Рафинирование меди это кратко

Обновлено: 05.07.2024

Огневое рафинирование позволяет удалить из меди значительную часть примесей, что упрощает и удешевляет электролитическое рафинирование. Процесс огневого рафинирования осуществляется в отражательных печах, отапливаемых малосернистым мазутом или высококалорийным газом. Процесс рафинирования идет в две стадии:

  1. продувка воздухом;
  2. дразнение — обработка древесиной в целях восстановления меди из окислов.

Схему технологического процесса огневого рафинирования меди см. на рис. 92.

Рис. 92. Схема технологического процесса рафинирования меди

При продувке воздухом преимущественно окисляется по закону действующих масс медь, так как содержание ее в черной меди значительно больше, чем примесей. При этом образуется закись Cu2O, хорошо растворяющаяся в меди, вследствие чего кислород доставляется во все места жидкой ванны. Образующаяся закись меди в свою очередь окисляет примеси, например

Cu2O + Fe = FeO + 2Cu.

В окисленном виде примеси переходят в шлак

При дразнении из древесины выделяются газы СО, H2, CH4, способные восстановить медь из закиси. Бурное перемешивание ванны выделяющимися газами и парами воды способствует всплыванию и удалению из ванны механического засора.

Отражательная печь для огневого рафинирования черновой меди, работающая на жидком топливе, показана на рис. 93. Под, стены и свод печи сделаны из хромомагнезитового кирпича. Свод опирается пятами на стальную обвязку печи. Для смягчения нагрузки от распора на тягах обвязки печи установлены стальные пружины. В своде предусмотрены температурные швы для компенсации расширения его в продольном направлении. Снаружи свод покрыт слоем теплоизоляционного материала. Печи имеют окна с футерованными или водоохлаждаемыми дверцами, через которые производится загрузка, съем шлаков, продувка металла и дразнение. Под печи сделан с уклоном в сторону щелевой летки для выпуска металла. На уровне металла печь заключена в кожух из чугунных плит. Мазут и воздух подают в печь форсункой высокого давления.

Анодная печь

Рис. 93. Анодная печь

Процесс анодной плавки состоит из следующих операций: загрузка шихты, плавление, окисление, съем шлака, восстановление (дразнение) и разлив металла.

Шихта состоит из конвертерной меди, анодных остатков, донного скрапа и песков электролитного цеха, скрапа от разлива анодов, анодного брака, вышедших из строя анодных изложниц, выломок из ковшей, кварцевого песка и железосодержащего флюса, вводимого для удаления никеля.

Перед началом новой плавки стенки выпускного отверстия (летки) печи очищают от металла и шлака и промазывают огнеупорной смесью. Летку на всю ее высоту заделывают в два слоя. Внутренний слой, соприкасающийся с расплавленным металлом, заделывают на толщину 150 мм пробкой, состоящей из крутозамешанной смеси (3 части молотого хромомагнезита с 1 частью шамотной глины). Внешний слой, плотно прилегающий к внутреннему, заделывают на толщину 200 мм набойкой, состоящей из смеси (9 объемных частей молотого кварца, 3 части шамотной глины и 2 части каменноугольного штыба). Смесь замачивают до влажности 5—6%, когда от сжатия в руке она образует нерассыпающиеся комья. Набойку утрамбовывают и затем закрывают чугунными плитами или набором стальных брусьев. Заделку летки, выполненную плавильщиком, принимает мастер смены, о чем должна быть сделана запись в журнале.

Шихту загружают краном. В целях минимального охлаждения печи в период загрузки все окна печи держат закрытыми, за исключением окна, через которое производят загрузку; последнее открывают только на время введения лопаты загрузочного крана или для заливки жидкой меди. На под разогретой печи загружают анодные остатки и скрап от разлива анодов, слитки черновой меди, бракованные анодные изложницы и кварцевый песок, после чего заливают жидкую медь из конвертеров. Порог шлакового окна заделывают пробкой (состав тот же, что и для летки), а затем набойкой (2 объемные части молотого хромомагнезита, 3 части шамотной глины и 6 частей молотого кварца). После заделки порог закладывают чугунными плитами. Пороги загрузочных окон заделывают красной глиной, верхний слой порогов присыпают кварцевым песком и утрамбовывают, окна закрывают дверцами и замазывают глиной. Малое окно для продувки и окно для дразнения закладывают битым кирпичом и замазывают красной глиной.

Процесс плавления ведут при форсированной работе печи. После полного расплавления шихты начинают съем первых шлаков. Снятие густых шлаков, увлекающих с собой повышенное количество меди в виде корольков, не допускается. Начинают окисление продувкой металла воздухом, для этого в печи создают отрицательное давление и поддерживают окислительную атмосферу. В ванну металла опускают стальные трубы диаметром 25 мм, имеющие защитную обмазку из огнеупорной смеси (шамотной глины, хромомагнезитового порошка и молотого асбеста, замешанных на жидком стекле). Воздух давлением 2,5—3 ати подают от компрессора. Температура металла должна быть не ниже 1200°. Образующиеся шлаки удаляют гребком. В процессе окислительного рафинирования добавляют железную окалину, она способствует разжижению шлаков. В качестве кислотного окисла вводят кварц. Шлак снимают в несколько приемов. Продолжительность процесса окисления зависит от качества загруженного металла (его чистоты). Степень окисления определяют по пробе металла. Окисление ведут до получения пробы, имеющей в изломе кубическую структуру красно-кирпичного цвета. В процессе окисления отбирают пробы на экспресс-анализ. Спектральным анализом в пробах определяют содержание примесей: никеля, сурьмы, свинца. При содержании примесей выше нормального (0,45% Ni, 0,2% Pb, 0,22% Sb) в печь загружают дополнительно рафинирующий флюс и процесс окисления продолжают до получения пробы с нужным содержанием примесей. Шлак снимают.

Перед началом восстановления (дразнения) из ванны вынимают подающие воздух трубы, ванну зачищают от остатков шлака и покрывают тонким слоем древесного угля. В печи создают положительное давление и поддерживают восстановительную атмосферу. Через окна для дразнения в ванну металла погружают свежесрубленные березовые или сосновые бревна диаметром 150—200 мм. Снаружи окон имеется приспособление, выполненное из газовой трубы в виде петли, которое ограничивает движение бревна сверху и направляет погружаемый конец в ванну при подъеме наружного конца бревна талью или мостовым краном. Конец восстановления определяют по пробе, отливаемой в виде штычка, поверхность которого должна быть мелкоморщинистой, без утяжки. Излом должен быть мелкозернистый и иметь розовато-красный цвет.

Температура металла к моменту разлива должна быть 1120—1140°. До начала разлива необходимо проверить исправность разливочного оборудования — карусельной разливочной машины, пневматического подъемника, ковша, желоба и т. д. Металл в печи покрывают древесным углем. Верхнюю часть щелевой летки разделывают. Г1о мере опускания в печи уровня металла в летке сбивают плотину из огнеупорного материала, перекрывающую щель. Температура изложниц во время разлива выдерживается в пределах 120—130°. Металл в изложницах застывает в форме анода. Такая форма необходима для последующего рафинирования анодной меди электролизом. Отлитые аноды охлаждают водой из брызгал. Пневматическим подъемником готовые аноды извлекают из форм, последние обильно поливают гипсовой эмульсией, подаваемой насосом. Аноды опускают в ванну с проточной водой для охлаждения и затем подают на обивку.

Готовые аноды не должны иметь литейных пороков и заусенцев. Такие дефекты литья, как пузыри, устраняют сплющиванием их молотком еще в процессе отливки. При обивке удаляют заусенцы и другие дефекты литья, обивку производят посредством пневматического инструмента.

Рафинирование меди

Электролитический метод рафинирования меди

Рафинирование меди – это технология её поэтапной очистки от примесей других металлов и металлоидов.

В природе самородная элементарная медь существует в форме пластин, древовидных сростков (дендритов) или глыб. Однако таких месторождений этого металла далеко недостаточно для покрытия мировой потребности в нём.

В то же время во многих материалах медь присутствует в химически связанном состоянии. Медные руды, такие как медный колчедан (халькопирит) или медный блеск (халькозин), перерабатываются в процессе обогащения в черновую медь со степенью чистоты не выше 97 %. Однако такой уровень недостаточен для многих областей применения меди. В частности, для электронной промышленности необходима высокочистая медь.

Технология рафинирования меди включает в себя 2 метода и одновременно этапа очистки.

1. Пирометаллургический метод рафинирования

При пирометаллургическом (огневом) методе рафинирования производится продувка воздухом расплава черновой меди с добавлением шлакообразующих добавок. При этом происходит окисление примесей определённых металлов, содержащихся в черновой меди. Оксиды цинка, свинца, мышьяка или сурьмы испаряются, а оксиды олова, железа, кобальта или никеля переходят в шлак. В результате этого получается медь огневого рафинирования со степенью чистоты 99 %.

2. Электролитический метод рафинирования

При электролитическом рафинировании используются медные пластины-аноды толщиной 3 см, которые погружаются в раствор сульфата меди (II), подкисленный разбавленной серной кислотой. При этом в качестве катода служат тонкие листы из чистой меди. Электролиз протекает в больших ваннах с множеством параллельно включенных пластин-анодов.

При подаче напряжения величиной от 0,2 до 0,4 вольт медь огневого рафинирования и все химически более активные металлы, содержащиеся в аноде, окисляются с образованием катионов (Cu 2+ , Zn 2+ ), которые переходят в раствор.

В то же время менее активные металлы, такие как серебро, платина или золото, обладающие более положительным по сравнению с медью нормальным потенциалом, не окисляются и не растворяются. Они осаждаются на дне электролизёра в виде анодного шлама, который представляет собой ценное сырьё для получения драгоценных металлов и металлоидов, таких как селен и теллур. При этом на катоде выделяется чистая медь со степенью чистоты около 99,95 %, в то время как ионы более активных металлов остаются в растворе.

Уравнения химических реакций

Окисление на аноде: Cu (неочищенная) → Cu 2+ + 2 e –

Восстановление на катоде: Cu 2+ + 2 e – → Cu (чистая)

Общая реакция: Cu (неочищенная) → Cu (чистая)

Одновременно с этим на аноде происходит разложение воды (реакция a). Выделяющийся при этом кислород окисляет медь уже на электроде до оксида меди (II) (реакция b):

b) 2 Cu + O2 → 2 CuO

Добавленная серная кислота преобразует нерастворимый оксид меди (II) в растворимый сульфат меди (II). Только в результате этого ионы приобретают способность перехода в раствор.

Для получения 1 тонны чистой меди требуется 250 кВтч электроэнергии. Для полного растворения пластин из меди огневого рафинирования может потребоваться несколько месяцев.

Медь является ценным сырьём, поддающимся регенерации путём вторичной переработки. Благодаря этому, 80 процентов меди, добытой за всю историю металлургии, до сих пор находится в обращении.

Электролитическое рафинирование также подходит для очистки других металлов, таких как цинк, олово или хром. Для этой цели рафинируемые металлы погружаются в подвешенном состоянии в раствор соответствующего сульфата.

Анодная медь является сложным многокомпонентным сплавом. Обычно она содержит, %: 99,5-99,8 меди, до 0,015 серы, столько же железа, до 0,5 никеля, до 0,05 свинца, до 0,01 висмута, до 0,2 мышьяка, до 0,06 селена+теллура, до 0,03(300г/т) золота и до 0,5(5000 г/т) серебра. Электролитическое рафинирование меди преследует две цели:

1) Получение меди высокой чистоты (99,90-99,99% меди)

2) Извлечение попутно с рафинированием благородных металлов и других ценных компонентов (селен, теллур, никель, висмут и др.)

Чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди.

Электролитическое рафинирование меди основано на различии ее электрохимических свойств и содержащихся в ней примесей. Медь – это электроположительный металл, ее нормальный потенциал +0,34В.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом

Между анодами в ваннах располагаются тонкие медные листы – катодные основы. При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде.

Примеси меди при этом в основном распределяются между шламом(твердым осадком на дне ванн) и электролитом. В результате электролитического рафинирования получают:

- Шлам, содержащий благородные металлы, селен, теллур

- Загрязненный электролит, часть которого используют для получения медного и никелевого купороса.

Кроме того, вследствие неполного электрохимического растворения анодов, получают анодные остатки (анодный скрап).

Анодный процесс : Cu - 2e = Cu 2+

Катодный процесс: Cu 2+ + 2e = Cu

Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора.

Промышленные электролиты обычно содержат 30-50 г/л Cu 2+ и 120-170 г/л свободной серной кислоты. Для улучшения качества катодной поверхности, в электролиты вводят разнообразные поверхностноактивные (коллоидные) добавки – клей (чаще столярный), желатин, сульфидный щелок, тиомочевину и так далее. Добавки непрерывно вводят в циркулирующий электролит, обычно применяя одновременно две добавки. На одну тонну катодной меди расходуют 15-40 г клея, 15-20 г желатина, 20-60 г сульфидных щелоков или 60-100 г тиомочевины.

Температура электролита составляет 55-65С. Основными требованиями, предъявляемыми к электролиту, является его высокая электропроводность и чистота, однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок обязательно содержат растворенные примеси, содержавшиеся до этого в анодной меди.

Примеси, более электроотрицательные чем медь (никель, железо, цинк и др.) практически полностью переходят в электролит. Исключение составляет только никель, около 5% которого осаждается в шлам. Более электроположительные по сравнению с медью примеси (благородные металлы) переходят в шлам. Золото на 99,5% от его содержания в анодах, а серебро – на 98.

Основными характеристиками, определяющими параметры и показатели электролиза меди являются:

- Выход металла по току

- Напряжение на ванне

- Удельный расход электроэнергии.

Плотность тока выражается в амперах на единицу поверхности электрода (D=I/S). Единицы измерения – А/м 2 катода.

По закону Фарадея, на каждый А*ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А*ч. Следовательно, с увеличением плотности тока производительность процесса электролиза растет. Чаще всего заводы работают при плотности тока 240-300 А/м 2 , но можно довести плотность тока до 500 А/м 2 .

Степень использования тока на основной электрохимический процесс называется выходом металла по току. Выход по току может быть выражен в долях единиц или в процентах. На величину потерь тока влияют: утечки тока, возникающие в результате заземления в цепи, утечки тока через циркуляционные трубопроводы электролита, короткие замыкания между электродами, побочные химические и электрические процессы, нагревание электролита и контактов.




С этой целью введено понятие коэффициента использования тока или, как принято в заводской практике, “выход по току”, который рассчитывается как отношение фактически полученного количества меди к теоретически возможному при данных условиях электролиза (сила тока, продолжительность электролиза)


Напряжение на ванне составляет от 0,35 до 0,46 В.

Удельный расход электроэнергии – 280-370кВт*час/тонну меди

В настоящее время для электролиза меди в основном используются цельнолитые железобетонные ванны ящичного типа. Внутри электролизные ванны облицовывают винипластом. Ванны установлены на столбах с изоляторами из стекла, фарфора или текстолита на высоте 4-5м от 0 отметки. Под ваннами расположены насосы, трубопроводы и сборники электролита. Для спуска шлама и раствора в днищах имеется отверстие с пробкой. Если стоков не делают, ванны разгружают с помощью насосов.

Электролизные ванны объединяют в блоки по 5-20 штук, а блоки – в серии. В электрическую схему питания постоянным током ванны в блоках и блоки в сериях включены последовательно, а электроды в отдельных ваннах – параллельно. Эта система включения ванн и электродов получила название мультипль. Аноды отливают с ушками, которыми они опираются на токоподводящие шины и борта ванн.

Средняя толщина анода 35-45 мм, масса – до 350кг. Для обеспечения равномерного растворения анодов по высоте электролита, их отливают клиновидной формы с утолщением кверху. Катодные основы изготавливают из медных листов, размер катодной основы превышает размер анода по длине на 25-50 мм, по ширине на 50-60 мм. Катодные основы подвешивают в ваннах на медных трубчатых штангах. Расстояние от боковых кромок катодов до стенок ванн около 300 мм, до днища ванны 400-600 мм, число анодов, завешиваемых в одну ванну, на разных заводах колеблется от 29 до 48 штук. Число катодов в ванне всегда на 1 больше числа анодов, что обеспечивает равномерное растворение всех анодов, включая крайние. Расстояние между осями одноименных электродов – около 110мм, соответственно, между анодом и катодом – примерно 35-40 мм.

Выгрузку анодного шлама и полный слив электролита осуществляют периодически после полного срабатывания нескольких партий анодов(в зависимости от выхода шлама). Для выпуска шлама две соседние ванны выключают(шунтируют) наложением специальных медных шунт. После этого, из ванны извлекают электроды, сливают электролит и на дне остается слой сгущенного шлама. Его сливают и смывают в специальные емкости. После разгрузки ванны ее зачищают от обвалившихся кусочков меди, уплотнившегося шлама, и промывают. Шлам пропускают через рокот для отделения крупной фракции меди, после чего фильтруют и направляют на специальную переработку.

Технико-экономические показатели процесса:

1) Содержание меди в анодах, % 99-99,8

2) Масса анодов, кг 175-350

4) Выход анодных остатков, % 17-20

5) Время наращивания катодов, сутки 6-9

6) Масса катода, кг 70-140

7) Выход шлама, % 0,8 – 8,5

8) Состав электролита, г/л Cu 2+ 50, H2SO4 125-230, коллоидные добавки 30-300

9) Температура электролита, С 55-65

10) Скорость циркуляции, л/мин 6-15

11) Катодная плотность тока А/м 2 180-300

12) Напряжение на ванне, В 0,25-0,4

13) Расход электроэнергии кВт*ч/т кат меди 230-350

Анодная медь является сложным многокомпонентным сплавом. Обычно она содержит, %: 99,5-99,8 меди, до 0,015 серы, столько же железа, до 0,5 никеля, до 0,05 свинца, до 0,01 висмута, до 0,2 мышьяка, до 0,06 селена+теллура, до 0,03(300г/т) золота и до 0,5(5000 г/т) серебра. Электролитическое рафинирование меди преследует две цели:

1) Получение меди высокой чистоты (99,90-99,99% меди)

2) Извлечение попутно с рафинированием благородных металлов и других ценных компонентов (селен, теллур, никель, висмут и др.)

Чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди.

Электролитическое рафинирование меди основано на различии ее электрохимических свойств и содержащихся в ней примесей. Медь – это электроположительный металл, ее нормальный потенциал +0,34В.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом

Между анодами в ваннах располагаются тонкие медные листы – катодные основы. При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде.

Примеси меди при этом в основном распределяются между шламом(твердым осадком на дне ванн) и электролитом. В результате электролитического рафинирования получают:

- Шлам, содержащий благородные металлы, селен, теллур

- Загрязненный электролит, часть которого используют для получения медного и никелевого купороса.

Кроме того, вследствие неполного электрохимического растворения анодов, получают анодные остатки (анодный скрап).

Анодный процесс : Cu - 2e = Cu 2+

Катодный процесс: Cu 2+ + 2e = Cu

Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора.

Промышленные электролиты обычно содержат 30-50 г/л Cu 2+ и 120-170 г/л свободной серной кислоты. Для улучшения качества катодной поверхности, в электролиты вводят разнообразные поверхностноактивные (коллоидные) добавки – клей (чаще столярный), желатин, сульфидный щелок, тиомочевину и так далее. Добавки непрерывно вводят в циркулирующий электролит, обычно применяя одновременно две добавки. На одну тонну катодной меди расходуют 15-40 г клея, 15-20 г желатина, 20-60 г сульфидных щелоков или 60-100 г тиомочевины.

Температура электролита составляет 55-65С. Основными требованиями, предъявляемыми к электролиту, является его высокая электропроводность и чистота, однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок обязательно содержат растворенные примеси, содержавшиеся до этого в анодной меди.

Примеси, более электроотрицательные чем медь (никель, железо, цинк и др.) практически полностью переходят в электролит. Исключение составляет только никель, около 5% которого осаждается в шлам. Более электроположительные по сравнению с медью примеси (благородные металлы) переходят в шлам. Золото на 99,5% от его содержания в анодах, а серебро – на 98.

Основными характеристиками, определяющими параметры и показатели электролиза меди являются:

- Выход металла по току

- Напряжение на ванне

- Удельный расход электроэнергии.

Плотность тока выражается в амперах на единицу поверхности электрода (D=I/S). Единицы измерения – А/м 2 катода.

По закону Фарадея, на каждый А*ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А*ч. Следовательно, с увеличением плотности тока производительность процесса электролиза растет. Чаще всего заводы работают при плотности тока 240-300 А/м 2 , но можно довести плотность тока до 500 А/м 2 .

Степень использования тока на основной электрохимический процесс называется выходом металла по току. Выход по току может быть выражен в долях единиц или в процентах. На величину потерь тока влияют: утечки тока, возникающие в результате заземления в цепи, утечки тока через циркуляционные трубопроводы электролита, короткие замыкания между электродами, побочные химические и электрические процессы, нагревание электролита и контактов.

С этой целью введено понятие коэффициента использования тока или, как принято в заводской практике, “выход по току”, который рассчитывается как отношение фактически полученного количества меди к теоретически возможному при данных условиях электролиза (сила тока, продолжительность электролиза)


Напряжение на ванне составляет от 0,35 до 0,46 В.

Удельный расход электроэнергии – 280-370кВт*час/тонну меди

В настоящее время для электролиза меди в основном используются цельнолитые железобетонные ванны ящичного типа. Внутри электролизные ванны облицовывают винипластом. Ванны установлены на столбах с изоляторами из стекла, фарфора или текстолита на высоте 4-5м от 0 отметки. Под ваннами расположены насосы, трубопроводы и сборники электролита. Для спуска шлама и раствора в днищах имеется отверстие с пробкой. Если стоков не делают, ванны разгружают с помощью насосов.

Электролизные ванны объединяют в блоки по 5-20 штук, а блоки – в серии. В электрическую схему питания постоянным током ванны в блоках и блоки в сериях включены последовательно, а электроды в отдельных ваннах – параллельно. Эта система включения ванн и электродов получила название мультипль. Аноды отливают с ушками, которыми они опираются на токоподводящие шины и борта ванн.

Средняя толщина анода 35-45 мм, масса – до 350кг. Для обеспечения равномерного растворения анодов по высоте электролита, их отливают клиновидной формы с утолщением кверху. Катодные основы изготавливают из медных листов, размер катодной основы превышает размер анода по длине на 25-50 мм, по ширине на 50-60 мм. Катодные основы подвешивают в ваннах на медных трубчатых штангах. Расстояние от боковых кромок катодов до стенок ванн около 300 мм, до днища ванны 400-600 мм, число анодов, завешиваемых в одну ванну, на разных заводах колеблется от 29 до 48 штук. Число катодов в ванне всегда на 1 больше числа анодов, что обеспечивает равномерное растворение всех анодов, включая крайние. Расстояние между осями одноименных электродов – около 110мм, соответственно, между анодом и катодом – примерно 35-40 мм.

Выгрузку анодного шлама и полный слив электролита осуществляют периодически после полного срабатывания нескольких партий анодов(в зависимости от выхода шлама). Для выпуска шлама две соседние ванны выключают(шунтируют) наложением специальных медных шунт. После этого, из ванны извлекают электроды, сливают электролит и на дне остается слой сгущенного шлама. Его сливают и смывают в специальные емкости. После разгрузки ванны ее зачищают от обвалившихся кусочков меди, уплотнившегося шлама, и промывают. Шлам пропускают через рокот для отделения крупной фракции меди, после чего фильтруют и направляют на специальную переработку.

Технико-экономические показатели процесса:

1) Содержание меди в анодах, % 99-99,8

2) Масса анодов, кг 175-350

4) Выход анодных остатков, % 17-20

5) Время наращивания катодов, сутки 6-9

6) Масса катода, кг 70-140

7) Выход шлама, % 0,8 – 8,5

8) Состав электролита, г/л Cu 2+ 50, H2SO4 125-230, коллоидные добавки 30-300

fjnhsr.jpg

В рафинировании меди применяется такое понятие как экономическая плотность тока – плотность тока, при которой затраты электроэнергии на получение 1 тонны чистой меди будут минимальными (не путать с таковой при расчете сечения проводов, когда идет расчет электрических потерь в ЛЭП). При этом время процесса зачастую бывает не оптимальным или вовсе не принимается во внимание из-за решающей роли стоимости электричества. Так, в среднем на растворение анода требуется 20-30 суток, а катоды достигают оптимального размера за 6-12 суток при стандартной плотности тока 170-200 А/м 2 и напряжении между анодом и катодом 0,3-0,4 В. Расход электроэнергии при этом составляет в среднем 230-350 кВт*ч на 1 тонну меди.

1) Поиск сочетаний поверхностно-активных веществ (ПАВ), которые улучшают свойства электролита,

2) Использование различных схем циркуляции электролита, позволяющих повысить скорость до 20 л/мин на 1 см 2 поверхности (при этом плотность тока может достигать 860 А/м 2 ),

3) Применение реверсного тока в процессе рафинирования. Оптимальным на данный момент является соотношение прямого и реверсного тока 200:10. Этот метод является в настоящее время самым эффективным, но требует надёжного источника питания, позволяющего генерировать импульсы тока, строго соответствующие заданным параметрам.

Все описанные выше средства в настоящее время активно исследуются и совершенствуются на многих металлургических предприятиях в России и за рубежом. Основной их целью является не только ускорение процесса, но и обеспечение его непрерывности и повышение эффективности, в том числе экономической.

Первые два способа, как правило, обкатываются непосредственно на предприятиях в ходе экспериментов – проверяются новые комбинации ПАВ, меняется состав электролита, строятся новые системы подачи электролита для повышения скорости его циркуляции. Использование же реверсных токов зачастую становится самым доступным методом – для его внедрения в промышленный процесс достаточно изменить схему питания гальванической ванны, применив современный источник тока и обеспечив циркуляцию электролита.

Читайте также: