Проводные линии связи это кратко

Обновлено: 02.07.2024

Основные виды линий связи делятся на проводные и беспроводные. В проводных линиях связи физическая среда, по которой распространяются сигналы, образует механическую связь между приемником и передатчиком. Беспроводные линии связи характеризуются тем, что отсутствует какая-либо механическая связь между передатчиком и приемником, а носителем информации являются электромагнитные волны, которые распространяются в окружающей среде.

Проводные линии связи

По конструктивным признакам проводные линии делятся на:

воздушные, которые представляют собой провода без каких-либо изолирующих или экранирующих оболочек, проложенные между столбами и весящие в воздухе;
кабельные, которые состоят из проводников, заключенных, как правило, в несколько слоев изоляции.

По воздушным линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются для передачи компьютерных данных. Скоростные характеристики и помехозащищенность этих линий оставляют желать лучшего. Проводные линии связи быстро вытесняются кабельными.

Кабельные электрические линии связи делятся на три основных вида: кабель на основе скрученных пар медных проводов, коаксиальный кабель с медной жилой, также волоконно-оптический кабель.

Скрученная пара проводов называется витой парой [twisted pair]. Провода скручиваются для устранения взаимного влияния между электрическими токами в проводниках. Витая пара существует в экранированном варианте [Shielded Twisted Pair, STP], когда пара медных проводов обертывается в изоляционный экран, и неэкранированная [Unshielded Twisted Pair, UTP], когда изоляционная оболочка отсутствует. Одна или несколько витых пар сводятся в кабели, имеющие защитную оболочку.

Неэкранированная витая пара имеет широкий спектр применения. Она используется как в телефонных, так и в компьютерных сетях. В настоящее время кабель UTP является популярной средой для передачи информации на короткие расстояния [около 100 метров] Кабели на основе витой пары в зависимости от электрических и механических характеристик делятся на 5 категорий. В компьютерных сетях широко применяются кабели 3 и 5 категорий, которые описаны в американском стандарте EIA/TIA-568А.

Кабель категории 3 предназначен для низкоскоростной передачи данных. Для него определяется затухание на частоте 16 МГц и должно быть не ниже 13.1 дБ при длине кабеля 100 метров. Кабель на витой паре категории 5 характеризуется затуханием не ниже 22 дБ для частоты 100 МГц при длине кабеля не более 100 метров. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар имеет определенный цвет и шаг скрутки. К достоинствам кабеля UTP можно отнести:

гибкость кабеля, благодаря которой упрощается монтаж линии связи;
низкую стоимость при достаточно высокой пропускной способности [до 1 Гбит/с].

Недостатками неэкранированного кабеля на витой паре являются:

низкая помехозащищенность;
жесткое ограничение длинны кабеля [100 -135 м].

Экранированная витая пара STP хорошо защищает передаваемые сигналы от помех, а также меньше излучает электромагнитных колебаний вовне. Однако, наличие заземляемого экрана удорожает кабель и усложняет его прокладку, так как требует его качественного заземления. Кабель STP применяют в основном для передачи дискретной информации, а голос по нему не передают.

Основным стандартом, определяющим параметры STP, является фирменный стандарт IBM. В этом стандарте кабели делятся не на категории, а на типы. Тип 1 примерно совпадает по характеристикам с UTP категории 5. Он состоит из 2-х пар скрученных медных проводов, экранированных проводящей оплеткой, которая заземляется. Кабель IBM тип 2 представляет собой кабель первого типа с добавленными 2 парами неэкранированного провода для передачи голоса. Не все типы стандарта IBM относятся к STP.

Коаксиальный кабель состоит из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки. За счет такой конструкции коаксиальный кабель меньше подвержен внешним электромагнитным воздействиям, поэтому возможно его использование на более высоких скоростях передачи данных. Кроме этого, данные кабели из-за относительно толстой центральной жилы характеризуются минимальным ослаблением электрического сигнала, что позволяет передавать информацию на достаточно большие расстояния. Полоса пропускания коаксиального кабеля может составлять более 1 ГГц/км, а затухание - менее 20 дБ/км на частоте 1 ГГц.

Существует большое количество типов коаксиальных кабелей, используемых в сетях различного типа - телефонных, телевизионных и компьютерных. В локальных компьютерных сетях используются кабели двух типов: тонкий коаксиальный кабель и толстый коаксиальный кабель.

Тонкий коаксиальный кабель имеет внешний диаметр около 5 мм , а диаметр центрального медного провода составляет 0.89 мм. Данный кабель предназначен для передачи сигналов со спектром до 10 МГц на расстояние до 185 метров.

Толстый коаксиальный кабель имеет внешний диаметр около 10 мм , а диаметр центрального медного провода составляет 2.17 мм. Данный кабель предназначен для передачи сигналов со спектром до 10 МГц на расстояние до 500 метров.

Тонкий коаксиальный кабель обладает худшими механическими и электрическими характеристиками по сравнению с толстым коаксиальным кабелем, зато за счет своей гибкости более удобен при монтаже.

Коаксиальный кабель в несколько раз дороже кабеля на витой паре, а по характеристикам уступает, в частности, оптоволоконному кабелю, поэтому он все реже используется при построении коммуникационной системы компьютерных сетей.

Волоконно-оптические кабели состоят из центрального проводника света [сердцевины] - стеклянного волокна, окруженного другим слоем стекла - оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от оболочки. Каждое стеклянное оптоволокно передает сигналы только в одном направлении.

В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:

многомодовое волокно со ступенчатым изменением показателя преломления;
многомодовое волокно с плавным изменением показателя преломления;
одномодовое волокно.

В одномодовом кабеле [Single Mode Fiber, SMF] используется центральный проводник очень малого диаметра, соизмеримого с длинной волны света - от 5 до 10 мкм. При этом практически все лучи распространяются вдоль оптической оси сердцевины, не отражаясь от оболочки. Полоса пропускания одномодового кабеля очень широкая - до сотен гигагерц на километр. Изготовления тонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает кабель достаточно дорогим.

В многомодовых кабелях [Multi Mode Fiber, MMF] используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62.5/125 мкм и 50/125 мкм, 62.5 мкм или 50 мкм - это диаметр центрального проводника, а 125 мкм - диаметр внешнего проводника.

В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника. Угол отражения проводника называется модой луча. Многомодовые кабели имеют более узкую полосу пропускания - от 500 до 800 МГц/км. Сужение полосы происходит из-за потерь световой энергии при отражениях, а также из-за интерференции лучей разных мод.

В качестве источников излучения света в волоконно-оптических кабелях применяются:

Светодиоды могут излучать свет с длинной волны 0.85 и 1.3 мкм. Лазерные излучатели работают на длинах волн 1.3 и 1.55 мкм. Быстродействие современных лазеров позволяет модулировать световой поток с частотами 10 ГГц и выше.

Волоконно-оптические кабели обладают отличными электромагнитными и механическими характеристиками, недостаток их состоит в сложности и высокой стоимости монтажных работ.

Беспроводные линии связи

В таблице приведены сведения о диапазонах электромагнитных колебаний, используемых в беспроводных каналах связи.

ДиапазонДлины волн, мЧастоты, ГГцПрименение
Дециметровый1. 0,10,3. 3Сотовые радиотелефоны, телевиденье, спутниковая связь, радиоканалы в локальных компьютерных сетях.
Сантиметровый0,1. 0,013. 30Радиорелейные линии, радиоканалы в локальных компьютерных сетях, спутниковая связь.
Миллиметровый0,01. 0,00130. 300Радиоканалы в локальных компьютерных сетях.
Инфракрасный0,001. 7,5*10-73*102. 4*105Инфракрасные каналы связи.
Видимый свет7,5*10-7. 4,0*10-74,0*105. 7,5*105Лазерная связь.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Радиоволнами называются электромагнитные колебания с частотой f меньше 6000 ГГц [с длинной волны l больше 100 мкм]. Связь между длинной волны и частотой дается выражением

f = c/lambda где с = 3*10 8 м/с - скорость света в вакууме.

Для передачи информации радиосвязь используется прежде всего тогда, когда кабельная связь невозможна - например:

при прохождении канала через малонаселенную или трудно доступную местность;
для связи с мобильными абонентами такими, как шофер такси, врач скорой помощи.

Основным недостатком радиосвязи является ее слабая помехозащищенность. Это прежде всего относится к низкочастотным диапазонам радиоволн. Чем выше рабочая частота, тем больше емкость [число каналов] системы связи, но тем меньше предельные расстояния, на которых возможна прямая передача между двумя пунктами. Первая из причин и порождает тенденцию к освоению новых более высокочастотных диапазонов. Однако, радиоволны с частотой превышающей 30 ГГц работоспособны для расстояний не более или порядка 5 км из-за поглощения радиоволн в атмосфере.

Для передачи на большие расстояния используется цепочка радиорелейных [ретрансляционных] станций, отстоящих друг от друга на расстояние до 40 км. Каждая станция имеет вышку с приемником и передатчиком радиоволн, получает сигнал, усиливает его и передает на следующую станцию. Для увеличения мощности сигнала и снижения влияния помех применяют направленные антенны.

Спутниковая связь отличается от радиорелейной тем, что в качестве ретранслятора выступает искусственный спутник Земли. Этот вид связи обеспечивает более высокое качество передаваемой информации так, как требует меньшего количества промежуточных узлов на пути передачи информации. Часто применяют комбинацию радиорелейной связи со спутниковой.

Инфракрасное излучение и излучение в миллиметровом диапазоне используется на небольших расстояниях в блоках дистанционного управления. Основной недостаток излучения в этом диапазоне - оно не проходит через преграду. Этот недостаток одновременно является преимуществом когда излучение в одной комнате не интерферирует с излучением в другой. На эту частоту не надо получать разрешения. Это прекрасный канал для передачи данных внутри помещений.

Видимый диапазон также используется для передачи. Обычно источником света является лазер. Когерентное излучение легко фокусируется. Однако, дождь или туман портят дело. Передачу способно испортить даже конвекционные потоки на крыше, возникающие в жаркий день.

Аннотация: К современным средствам связи относятся электрические и оптические средства – проводная – факсимильная, волоконно-оптическая, беспроводная – радиотелеграф, радиорелейная, спутниковая, пейджинговая, сотовая мобильная связь, Интернет-телефония, спутниковое цифровое телевидение

Линии (каналы) связи обеспечивают передачу и распространение сигналов от передатчика к приемнику. По физической природе передаваемых сигналов различают электрические (проводные и радио), акустические и оптические каналы связи.

Древнейшими каналами связи являются акустические и оптические.

Для передачи информации использовался звук - барабанов и колоколов. Человеческая речь также передается по акустическому каналу связи, ограниченному пределом слышимости. Принцип передачи информации голосом на большие расстояния использовался еще до новой эры.

Сигнальные костры - это древнейший оптический канал связи .

Проводные линии связи

Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные.

Линии электросвязи возникли одновременно с появлением электрического телеграфа. Первые линии связи были кабельными. Они прокладывались под землей. Однако вследствие несовершенства конструкции подземные кабельные линии связи вскоре уступили место воздушным. Первая воздушная линия большой протяженности в России была построена в 1854 году между Санкт-Петербургом и Варшавой. В начале 70-х годов прошлого столетия заработала воздушная телеграфная линия от Санкт-Петербурга до Владивостока длиной около 10 тыс. км. В 1939 году была пущена в эксплуатацию величайшая в мире по протяженности высокочастотная телефонная магистраль Москва-Хабаровск длиной 8300 км. Обычный городской телефонный кабель состоит из пучка тонких медных или алюминиевых проводов, изолированных друг от друга и заключенных в общую оболочку. Кабели состоят из разного числа пар проводов, каждая из которых используется для передачи телефонных сигналов.

В 1851 г. одновременно с постройкой железной дороги между Москвой и Санкт-Петербургом был проложен телеграфный кабель, изолированный резиной. Первые подводные кабели были проложены в 1852 г. через Северную Двину и в 1879 г. через Каспийское море между Баку и Красноводском. В 1866 г. вступила в строй подводная кабельная трансатлантическая магистраль телеграфной связи между Францией и США.

В 1882-1884 гг. в Москве, Санкт-Петербурге, Риге, Одессе были построены первые в России городские телефонные сети. В 90-х годах прошлого столетия на городских телефонных сетях Москвы и Петрограда были подвешены первые кабели, насчитывающие до 54 жил. В 1901 г. началась постройка подземной городской телефонной сети.

Первые конструкции кабелей связи, относящиеся к началу XX века, позволили осуществлять телефонную передачу на небольшие расстояния. Это были так называемые городские телефонные кабели с воздушно-бумажной изоляцией жил и парной скруткой. В 1900-1902 гг. дальность передачи телеграфной и телефонной связи была увеличена в несколько раз.

Важным этапом в развитии техники связи явилось изобретение, а начиная с 1912-1913 гг. - освоение производства электронных ламп.

В 1917 г. В.И. Коваленковым был разработан и испытан на линии телефонный усилитель на электронных лампах. В 1923 г. была осуществлена телефонная связь с усилителями на линии Харьков-Москва-Петроград.

В 1930-х годах началось развитие многоканальных систем передачи. Стремление расширить спектр передаваемых частот и увеличить пропускную способность линий привело к созданию новых типов кабелей, так называемых коаксиальных. Они используются для передачи телевизионных сигналов высокой частоты, а также для междугородней и международной телефонной связи. Одним проводом в коаксиальном кабеле служит медная или алюминиевая трубка (или оплетка), а другим - вложенная в нее центральная медная жила. Они изолированы друг от друга и имеют одну общую ось. Такой кабель имеет малые потери, почти не излучает электромагнитных волн и поэтому не создает помех. Изобретателем коаксиального кабеля является сотрудник всемирно известной фирмы Bell Telephone Laboratories Cергей Aлександрович Щелкунов - эмигрант из Советской России. Первый в мире коаксиальный кабель был проложен в 1936 г. на экспериментальной линии Нью-Йорк-Филадельфия. По кабелю одновременно передавались 224 телефонных разговора.

Коаксиальный кабель

Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния. По первым трансатлантическим подводным кабелям, проложенным в 1856 г., организовывали лишь телеграфную связь, и только через 100 лет, в 1956 г., была сооружена подводная коаксиальная магистраль между Европой и Америкой для многоканальной телефонной связи.

Факсимильная связь

Факсимильная (или фототелеграфная) связь - это электрический способ передачи графической информации - неподвижного изображения текста или таблиц, чертежей, схем, графиков, фотографий и т.п. Осуществляется при помощи факсимильных аппаратов: телефаксов и каналов электросвязи (главным образом телефонных).

Факс

Первый телефакс был запатентован в 1843 году шотландским изобретателем Александром Бэйном. Его "записывающий телеграф" работал на телеграфных линиях и был способен передавать только черно-белые изображения, без полутонов.

Джованни Касселли в 1855 году изобрел аппарат пантелеграф (Pantelegraph), который обеспечивал передачу документов по линии, соединяющей Париж с Лионом. Позднее к ним присоединились и многие другие города. К 30-м гг. XX века системы на основных принципах Александра Бэйна и Джованни Касселли уже широко использовались в офисах издательств (для передачи свежих выпусков газет), государственных служб (для передачи срочных документов), служб защиты правопорядка (для передачи фотографий и других графических материалов). Для передачи документов применялись аналоговые технологии, которые не могли обеспечить высокого качества графических изображений. И только внедрение цифровых технологий в начале 80-х годов XX века позволило обеспечить высокое качество не только текстовых материалов, но и графических изображений при передаче по телефонным каналам связи.

Оптоволоконные линии связи

В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").


Оптоволоконный кабель (поперечный разрез)

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

История развития оптоволоконных линий связи началась в 1965-1967 гг., когда появились опытные волноводные линии связи для передачи информации. С 1970 г. активно проводились работы по созданию световодов и оптических кабелей, использующих видимое и инфракрасное излучения оптического диапазона волн. Создание волоконного световода и полупроводникового лазера сыграли решающую роль в быстром развитии оптоволоконной связи. К началу 1980-х годов такие системы связи были разработаны и испытаны. Основными сферами применения таких систем стали телефонная сеть, кабельное телевидение, вычислительная техника, система контроля и управления технологическими процессами и т. д.

Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. В начале XXI века внедряется уже 4-е поколение этой аппаратуры. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в многие тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Eвропа, Тихоокеанская линия США-Гавайские острова-Япония. Ведутся работы по завершению строительства глобального оптоволоконного кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.

В России компания "ТрансТелеКом" создала оптоволоконную сеть связи протяженностью более 50000 км (рис. 4.1). Она проложена вдоль железных дорог страны, имеет более 900 узлов доступа в 71 из 89 регионов России и дублирована спутниковыми каналами связи. В результате к концу 2001 года вступила в строй единая магистральная цифровая сеть связи. Она обеспечивает услуги междугородней и международной телефонной связи, Интернет, видеоконференции, видео, кабельное телевидение в 71 из 89 регионов России, где проживает 85-90% населения. Диапазон ее услуг: от простейшего речевого обмена и электронной почты до комбинированных (видео + голос + данные).

Оптоволоконные линии отличают от традиционных проводных линий:

  • очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);

Оптоволоконная сеть

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Подводные кабели связи существуют уже более 150 лет. В 1851 году инженер Брет проложил первый подводный кабель через Ла-Манш, соединив таким образом телеграфной связью Англию с континентальной Европой. Это стало возможным благодаря применению гуттаперчи - вещества, которое способно изолировать в воде провода, несущие ток.

Линии связи, или линии передачи данных – это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи – это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных – это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить следующим образом:

· проводные линии связи без изолирующих и экранирующих оплеток;

· беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналов, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

Кабельные линии связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей:

2) коаксиальный кабель;

3) оптоволоконный кабель.

Витая пара (twisted pair) – кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку (рис. 8.2, а). Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара (UTP) и экранированная витая пара (STP).

Рис. 8.2. Кабельные линии связи: а – витая пара; б – коаксиальный кабель;

в – оптоволоконный кабель

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с.


Коаксиальный кабель (coaxial cable) – это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (он состоит из медной оплетки или слоя алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией (рис. 8.2, б).

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5–6 мм и толстый коаксиальный кабель диаметром 10–12 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон (рис. 8.2, в). На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество кабеля этого типа – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3 Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Беспроводные каналы передачи данных (радиоканалы наземной и спутниковой связи)

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями – до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

В спутниковых системах используются антенны СВЧ-диапазона[1] частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков мегабит в секунду.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Проводная связь" в других словарях:

ПРОВОДНАЯ СВЯЗЬ — ПРОВОДНАЯ связь, система электросвязи, в которой передача информации производится по кабелю связи. Охватывает телефонную, телеграфную, факсимильную связь. Линии проводной связи используются также для передачи программ звукового и телевизионного… … Современная энциклопедия

ПРОВОДНАЯ СВЯЗЬ — электросвязь посредством электрических сигналов, распространяющихся по кабелям связи и проводам. Охватывает телефонную, телеграфную, факсимильную, видеотелефонную связь и передачу данных. Линии проводной связи используют также для передачи… … Большой Энциклопедический словарь

проводная связь — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN line communication … Справочник технического переводчика

проводная связь — электросвязь посредством электрических сигналов, распространяющихся по кабелям связи и проводам. Охватывает телефонную, телеграфную, факсимильную, видеотелефонную связь и передачу данных. Линии проводной связи используют также для передачи… … Энциклопедический словарь

проводная связь — laidinis ryšys statusas T sritis fizika atitikmenys: angl. line communication; wire communication vok. Drahtnachrichtenverbindung, f; Drahtverbindung, f rus. проводная связь, f pranc. communication par fil, f … Fizikos terminų žodynas

ПРОВОДНАЯ СВЯЗЬ — система электросвязи, в к рой передача информации производится по подз. кабелю связи (реже по воэд. линии связи). Охватывает телеф., телегр., факсимильную связь, передачу данных. Линии П. с. используют также для передачи программ звукового и ТВ… … Большой энциклопедический политехнический словарь

Проводная связь — род связи, осуществляемой по проводам полевых, постоянных воздушных, а также подводных и подземных кабельных линий связи. Применяется для управления войсками и для связи внутри пунктов управления … Словарь военных терминов

Проводная связь — совокупность средств связи, осуществляемой с помощью электрического тока по проводам. П. с. включает в себя телефон, высокочастотное телефонирование, телеграфию, тональное телеграфирование, фототелеграф … Краткий словарь оперативно-тактических и общевоенных терминов

Связь (отрасль нар. хоз-ва) — Связь, передача и приём информации с помощью различных средств; отрасль народного хозяйства, обеспечивающая передачу информации. С. играет важную роль в производственно хозяйственной деятельности общества и управлении государством, вооружёнными… … Большая советская энциклопедия

Читайте также: