Применение водорода кратко по пунктам таблица

Обновлено: 02.07.2024

Ключевые слова конспекта: характеристика элемента водород, физические свойства водорода, получение водорода.

Водород — первый, самый легкий элемент Периодической системы элементов. Массовая доля водорода в земной коре менее 1%.

Степень окисления водорода +1 — в составе воды, кислот, оснований, кислых солей. Степень окисления -1 встречается редко, в гидридах щелочных и щелочноземельных металлов: NaH, СаН2.

Изотопы водорода различаются массовыми числами: протий 1 Н, дейтерий 2 Н (D), тритий 3 Н (Т).

Практически весь водород в природе находится в виде соединений. Это — вода Н2О, природный газ метан СН4, углеводороды вида СаНb, например газ пропан С3Н8 и компонент нефти октан C8H18, соляная кислота НСl в нашем желудке. Водород в виде воды и органических соединений — важнейший элемент растительных и животных организмов, например в составе сахара С12Н22О11.

Физические свойства водорода Н2. Газ без цвета, вкуса и запаха, значительно легче воздуха, плотность 0,09 г/л — это самый легкий газ, температура сжижения -253°С, в воде практически нерастворим (в 100 г воды при н.у. растворяется 2,15 мл Н2).

Получение водорода. В лаборатории водород получают при взаимодействии соляной кислоты НСl или разбавленной серной кислоты H2SO4(p-p) с цинком Zn:

2НСl + Zn = ZnCl2 + Н2↑,
H2SO4(p-p) + Zn = ZnSO4 + H2↑.

Другой способ — разложение воды электрическим током:


В промышленности взаимодействие метана (и родственных ему углеводородов) с кислородом в присутствии паров воды называют конверсией. Так, из метана СН4 взаимодействием с кислородом в присутствии избытка паров воды получают водород:

2СН4 + O2 + 2Н2O = 6Н2 + 2СO2.

Для отделения углекислого газа образовавшуюся смесь газов под давлением пропускают через холодную воду. Углекислый газ в воде растворяется, а водород нет.

Иногда конверсию метана проводят при недостатке водяного пара:

CH4 + Н2O = CO +3H2.

Образующуюся смесь оксида углерода(II) с водородом <синтез-газ) используют в органическом синтезе.

Разложение воды электрическим током из-за дорогой стоимости электричества в больших масштабах невыгодно.

Также водород получают при взаимодействии водяного пара с раскаленным углем:

С + Н2O = СО + Н2.

Образующуюся смесь называют водяным газом.

В промышленности используют водород, выделяющийся в реакциях разложения при нагревании каменного угля или нефти без доступа воздуха.

Водород широко используется в химической промышленности для синтеза аммиака, метанола, хлороводорода, для гидрогенизации жиров, жидкого и твердого топлива (угля, нефти) и т.д. При гидрогенизации угля и нефти бедные водородом низкосортные виды топлива превращаются в высококачественные. Водород также используется для гидрирования растительных жиров (получение маргарина), для получения спиртов, альдегидов, кетонов. Но самым большим по объему потребления водорода сегодня является нефтяная промышленность, где он используется для удаления из нефти и продуктов ее переработки соединений серы. Водород применяется в металлургии для восстановления некоторых металлов из их оксидов (например, для получения железа прямым восстановлением железной руды). Водород используют для охлаждения мощных генераторов электрического тока. Жидким водородом наполняют пузырьковые камеры, регистрирующие элементарные частицы и их превращения. Для работы этих устройств требуются в год десятки тонн жидкого водорода.

В смеси с угарным газом (в виде водяного газа) применяется как топливо. Температура кислородно-водородного пламени достигает 2600-2800 °C, что позволяет сваривать и разрезать тугоплавкие металлы, кварц и проч. Применяется также атомарно-водородная сварка, где температура пламени достигает 4000 °C.

Водород используется для получения гидридов, которые находят применение в различных областях (гидрид лития – компонент ракетного топлива и используется в органических синтезах, гидрид кальция – используется для удаления следов влаги из топлив, гидрид натрия применяется в синтезе).

Водород обладает наибольшей теплотворной способностью из всех известных топлив:

H2(г) C(тв) CH4(г) C6H6(ж)
Стандартная молярная энтальпия сгорания (кДж/моль) -285,8 -393,5 -890,2 -3267,4
Удельная теплота сгорания (кДж/моль) -142,9 -32,8 -55,6 -41,9

Поэтому жидкий водород используется в ракетной технике.

В настоящее время проблема использования водорода приобрела особое значение. Энергетический кризис, проблема защиты окружающей среды от непрерывного и угрожающего загрязнения нефтью и продуктами сгорания различных топлив – все это стимулирует рост интереса к водороду как к экологически чистому горючему. Водород может служить универсальным источником энергии, получаемой как при непосредственном его сжигании, так и в топливных элементах. Подсчитано, что энергетические затраты на перекачивание водорода по трубопроводам меньше, чем потери электроэнергии в ЛЭП. При сгорании водорода образуется только вода и атмосфера остается чистой. Водород с успехом может быть использован как топливо для различных видов транспорта и в бытовых целях – отопление, приготовление пищи и т.д. Одним из главных преимуществ водородной энергетики также является то, что на Земле огромные запасы воды и водород – самый распространенный элемент во Вселенной. К сожалению, в действительности дело обстоит не так просто. Водородная энергетика имеет целый ряд существенных недостатков. Прежде всего, необходимо найти достаточно эффективный источник водорода (существующие на сегодня промышленные способы получения водорода требуют значительных затрат энергии). Далее, большой проблемой является хранение и транспортировка: плотность водорода (даже сжиженного или твердого) в 10-15 раз меньше плотности воды, поэтому объем, необходимый для его хранения весьма велик, а благодаря высокой диффундирующей способности водорода при переходе на водородную энергетику возникает необходимость использования особых материалов (водород приводит к растрескиванию стали). Однако одним из потенциальных способов хранения и транспортировки водорода является перевод его в гидриды или растворение в металлах.

И, наконец, с экологической безопасностью дело тоже обстоит не очень просто: основным источником экологических проблем являются не столько сами по себе продукты сгорания обычных топлив, сколько образующиеся при горении из-за высокой температуры оксиды азота. А поскольку температура пламени водорода выше, чем у угля или природного газа, при сжигании водорода их образуется даже больше. Поэтому водородная энергетика пока остается областью проектов.

В будущем может быть расширено применение водорода для металлургии.

Тяжелая вода является весьма эффективным замедлителем нейтронов в ядерных реакторах. Дейтерий широко применяют в научных исследованиях. А в дейтериево-тритиевой смеси проводят управляемую термоядерную реакцию.

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :


+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:


Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений


Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).

Формула водорода

Водород химический элемент, первый по порядковому номеру в периодической системе Д. И. Менделеева. Атомная масса 1,00792. При обычных условиях водород - газ без цвета, запаха и вкуса, в 14,38 раза легче воздуха. Плотность 0,089870 г/л при нулевой температуре и нормальном давлении. Критическая температура -240°С. Химическая формула – H. В обычных условиях молекула водорода двухатомная - H2.

Содержание

При горении водорода в кислороде образуется чистое, некоптящее и не имеющее четких границ пламя температурой до 2800°С.

Теоретически для полного сгорания 1 мг водорода требуется 0,5 мг кислорода. Практически в горелку на 1 мг водорода подается 0,25 мг кислорода.

История открытия водорода

В 1794 г. к водороду возник чисто военный интерес. В то время уже были изобретены воздушные шары, наполненные горячим воздухом, - монгольфьеры Их называли так в честь братьев французов Монгольфье, совершивших первый полет на таком аэростате в 1783 г.

Преимущества водорода перед нагретым воздухом были очевидны. Нагретый воздух обладал подъемной силой, пока он не остывал до температуры окружающего воздуха. Следовательно, чтобы совершить более или менее длительный полет, надо было под отверстием аэростата в гондоле пилота поддерживать огонь, подогревать воздух. Конечно, это было опасно и приводило к трагическим катастрофам. А водород всегда будет легче воздуха более чем в 14 раз. И его не надо нагревать, наоборот - беречь от огня.

Избыток водяных паров, непрерывно поступающих в трубу, проходил через холодильник, а водород по трубам направлялся в аэростат и надувал его.

Когда железо израсходуется, его опять можно получить из накаленной окалины, если через трубу пропустить светильный газ. Уравнение показывает, что 3?56=168 г железа могут вытеснить 8 г водорода, или 4?22,4=89,6 л водорода.

Аэростаты, наполненные водородом, применили впервые революционные войска Франции в битве при Флёрюсе в 1794 г.

В войнах 1904-1905 и 1914-1918 гг. привязанные канатами аэростаты служили главным образом для наблюдения за прицельностью артиллерийского огня, за передвижением войск. Во время Великой Отечественной войны 1941-1945 гг. они защищали военные объекты от авиации противника. Летчики, опасаясь столкновений с аэростатом и канатами, летали на большой высоте, поэтому их бомбовые удары в значительной мере теряли прицельность.

Первый в мире полет на аэростате с научной целью совершил ученый Захаров Яков Дмитриевич в 1804 г. А в 1887 г. для наблюдения солнечного затмения и изучения воздуха поднялся в воздух Менделеев Дмитрий Иванович.

Получение водорода

Способы получения водорода

В промышленности технический водород получают:

  • электролизом воды;
  • методом глубокого охлаждения газовых смесей, содержащих водород;
  • железо-паровым способом;
  • из водяного газа путем окисления содержащейся в нем окиси углерода водяным паром в присутствии катализатора;
  • в специальных водородных генераторах воздействием серной кислоты на железную стружку и цинк.

Получение водорода из кислот

На первых порах источником для получения водорода служили кислоты. Так и в наше время в лабораториях часто получают его средневековым способом - действием цинка на серную кислоту. Реакция протекает по уравнению:

Вместо цинка можно взять железо в виде стружек или алюминий. Водород получается, загрязненный побочными продуктами разложения серной кислоты, и, если это требуется, его приходится очищать.

Добыча водорода из промышленных газов

Огромные количества водорода, необходимые современной промышленности, получают сейчас электролизом раствора щелочи и извлекают из промышленных газов - коксовальных печей, газов, получаемых при переработке нефти и др.

При переработке каменного угля на кокс дополнительно получается деготь и коксовый газ. В состав газа входит до 50-60% водорода (H2), 20-25% метана (СН4), окись углерода (СО), азот (N) и др.

В статье о свойствах гелия и способах его производства описан процесс получения гелия методом фракционной конденсации. Так же поступают и с коксовым газом. Но чтобы отделить водород от других составных частей, требуется очень глубокое охлаждение из-за низкой критической температуры водорода.

Производство водорода из воды

Наиболее широко распространенным способом производства водорода является - электролиз дистиллированной воды. В результате чего получают водород, кислород и некоторые примеси.

Единственным исходным сырьем для добычи водорода электролитическим методом служит вода. Чистая, дистиллированная вода обладает огромным сопротивлением и почти совершенно не проводит электрический ток. Вот почему для того чтобы сделать воду электропроводной, в ней нужно растворить какую-нибудь соль, кислоту или основание, которые дают ионы.

Через водный раствор щелочи (например: каустическая сода) пропускают постоянный электрический ток. При этом вода разлагается, и на отрицательном электроде (катоде) выделяется водород, а на положительном электроде (аноде) - кислород, также являющийся важным промышленным продуктом.

Большой расход электроэнергии является главным недостатком данного способа, поэтому применение водорода полученного при помощи электролиза целесообразно при одновременном использовании вместе с кислородом. В связи с этим в последнее время портативные водородные сварочные аппараты для газовой сварки и пайки пользуются все большей популярностью.

Применение водорода

Применение водорода

Основными направлениями применения водорода являются:

  • химическая промышленность – синтез аммиака, метанола, углеводородов;
  • пищевая промышленность – получение пищевых белков;
  • нефтехимия – нефтепереработка (гидрогенезационная очистка нефтепродуктов);
  • автотранспорт – автомобили на газообразном и жидком водороде;
  • машиностроение – для сварки и резки металлов.

Применение водорода в сварке

Водород использовался в качестве защитного газа еще при первых попытках защиты дугового пространства от воздуха. Однако водород может оказать в ряде случаев вредное воздействие. Это объясняется тем, что при применении водорода в металле сварных швов образуются дефекты в виде пор, а также является одним из главных факторов образования холодных трещин. С увеличением толщины свариваемых элементов пористость в металле сварных швов становится значительной. Поэтому его использование в дальнейшем было значительно ограничено. В чистом виде (и в виде водородно-азотных смесей, получаемых при диссоциации аммиака) он в настоящее время применяется при атомно-водородной сварке (хотя и сам этот способ заменен теперь другими, в частности сваркой неплавящимся электродом).

Несмотря на то, что атмосфера, окружающая металл, при атомно-водородной сварке представляет собой смесь молекулярного и атомарного водорода, при отсутствии на металле значительного количества окислов швы получаются достаточно плотными и применительно к низкоуглеродистой стали не имеют большого количества диффузионно-подвижного и остаточного водорода.

При струйной защите иногда используется водяной пар. Однако в этом случае получается значительно меньшая стабильность качества сварных швов, чем при сварке с защитой дуги углекислым газом. В связи с этим такой процесс широкого распространения не получил.

При TIG сварке аустенитной нержавеющей стали с целью увеличения напряжения дуги, увеличения теплоэффективности и снижения оксидирования используют аргоно-водородные смеси газов (15% Н2). Более высокая температуру и сжатие дуги, в свою очередь увеличивает глубину проплавления металла. Однако при этом необходимо учитывать возможность вредного влияния растворяющегося в металле водорода. Более широко водород применяют в специальных областях сварки и металлургии, например в порошковой металлургии при спекании изделий из порошковых материалов.

В других случаях применение водорода и водородосодержащих газов, как защитных при дуговой сварке, нецелесообразно.

Применяют водород для составления плазмообразующих смесей при плазменной сварке и резке. Так, для защиты сварочной ванны от окисления при плазменной сварке легированной стали, меди, никеля и сплавов на его основе используют смесь аргона с 5-8% водорода.

Аргоно-водородную смесь, имеющую до 20% Н2, применяют при микроплазменной сварке. Наличие водорода в смеси обеспечивает сжатие столба плазмы, делает его более сконцентрированным. Кроме того, водород создает необходимую в ряде случаев восстановительную атмосферу.

Взрывоопасность водорода

При работе с водородом особое внимание следует обращать на герметичность аппаратуры и газовых коммуникаций, так как водород способен проникать через мельчайшие неплотности, образовывать с воздухом взрывоопасные концентрации. В смеси с кислородом (2:1) образует взрывчатую смесь, называемую гремучим газом.

Температура самовоспламенения 510°С. Водород физиологически инертен, при высоких концентрациях вызывает удушье. При высоком давлении проявляется наркотическое действие. При работе в среде водорода необходимо пользоваться изолирующим противогазом (кислородным или шланговым).

Хранение и транспортировка водорода

Характеристика водорода

Характеристики H2 представлены в таблицах ниже:

Коэффициенты перевода объема и массы H2 при Т=15°С и Р=0,1 МПа

Масса, кг Объем
Газ, м 3 Жидкость, л
0,0841 1 1,188
0,0708 0,842 1
1 11,891 14,126

Коэффициенты перевода объема и массы H2 при Т=0°С и Р=0,1 МПа

Масса, кг Объем
Газ, м 3 Жидкость, л
0,09 1 1,258
0,0708 0,975 1
1 11,124 14,126

Водород в баллоне

Наименование Объем баллона, л Масса газа в баллоне, кг Объем газа (м 3 ) при Т=15°С, Р=0,1 МПа
H2 40 0,54 6,0

Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:

  • Сколько кубов (м 3 ) водорода в 40 литровом баллоне?
    Ответ: 6,0 м 3
  • Сколько кг водорода в баллоне?
    Ответ: 0,54 кг
  • Сколько весит баллон с водородом?
    Ответ:
    58,5 кг - масса пустого баллона из углеродистой стали согласно ГОСТ 949;
    0,54 - кг масса водорода в баллоне;
    Итого: 58,5 + 0,54 = 58,94 кг вес баллона с водородом.

Рекомендуем к просмотру видео об открытии водорода, его характеристиках и производстве.

водород

История открытия

Только спустя полтора века после Парацельса французскому химику Лемери таки удалось отделить водород от воздуха и доказать его горючесть. Правда Лемери так и не понял, что полученный им газ является чистым водородом. Параллельно подобными химическими опытами занимался и русский ученый Ломоносов, но настоящий прорыв в исследовании водорода был сделан английским химиком Генри Кавендишом, которого по праву считают первооткрывателем водорода.

Антуан Лавуазье

Антуан Лавуазье со своей женой, помогавшей ему проводить химические опыты, в том числе и по синтезу водорода.

Место в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. То есть иными словами водород и его атомный вес является краеугольным камнем таблицы Менделеева, той точкой опоры, на основе которой великий химик создал свою систему. Поэтому не удивительно, что в таблице Менделеева водород занимает почетное первое место.

Водород в таблице Менделеева

Помимо этого водород имеет такие характеристики:

  • Атомная масса водорода составляет 1,00795.
  • У водорода в наличии три изотопа, каждый из которых обладает индивидуальными свойствами.
  • Водород – легкий элемент имеющий малую плотность.
  • Водород обладает восстановительными и окислительными свойствами.
  • Вступая в химические реакции с металлами, водород принимает их электрон и стает окислителем. Подобные соединения называются гидратами.

Строение молекулы

Водород это газ, молекула его состоит из двух атомов.

Строение молекулы водорода

Так схематически выглядит молекула водорода.

Молекулярный водород, образованный из таких вот двухатомных молекул взрывается при поднесенной горящей спичке. Молекула водорода при взрыве распадается на атомы, которые превращаются в ядра гелия. Именно таким образом происходят ядерные реакции на Солнце и других звездах – за счет постоянного распадение молекул водорода наше светило горит и обогревает нас своим теплом.

Физические свойства

У водорода в наличие следующие физические свойства:

  • Температура кипения водорода составляет 252,76 °C;
  • А при температуре 259,14 °C он уже начинает плавиться.
  • В воде водород растворяется слабо.
  • Чистый водород – весьма опасное взрывчатое и горючее вещество.
  • Водород легче воздуха в 14,5 раз.

Химические свойства

Поскольку водород может быть в разных ситуациях и окислителем и восстановителем его используют для осуществления реакций и синтезов.

Окислительные свойства водорода взаимодействуют с активными (обычно щелочными и щелочноземельными) металлами, результатом этих взаимодействий является образование гидридов – солеподобных соединений. Впрочем, гидриды образуются и при реакциях водорода с малоактивными металлами.

Восстановительные свойства водорода обладают способностью восстанавливать металлы до простых веществ из их оксидов, в промышленности это называется водородотермией.

Водород

Как получить?

Среди промышленных средств получения водорода можно выделить:

  • газификацию угля,
  • паровую конверсию метана,
  • электролиз.

В лаборатории водород можно получить:

  • при гидролизе гидридов металлов,
  • при реакции с водой щелочных и щелочноземельных металлов,
  • при взаимодействии разбавленных кислот с активными металлами.

Практическое применение

Так как водород в 14 раз легче воздуха, то в былые времена им начиняли воздушные шары и дирижабли. Но после серии катастроф произошедших с дирижаблями конструкторам пришлось искать водороду замену (напомним, чистый водород – взрывоопасное вещество, и малейшей искры было достаточно, чтобы случился взрыв).

взрыв дирижабля

Взрыв дирижабля Гинденбург в 1937 году, причиной взрыва как раз и стало воспламенение водорода (вследствие короткого замыкания), на котором летал этот огромный дирижабль.

Поэтому для подобных летательных аппаратов вместо водорода стали использовать гелий, который также легче воздуха, получение гелия более трудоемкое, зато он не такой взрывоопасный как водород.

Тем не менее, водород весьма хорошо зарекомендовал себя в качестве одного из компонентов ракетного топлива. А автомобили, работающие на водородном топливе более экологичнее своих дизельных и бензиновых собратьев.

Также с помощью водорода производится очистка различных видов топлива, в особенности на основе нефти и нефтепродуктов.

Читайте также: