сервера к дисковой полке в определенной конфигурации.

Рисунок 1: Архитектура Direct Attached Storage

 Архитектура Direct Attached Storage

Архитектура Direct Attached Storage

  • Достаточно низкая стоимость. По сути эта СХД представляет собой дисковую корзину с жесткими дисками, вынесенную за пределы сервера.
  • Простота развертывания и администрирования.
  • Высокая скорость обмена между дисковым массивом и сервером.
  • Низкая надежность. При выходе из строя сервера, к которому подключено данное хранилище, данные перестают быть доступными.
  • Низкая степень консолидации ресурсов – вся ёмкость доступна одному или двум серверам, что снижает гибкость распределения данных между серверами. В результате необходимо закупать либо больше внутренних жестких дисков, либо ставить дополнительные дисковые полки для других серверных систем
  • Низкая утилизация ресурсов.

Примеры моделей DAS

Из интересных моделей устройств этого типа хотелось бы отметить модельный ряд DELL PowerVaultсерии MD. Начальные модели дисковых полок (JBOD) MD1000 и MD1120 позволяют создавать дисковые массивы c количеством диском до 144-х. Это достигается за счет модульности архитектуры, в массив можно подключить вплоть до 6 устройств, по три дисковых полки на каждый канал RAID-контроллера. Например, если использовать стойку из 6 DELL PowerVault MD1120, то реализуем массив с эффективным объемом данных 43,2 ТБ. Подобные дисковые полки подключаются одним или двумя кабелями SAS к внешним портам RAID-контроллеров, установленных в серверах Dell PowerEdge и управляются консолью управления самого сервера.

Архитектура системы хранения NAS (Network Attached Storage)

Технология NAS (сетевые подсистемы хранения данных, Network Attached Storage) развивается как альтернатива универсальным серверам, несущим множество функций (печати, приложений, факс сервер, электронная почта и т.п.). В отличие от них NAS-устройства исполняют только одну функцию — файловый сервер. И стараются сделать это как можно лучше, проще и быстрее.

NAS подключаются к ЛВС и осуществляют доступ к данным для неограниченного количества гетерогенных клиентов (клиентов с различными ОС) или других серверов. В настоящее время практически все NAS устройства ориентированы на использование в сетях Ethernet (Fast Ethernet, Gigabit Ethernet) на основе протоколов TCP/IP. Доступ к устройствам NAS производится с помощью специальных протоколов доступа к файлам. Наиболее распространенными протоколами файлового доступа являются протоколы CIFS, NFS и DAFS. Внутри подобных серверов стоят специализированные ОС, такие как MS Windows Storage Server.

Рисунок 2: Архитектура Network Attached Storage

Архитектура Network Attached Storage

Архитектура Network Attached Storage

  • Дешевизна и доступность его ресурсов не только для отдельных серверов, но и для любых компьютеров организации.
  • Простота коллективного использования ресурсов.
  • Простота развертывания и администрирования
  • Универсальность для клиентов (один сервер может обслуживать клиентов MS, Novell, Mac, Unix)
  • Доступ к информации через протоколы “сетевых файловых систем” зачастую медленнее, чем как к локальному диску.
  • Большинство недорогих NAS-серверов не позволяют обеспечить скоростной и гибкий метод доступа к данным на уровне блоков, присущих SAN системам, а не на уровне файлов.

Примеры моделей NAS

В настоящий момент классические NAS решения, такие как PowerVault NF100/500/600 . Это системы на базе массовых 1 и 2-х процессорных серверов Dell, оптимизированных для быстрого развертывания NAS-сервисов. Они позволяют создавать файловое хранилище вплоть до 10 ТБ (PowerVault NF600) используя SATA или SAS диски, и подключив данный сервер к ЛВС. Также имеются и более высокопроизводительные интегрированные решение, например PowerVault NX1950, вмещающие в себя 15 дисков и расширяемые до 45 за счет подключения дополнительных дисковых полок MD1000.

Архитектура системы хранения SAN (Storage Area Network)

Рисунок 3: Архитектура Storage Area Network

Архитектура Storage Area Network

Архитектура Storage Area Network

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть, разгружая LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Возможность организации резервных, удаленных СХД и удаленной системы бэкапа и восстановления данных.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.

Примеры моделей SAN

В настоящий момент имеется достаточно большой выбор дисковых массивов для построения SAN, начиная от моделей для малых и средних предприятий, такие как серия DELL AX, которые позволяют создавать хранилища емкостью до 60 Тбайт, и заканчивая дисковыми массивами для больших корпораций DELL/EMC серии CX4, они позволяют создать хранилища емкостью до 950 Тб. Есть недорогое решение на основе iSCSI, это PowerVault MD3000i – решение позволяет подключать до 16-32 серверов, в одно устройство можно установить до 15 дисков, и расширить систему двумя полками MD1000, создав массив на 45Тб.

Отдельного упоминания заслуживает система Dell EqualLogic на базе протокола iSCSI. Она позиционируется как СХД масштаба предприятия и сравнима по цене с системами Dell | EMC CX4, с модульной архитектурой портов, поддерживающих как FC протокол, так и iSCSI протокол. Система EqualLogic является одноранговой, т.е каждая дисковая полка имеет активные контроллеры RAID. При подключении этих массивов в единую систему, производительность дискового пула плавно растет с ростом доступного объема хранения данных. Система позволяет создать массивы более 500TB, настраивается менее, чем за час, и не требует специализированных знаний администраторов.

Модель лицензирования также отличается от остальных и уже включает в первоначальную стоимость все возможные опции моментальных копий, репликацию и средства интеграции в различные ОС и приложения. Эта система считается одной из наиболее быстрых систем в тестах для MS Exchange (ESRP).

Типы носителей информации и протокол взаимодействия с СХД

Определившись с типом СХД, который Вам наиболее подходит для решения тех или иных задач, необходимо перейти к выбору протокола взаимодействия с СХД и выбору накопителей, которые будут использоваться в системе хранения.

В настоящий момент для хранения данных в дисковых массивах используются SATA и SAS диски. Какие диски выбрать в хранилище зависит от конкретных задач. Стоит отметить несколько фактов.

  • Доступны объемы одного диска до 1 ТБ
  • Скорость вращения 5400-7200 RPM
  • Скорость ввода/вывода до 2,4 Гбит/с
  • Время наработки на отказ примерно в два раза меньше чем у SAS дисков.
  • Менее надежные, чем SAS диски.
  • Дешевле примерно в 1,5 раза, чем SAS-диски.
  • Доступны объемы одного диска до 450 ГБ
  • Скорость вращения 7200 (NearLine), 10000 и 15000 RPM
  • Скорость ввода/вывода до 3,0 Гбит/с
  • Время наработки на отказ в два раза больше чем у SATA II дисков.
  • Более надежные диски.

Важно! В прошлом году начался промышленный выпуск SAS дисков с пониженной скоростью вращения – 7200 rpm (Near-line SAS Drive). Это позволило повысить объем хранимых данных на одном диске до 1 ТБ и снизить энергопторебление дисков со скоростным интерфейсом. При том, что стоимость таких дисков сравнима со стоимостью дисков SATA II, а надежность и скорость ввода/вывода осталась на уровне SAS дисков.

Таким образом, в настоящий момент стоит действительно серьезно задуматься над протоколами хранения данных, которые вы собираетесь использовать в рамках корпоративной СХД.

До недавнего времени основными протоколами взаимодействия с СХД являлись – FibreChannel и SCSI. Сейчас на смену SCSI, расширив его функционал, пришли протоколы iSCSI и SAS. Давайте ниже рассмотрим плюсы и минусы каждого из протоколов и соответствующих интерфейсов подключения к СХД.

Протокол Fibre Channel

Важно! Следует разделять два термина протокол Fibre Channel и оптоволоконный интерфейс Fiber Channel. Протокол Fibre Сhannel может работать на разных интерфейсах — и на оптоволоконном соединении с разной модуляцией, и на медных соединениях.

  • Гибкая масштабируемость СХД;
  • Позволяет создавать СХД на значительных расстояниях (но меньших, чем в случае iSCSI протокола; где, в теории, вся глобальная IP сеть может выступать носителем.
  • Большие возможности резервирования.
  • Высокая стоимость решения;
  • Еще более высокая стоимость при организации FC-сети на сотни или тысячи километров
  • Высокая трудоемкость при внедрении и обслуживании.

Важно! Помимо появления протокола FC8 Гб/c, ожидается появление протокола FCoE (Fibre Channel over Ethernet), который позволит использовать стандартные IP сети для организации обмена пакетами FC.

Протокол iSCSI

Протокол iSCSI (инкапсуляция SCSI пакетов в протокол IP) позволяет пользователям создать сети хранения данных на базе протокола IP с использованием Ethernet-инфраструктуры и портов RJ45. Таким образом, протокол iSCSI дает возможность обойти те ограничения, которыми характеризуются хранилища данных с непосредственным подключением, включая невозможность совместного использования ресурсов через серверы и невозможность расширения емкости без отключения приложений. Скорость передачи на данный момент ограничена 1 Гб/c (Gigabit Ethernet), но данная скорость является достаточной для большинства бизнес-приложений масштаба средних предприятий и это подтверждают многочисленные тесты. Интересно то, что важна не столько скорость передачи данных на одном канале, сколько алгоритмы работы RAID контроллеров и возможность агрегации массивов в единый пул, как в случае с DELL EqualLogic, когда используются по три 1Гб порта на каждом массиве, и идет балансировка нагрузки среди массивов одной группы.

Важно отметить, что сети SAN на базе протокола iSCSI обеспечивают те же преимущества, что и сети SAN с использованием протокола Fibre Channel, но при этом упрощаются процедуры развертывания и управления сетью, и значительно снижаются стоимостные затраты на данную СХД.

  • Высокая доступность;
  • Масштабируемость;
  • Простота администрирования, так как используется технология Ethernet;
  • Более низкая цена организации SAN на протоколе iSCSI, чем на FC.
  • Простота интеграции в среды виртуализации
  • Есть определенные ограничения по использованию СХД с протоколом iSCSI с некоторыми OLAP и OLTP приложениями, с системами Real Time и при работе с большим числом видеопотоков в HD формате
  • Высокоуровневые СХД на базе iSCSI, также как и CХД c FC-протоколом, требуют использования быстрых, дорогостоящих Ethernet-коммутаторов
  • Рекомендуется использование либо выделенных Ethernet коммутаторов, либо организация VLAN для разделения потоков данных. Дизайн сети является не менее важной частью проекта, чем при разработке FC-сетей.

Важно! В скором времени производители обещают выпустить в серийное производство SAN на базе протокола iSCSI с поддержкой скоростей передачи данных до 10 Гб/c. Также готовится финальная версия протокола DCE (Data Center Ethernet), массовое появление устройств, поддерживающих протокол DCE, ожидается к 2011 году.

C точки зрения используемых интерфейсов, протокол iSCSI задействует интерфейсы Ethernet 1Гбит/C, а ими могут быть как медные, так оптоволоконные интерфейсы при работе на больших расстояниях.

Протокол SAS

Протокол SAS и одноименный интерфейс разработаны для замены параллельного SCSI и позволяет достичь более высокой пропускной способности, чем SCSI. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. SAS позволяет обеспечить физическое подключение между массивом данных и несколькими серверами на небольшие расстояния.

  • Приемлемая цена;
  • Легкость консолидации хранилищ – хотя СХД на базе SAS не может подключаться к такому количеству хостов (серверов), как SAN конфигурации которые используют протоколы FC или iSCSI, но при использовании протокола SAS не возникает трудностей с дополнительным оборудованием для организации общего хранилища для нескольких серверов.
  • Протокол SAS позволяет обеспечить большую пропускную способность с помощью 4 канальных соединений внутри одного интерфейса. Каждый канал обеспечивает 3 Гб/c , что позволяет достичь скорости передачи данных 12 Гб/с (в настоящий момент это наивысшая скорость передачи данных для СХД).
  • Ограниченность досягаемости – длинна кабеля не может превышать 8 метров. Тем самым хранилища с подключением по протоколу SAS, будут оптимальны только тогда когда серверы и массивы будут расположены в одной стойке или в одной серверной;
  • Количество подключаемых хостов (серверов) как правило, ограничено несколькими узлами.

Важно! В 2009 году ожидается появление технологии SAS со скоростью передачи данных по одному каналу – 6 Гбит/c, что позволит значительно увеличить привлекательность использования данного протокола.

Сравнение протоколов подключения СХД

Ниже приведена сводная таблица сравнения возможностей различных протоколов взаимодействия с СХД.

Протоколы подключения СХД

Таким образом, представленные решения на первый взгляд достаточно четко разделяются по соответствию требованиям заказчиков. Однако на практике все не так однозначно, включаются дополнительные факторы в виде ограничений по бюджетам, динамики развития организации (и динамики увеличения объема хранимой информации), отраслевая специфика и т.д.

Именно информация приводит в действие весь современный бизнес и в настоящий момент считается наиболее ценным стратегическим активом любого предприятия. Объем информации растет в геометрической прогрессии вместе с ростом глобальных сетей и развитием электронной коммерции. Для достижения успеха в информационной войне необходимо обладать эффективной стратегией хранения, защиты, совместного доступа и управления самым важным цифровым имуществом — данными — как сегодня, так и в ближайшем будущем.

правление ресурсами хранения данных стало одной из самых животрепещущих стратегических проблем, стоящих перед сотрудниками отделов информационных технологий. Вследствие развития Интернета и коренных изменений в процессах бизнеса информация накапливается с невиданной скоростью. Согласно данным компании Strategic Research, сегодня только на серверах открытых систем хранится не менее 200 петабайт информации, и этот объем удваивается каждые полтора года. Многие компании включились в своеобразное соревнование по преобразованию внутренних систем ведения бизнеса, чтобы использовать Интернет для его развития. Они глобализируют свои системы IT для более полной поддержки приложений электронной коммерции, непрерывно работающих 24 часа в сутки, 7 дней в неделю, 365 дней в году.

Сетевое хранение данных позволяет решить многие текущие задачи в бизнесе, связанные с хранением информации, а именно:

  • универсальный и совместный доступ к ресурсам;
  • поддержание непредсказуемого, взрывного роста системы IT;
  • обеспечение непрерывной доступности при сохранении экономичности;
  • обеспечение маcштабируемости и высочайшей скорости работы хранилища данных;
  • создание необходимых условий для работы новых приложений, например приложений резервного копирования, без участия сервера и LAN;
  • упрощение управления ресурсами, связанного с их централизацией;
  • повышение уровня защиты информации и отказоустойчивости.

До сегодняшнего момента продукты сетевого хранения разделялись на устройства сетевого хранения (Network Attached Storage, NAS) и сети хранения данных (Storage Area Network, SAN). Продукты NAS уходят корнями в сеть Ethernet и спроектированы в соответствии с концепцией файл-сервера. Продукты SAN продолжают технологию хранения SCSI и включают несколько видов, разработанных для обеспечения функций ввода-вывода; в их число входят системные контроллеры ввода-вывода и устройства и подсистемы хранения. Наиболее известными продуктами SAN являются те, которые заменили параллельную шину SCSI коммутаторами и концентраторами.

Продукты SAN вышли на рынок на несколько лет позднее продуктов NAS. Когда на рынке появились обе технологии, специалисты ставили вопрос по поводу их будущего. В результате такой ситуации возник ряд интересных решений, в том числе предпринимались попытки разделить их на две разные архитектуры. Хотя SAN и NAS различны по структуре, они во многом одинаковы и в них заложен потенциал для разного рода интеграций.

Технологии хранения данных

етевое хранение данных построено на трех фундаментальных компонентах: коммутации, хранении и файлах. Все продукты хранения можно представить в виде комбинации функций данных компонентов. Поначалу это может вызвать замешательство: поскольку продукты хранения разрабатывались по совершенно разным направлениям, функции часто перекрывают друг друга.

Поскольку процессы хранения тесно интегрированы с сетями, будет уместно напомнить, что сетевые хранилища представляют собой системные приложения. Сервисами, которые предоставляются сетевыми приложениями хранения, могут пользоваться сложные корпоративные программы и пользовательские приложения. Как и в случае со многими технологиями, некоторые типы систем лучше отвечают требованиям сложных приложений высокого уровня.

Коммутация

Хранение

Хранение в основном затрагивает блочные операции адресного пространства, включая создание виртуальной среды, когда адреса логического блока хранения отображаются из одного адресного пространства в другое. Вообще говоря, в сетевых хранилищах функция хранения почти не изменилась, если не считать двух заметных отличий.

Первое — это возможность нахождения технологий виртуализации устройства, например управление устройством внутри оборудования сетевого хранения. Этот вид функции иногда называют контроллером домена хранения или виртуализацией LUN.

Второе главное отличие хранения заключается в масштабируемости. Продукты хранения, такие как подсистемы хранения, имеют значительно больше контроллеров/интерфейсов, чем предыдущие поколения шинной технологии, а также намного больший объем хранения.

Файлы

Функция организации файлов представляет абстрактный объект конечному пользователю и приложениям, а также организует разметку данных на реальных или виртуальных устройствах хранения. Основную часть функциональности файлов в сетевых хранилищах обеспечивают файловые системы и базы данных; их дополняют приложения управления хранением, например операции резервного копирования, также являющиеся файловыми приложениями.

Сетевое хранение к настоящему времени почти не изменило файловые функции, за исключением разработки файловых систем NAS, в частности файловой системы WAFL компании Network Appliance.

Кроме упомянутых технологий хранения данных NAS и SAN, ориентированных на крупные и глобальные сети, в небольших локальных сетях доминирующее положение занимает технология DAS (Direct Attached Storage — рис. 1), в соответствии с которой хранилище находится внутри сервера, обеспечивающего объем хранилища и необходимую вычислительную мощность.

Простейшим примером DAS может служить накопитель на жестком диске внутри персонального компьютера или ленточный накопитель, подключенный к единственному серверу. Запросы ввода-вывода (называемые также командами или протоколами передачи данных) непосредственно обращаются к этим устройствам. Однако такие системы плохо масштабируются, и компании с целью расширения объема хранилища вынуждены приобретать дополнительные серверы. Эта архитектура очень дорогая и может использоваться только для создания небольших по объему хранилищ данных.

Storage Area Network

истема хранения данных SAN (рис. 2) реализуется в специализированной локальной сети. Как и в DAS, запросы ввода-вывода непосредственно обращаются к устройствам хранения. В большинстве современных сетей SAN использует высокопроизводительный канал Fibre Channel, который обеспечивает произвольное соединение процессоров и устройств хранения данных в этой сети.

Системы хранения данных SAN позволяют решать следующие задачи: программная коммутация, создание удаленных хранилищ, консолидация хранилищ, создание гетерогенных хранилищ и обеспечение резервного копирования.

Программная коммутация. Необходимость решения этой задачи возникла исходя из ситуаций, когда в информационной системе имеется достаточно большой набор дисковых систем и требуется время от времени подключать наборы дисков к различным серверам. В случае обычных SCSI-дисков это требует физической перекоммутации, часто необходима остановка системы. Однако применение протокола Fibre Channel, FC-концентраторов и FC-коммутаторов позволяет использовать программный способ. Важно отметить, что при этом каждый диск остается подключенным только к одному серверу. Сегодня эти решения успешно применяются, а дальнейшее их развитие будет вести к поддержке большего числа хостов и к увеличению гибкости при коммутации.

Удаленные хранилища. Совершенствование технологии привело к тому, что стало возможным относить дисковые массивы на расстояния до 10 км от сервера, тем самым обеспечивая защиту данных от катастроф.

Консолидация хранилищ. Прежде всего консолидация хранилищ обеспечивает значительную экономию при эксплуатации и большую надежность систем.

Гетерогенные хранилища. Консолидация хранилищ приводит к гетерогенным подключениям к дисковому массиву, так как в информационной системе всегда существуют различные программно-аппаратные платформы.

Прямое резервное копирование. Идея прямого резервного копирования заключается в обеспечении прямого копирования данных с диска на ленточный накопитель, минуя локальную сеть. Таким образом, процессорная мощность серверов будет загружена по минимуму.

Network Attached Storage

Устройство хранения данных NAS (рис. 3) с сетевым интерфейсом (appliance) обычно содержит серверный процессор и систему дисковой памяти и подключается к сети, построенной на основе протокола TCP/IP (LAN или WAN). Доступ к устройствам NAS производится с помощью специальных протоколов доступа к файлам и совместного доступа к файлам. Принимаемые устройством NAS файловые запросы транслируются внутренним процессором на уровень запросов ввода-вывода устройства хранения данных. Наиболее распространенными протоколами файлового доступа являются протоколы CIFS (Common Internet File System — общая файловая система Интернета), которые используются на платформах Windows и NFS (Network File System — сетевая файловая система, применяемая на платформах UNIX). Эти протоколы работают поверх IP-протокола, используемого в Ethernet-сетях и в Интернете. Их назначение — обмен файлами между компьютерами, благодаря чему клиенты Windows, Macintosh и UNIX имеют полноценный доступ к дисковому массиву.

Таким образом, NAS можно считать законченным решением в области хранения данных.

Технологии коммутации

Fibre Channel

Основное достоинство технологии Fibre Channel заключается в том, что это высокоскоростная, низколатентная сеть с современной технологией контроля потоков — обработки такого пульсирующего трафика, как ввод-вывод хранения. Следует отметить, что именно эта характеристика отличается слабостью у Ethernet. Индустрия Fibre Channel несравнима с Ethernet, и поэтому у нее небольшой выбор технологий и относительно небогатый опыт внедрения и управления.

Ethernet

Ethernet — самая распространенная сетевая технология в мире; существует огромное количество специалистов и множество методов для внедрения и управления сетями Ethernet. Хотя 10/100-мегабитные разновидности Ethernet достаточны для NAS, они не подходят для поддержки SAN вследствие ограничений полосы пропускания и отсутствия управления потоками. Поэтому основанием для построения SAN станет, видимо, Gigabit Ethernet.

Без сомнения, Ethernet будет использоваться в качестве общей функции коммутации как для файлов, так и для приложений хранения, но прежде чем он начнет широко применяться в качестве корпоративной индустриальной сети, следует доказать его релевантность по отношению к хранению.

InfiniBand

InfiniBand — последовательная шина данных — служит заменой системной шине ввода-вывода PCI. Разработку InfiniBand возглавляла корпорация Intel в сотрудничестве с Compaq, Hewlett-Packard, IBM, Sun и др. В качестве основного компонента системы, который, как ожидается, будет использоваться на платформах и PC, и UNIX, InfiniBand, вероятно, будет применяться в значительных масштабах.

В отношении сетевых хранилищ возникают следующие вопросы. Будут ли файловые приложения и приложения хранения функционировать непосредственно на шине InfiniBand или потребуют каких-либо сетевых адаптеров InfiniBand? И когда это произойдет — сразу, скоро, через несколько лет или вообще никогда? Видимо, данная технология должна зарекомендовать себя в качестве общей системной шины ввода-вывода, прежде чем она сможет эффективно завоевывать такие новые рынки, как рынок сетевых хранилищ. Однако у InfiniBand есть очевидный потенциал, чтобы в будущем стать основной функцией коммутации.

Подводя итоги

стройства SAN — очень надежное решение. Основная идея здесь заключается в том, что централизованная машина больше не является единственной точкой отказа или появления узких мест в системе. Концепция корпоративного хранения SAN возлагает ответственность за долговечность данных на подсистему хранения. Иными словами, подсистемы хранения берут ответственность за собственное управление и за управление данными, которые в них находятся. При этом подразумевается, что централизованные машины могут изменять операции обработки, но обрабатываемые данные остаются в целости и сохранности в корпоративном хранилище.

Архитектурная проблема NAS и SAN заключается в том, что подсистемы хранения со встроенной файловой технологией обычно считаются продуктами NAS. А как тогда назвать подсистему хранения с половиной файловой системы? Именно поэтому анализ сетевого хранения в терминах SAN или NAS ничего не дает. NAS и SAN являются независимыми объектами; независимыми являются также коммутация, хранение и файлы.

Технология NAS, во-первых, предоставляет сервис, позволяющий приложениям и пользователям находить данные в виде объектов в сети, во-вторых, поставляет системе данные для хранения в устройствах хранения или в подсистемах. А технология SAN предоставляет функции хранения в сети; в общем и целом, она применяется в отношении логических блоков адресов, но в потенциале может использовать и другие методы адресации и идентификации хранимых данных.

Коммутация для сетей хранения должна быть чрезвычайно быстрой и надежной. До сих пор в этой роли выступал Fibre Channel, но в будущем на рынок должны выйти Gigabit Ethernet и InfiniBand. Развитие общей инфраструктуры коммуникации как для файловых приложений (NAS), так и для приложений хранения (SAN) кажется неизбежным, в итоге она станет ключевой технологией.

В ближайшем времени технологии сетевого хранения данных, такие как SAN и NAS, будут использоваться повсеместно — просто потому, что количество информации на Земле удваивается каждый год.

Надёжное хранение данных — задача, которую приходится решать каждому бизнесу. Но когда повышаются объёмы информации, растут и требования к надёжности хранения данных. Чтобы организовать наилучшую работу с информацией, стоит обратиться к СХД — системе хранения данных.

В материале расскажем о том, что такое и как устроены СХД, какие проблемы они решают, как классифицируются и на какие характеристики следует смотреть в первую очередь, если вы не так давно в этой отрасли.

Что такое СХД и какие проблемы она решает

СХД (Система хранения данных или Сервер хранения данных) — это устройство для хранения и управления данными, их резервного копирования. Она призвана решить типичные проблемы, связанные с растущими объёмами информации в любой организации.

Если раньше все данные могли храниться буквально на одном жёстком диске, то сейчас любая функциональная система требует отдельного хранилища – к примеру, серверов электронной почты, СУБД, домена и так далее. Поэтому с помощью СХД можно организовать децентрализацию информации (рассредоточение её по разным хранилищам).

Лавинообразный рост размера информации, который вызван, с одной стороны, ужесточением регулирования и требованием сохранять всё больше информации, связанной с ведением бизнеса. С другой стороны, ужесточение конкуренции требует всё более глубокого анализа информации о рынке, клиентах, их предпочтениях, заказах и действиях конкурентов. Но количества жёстких дисков, которые вы можете установить в конкретный сервер, не может покрыть необходимую системе ёмкость. В этом тоже может помочь СХД.

Хранение данных — не единственная функция современных СХД. Они также предлагают экономить место в хранилище с помощью дедупликации и компрессии. Компрессия позволяет системе сжимать файлы, исключая избыточную информацию, а дедупликация помогает экономить место для хранения, исключая избыточные файлы и оставляя лишь ссылки на них.

Некоторым компаниям тяжело контролировать и ограничивать доступ из-за политики безопасности предприятия. Например, касается как доступа к данным по существующим для этого каналам (локальная сеть), так и физического доступа к носителям.

Также отметим высокие затраты используемых ресурсов для поддержания работоспособности всей информационной системы предприятия, начиная от необходимости содержать большой штат квалифицированного персонала и заканчивая многочисленными недешёвыми аппаратными решениями.

Устройство СХД

Основные компоненты типичной СХД — массив жёстких дисков (HDD или SSD), кэш-память, контроллер дискового массива, внешний корпус и несколько блоков питания.

Главная фишка СХД — это скорость работы дисковой системы. Например, если ваши диски стоят внутри сервера они не будут работать с такой же производительностью, как сервер подключённый к СХД.

Какие бывают системы хранения данных

Существует классификация СХД: они делятся на файловые, блочные и объектные. Каждый вид СХД определяет в каком виде хранятся данные, способ доступа к ним, и, как результат, простоту управления и скорость доступа к данным.

Файловые

Хранят информацию в виде файлов, собранных в каталоги (папки). Файлы организуются и извлекаются благодаря метаданным, которые сообщают, где находится тот или иной файл. Условно такую систему можно представить в виде каталога.

Блочные

Данные хранятся независимо друг от друга. Каждому такому блоку присваивается идентификатор, который позволяет системе размещать каждый блок, где ей удобно. Блочные хранилища не полагаются на единственный путь к данным (в отличии от файловых хранилищ).

Объектные

Принцип работы СХД — NAS, SAN и DAS

Существует несколько аппаратных компонентов, программного обеспечения и протоколов, которые в конечном итоге придают решениям для хранения данных их особые свойства.

На основе классификации выше выделяют два основных типа СХД: они различаются уровнем хранения, чтения и записи данных.

О каждом из них расскажем подробнее.

NAS расшифровывается как Network Attached Storage, что можно условно перевести как сетевое хранилище. Поскольку данные обрабатываются на уровне файлов, сервер представляется NAS как сетевой сервер со своей собственной файловой системой.

Если объяснить проще — представьте себе стационарный компьютер, который подключён к домашнему роутеру. На нём хранятся фото, видео, документы и другие данные. Сетевой доступ разрешен всем пользователям — приблизительно так выглядит NAS.

NAS-хранилище может принимать разные формы. Например, к производственному серверу могут быть подключены другие серверы, виртуальные машины или так называемые дисковые станции, на которых находится другое количество съёмных жестких дисков.

Преимущества NAS:

  • Доступность и низкая стоимость.
  • Простота подключения и управления.
  • Гибкость, возможность быстро увеличить объём для хранения данных.
  • Универсальность клиентов (компьютер под управлением любой операционной системы может получить доступ к файлам).

Недостатки NAS:

  • Хранение данных только в виде файлов.
  • Медленный доступ к информации по сетевым протоколам (по сравнению с локальной системой).
  • Невозможность работы некоторых приложений с сетевыми дисками.

DAS расшифровывается как Direct Attach Storage — прямое подключение к рабочей станции, хранилищу). Например, подключение внешнего диска по USB условно можно назвать DAS.

Из принципиальной простоты архитектуры DAS следуют её основные преимущества: доступная цена и относительная простота внедрения. Кроме того, такой конфигурацией легче управлять ввиду хотя бы того, что число элементов системы мало.

Внутри системы находится блок питания, охлаждение и RAID-контроллер, который обеспечивает надёжность и отказоустойчивость хранилища. Управляется при помощи встроенной операционной системы.

Достоинства DAS:

  • Легкость развёртывания и администрирования.
  • Высокая скорость передачи данных.
  • Низкая стоимость оборудования.

Недостатки DAS:

  • Требует выделенного сервера).
  • Ограничения в подключениях (не больше двух серверов).

В свою очередь SAN — это сети хранения данных. Как правило они представлены в виде внешних хранилищ на нескольких сетевых блочных устройствах и реализованы в виде протокола FC (Fiber Channel) или iSCSI (Internet Small Computer System Interface). Это блочный доступ непосредственно к устройству хранения — диску или наборов дисков в виде RAID-групп или логических устройств.

Кстати, вышеупомянутый DAS может быть очень мощным и часто более дешёвым, чем SAN. Однако в то же время недостаток DAS в том, что он не может быть легко расширен — количество подключённых компьютеров ограничено физическим количеством портов SAS на DAS (обычно их всего четыре). Поэтому многие компании и учреждения предпочитают выбирать блочные хранилища, подключенные через SAN.

Преимущества SAN:

  • Высокая скорость работы, низкая задержка.
  • Гибкость и масштабируемость.
  • Хранение данных блоками.
  • Высокая надёжность обмена и хранения данных.
  • Разгрузка подсети от служебного трафика.

Недостатки SAN:

  • Сложность проектирования
  • Высокая стоимость.
  • Невозможность некоторых приложений и систем работать с протоколом iSCSI.

Как выбрать СХД?

В первую очередь нужно понимать, какие задачи она будет решать. Важно определиться с несколькими базовыми параметрами.

Тип данных

Разные типы данных требуют разной скорости доступа, технологий обработки, компрессии и так далее. К примеру, виртуальный СХД для работы с большими медиа-файлами отличается от той системы, которая будет работать с неструктурированными данными для нейросети.

Объём данных

От этого зависит выбор дисковых накопителей. Иногда можно обойтись SSD потребительского класса — если известно, что ёмкость СХД даже в худшем случае не будет превышать 300 ГБ, а скорость доступа не критична.

Отказоустойчивость

Необходимо представлять, какова стоимость потери данных за определённое время. Это поможет рассчитать RPO (Recovery-Point Objective) и RTO (Recovery Time Objective), а также избежать лишних затрат на резервное копирование. Бэкапы, бэкапы и ещё раз бэкапы.

Производительность

Если СХД закупается под новый проект (нагрузку которого сложно предугадать), то лучше пообщаться с коллегами, которые уже решали эту задачу или протестировать СХД.

Вендор

Иногда даже для ресурсоемкого сервиса подойдет бюджетное или среднеуровневое решение (StarWind, Huawei, Fujitsu). Однако у топовых производителей — NetApp, HPE, Dell EMC — линейка продуктов достаточно широкая, и сравнительно недорогие СХД здесь также можно найти. В любом случае, желательно сильно не расширять количество вендоров на одной инфраструктуре.

Если сейчас вы находитесь в поисках решения для работы с данными, арендовать выделенный web-сервер и СХД (системы хранения данных) можно в одном из наших ЦОД. Мы, со своей стороны, обеспечим сервер быстрым соединением с интернетом на скорости до 10 Гбит/сек, постоянным подключением к электричеству и поддержкой 27/7 ;).


Порою количество информации, которое приходится хранить на компьютере, начинает превышать все разумные пределы, особенно если ваш бизнес построен в пространстве интернет-сети. И поэтому приходится использовать специальные устройства, которое называется сетевое хранилище данных (NAS).Содержание:

Что такое сетевое хранилище?

сетевое хранилище

По своей сути сетевое хранилище – это компьютер с жесткими дисками для хранения данных. Причем главное в таком компьютере не вычисления, а хранение информации. Поэтому он должно обладать следующими характеристиками:

  • Иметь большое дисковое пространство для хранения информации;
  • Предоставлять бесперебойный доступ к этой информации в любое время суток;
  • Иметь возможность резервирования данных на разных физических дисках;
  • Обеспечить доступ с разных устройств;
  • Ограничивать доступ к определенному контенту;
  • Поддерживать приложения, обеспечивающие закачку данных.

Сетевые хранилища на виртуальных и выделенных серверах

К важной функции сетевых накопителей относится резервирование данных. К сожалению, часто накопители данных выходят из строя. Причем это может быть не только старый жесткий диск, но и сравнительно новый. Поэтому главным правилом является постоянное резервирование данных. Если не хотите потерять информацию, она должна быть не только записана, но и продублирована на другом физическом диске.

Иногда путают локальный диск с физическим. Локальный диск может быть, как отдельным девайсом, так и просто разделом на одном и том же диске. Во втором случае, информация погибнет на всех разделах при его крушении.

Сетевое хранилище должно поддерживать возможность создания виртуального сервера для ускорения работы и повышения надежности работы всей системы. При помощи виртуализации данных вся информация формируется в единый массив, и доступ к ней не зависит от количества жестких дисков, выделенных пользователю или устройству.

Кому нужны сетевые хранилища?

nas

Людям, занимающимся фото- и видеосъемкой, созданием или хранением музыкальных произведений, у кого имеются видеокамеры наблюдения, или же просто любителям кино, будет полезно задуматься о переносе объемных данных на сетевое хранилище.

Очень нужным приспособлением NAS окажется в офисах небольших фирм, где существует большой объем информации, которым пользуется одновременно несколько человек, а использовать выделенный сервер в дата-центрах, где количеству пользователей соответствует физический диск с возможностью прямого доступа к информации, дорого и непрактично.

Как выбрать сетевое хранилище?

Прежде всего, обращайте внимание на размер дискового пространства, которое может предоставить система хранения данных. Для дома может подойти система, рассчитанная на два жестких диска, а для работы в офисе с большим количеством людей стоит взять систему, рассчитанную на большее количество накопителей.

сетевое хранилище

Как выбрать сетевое хранилище для дома? Учитывается также с какими жесткими дисками по объему хранения данных может работать система. Не все NAS рассчитаны на работу с дисками в 4 терабайта и больше. Сами жесткие диски имеют форм-фактор в 3,5 дюйма и 2.5 дюйма. Есть системы работающие с двумя форм-факторами, но есть и такие, которые работают исключительно с одним.

Заключение

Сетевые хранилища намного ускоряют работу на конечных компьютерах, позволяют быстро обмениваться информацией между различными устройствами и резко повышают надежность хранения данных. Используя сетевые хранилища данных, вы грамотно распределите ресурсы своей компании.

Читайте также: