Плазмиды это в биологии кратко

Обновлено: 02.07.2024

Плазми́ды (англ. plasmids ) — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот (грибов и высших растений). Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов [1] .

Размеры плазмид варьируют от менее чем 1 тысячи до 400—600 тысяч пар оснований (п. о.) [2] . Некоторые плазмиды содержатся в клетке в количестве одной-двух копий, другие — в количестве нескольких десятков. Плазмиды разных классов могут сосуществовать в клетке.

В природе плазмиды обычно содержат гены, повышающие приспособленность бактерий к окружающей среде (например, обеспечивают устойчивость к антибиотикам). Нередко они могут передаваться от одной бактерии к другой того же вида, рода, семейства и даже между клетками бактерий и растений, являясь таким образом средством горизонтального переноса генов. Перенос плазмиды в клетку может осуществляться двумя путями: либо при непосредственном контакте клетки-хозяина с другой клеткой в процессе конъюгации, либо путём трансформации, то есть захвата экзогенной ДНК из внешней среды.

Искусственные плазмиды используются как векторы в клонировании ДНК, причём благодаря их способности к репликации обеспечивается возможность репликации рекомбинантной ДНК [en] в клетке-хозяине.

Плазмида – это маленький круглый ДНК, отличающийся от хромосомной ДНК, которая является генетическим материалом, обнаруженным в организм Хромосомы. Он реплицируется независимо от хромосомной ДНК. Плазмиды в основном находятся в бактерии, но они также могут быть найдены в архее и многоклеточный организмы. Плазмиды обычно несут по крайней мере один ген и многие из генов, которые несут плазмиды, полезны для их организмов-хозяев. Хотя они имеют отдельные гены от своих хозяев, они не считаются независимой жизнью.


Функции плазмид

Общие типы плазмид

Конъюгированные и неконъюгированные

Существует много способов классификации плазмид от общих до специфических. Один из способов состоит в том, чтобы сгруппировать их как сопряженные или не сопряженные. Бактерии размножаются путем полового конъюгирования, которое представляет собой передачу генетического материала из одной бактериальной клетки в другую, либо через прямой контакт, либо через мост между двумя клетками. Некоторые плазмиды содержат гены, называемые переносящими генами, которые облегчают начало конъюгации. Неконъюгативные плазмиды не могут начать процесс конъюгации, и они могут быть переданы только посредством полового конъюгации с помощью конъюгативных плазмид.

несовместимость

Другая классификация плазмид относится к группе несовместимости. В бактерии разные плазмиды могут сосуществовать, только если они совместимы друг с другом. Несовместимая плазмида будет удалена из бактериальной клетки. Плазмиды несовместимы, если они имеют одинаковую стратегию размножения в клетке; это позволяет плазмидам заселять определенную территорию внутри нее без вмешательства других плазмид.

Конкретные типы плазмид

Существует пять основных типов плазмид: F-плазмиды фертильности, плазмиды устойчивости, плазмиды вирулентности, деградирующие плазмиды и плазмиды Col.

Плодородие F-плазмиды

Плазмиды фертильности, также известные как F-плазмиды, содержат переносящие гены, которые позволяют переносить гены от одной бактерии к другой через конъюгацию. Они составляют широкую категорию конъюгативных плазмид. F-плазмиды представляют собой эпизоды, которые являются плазмидами, которые могут быть встроены в хромосомную ДНК. Бактерии, которые имеют F-плазмиду, известны как F-положительные (F +), а бактерии без нее – F-отрицательные (F–). Когда бактерия F + конъюгирует с бактерией F–, образуются две бактерии F +. В каждой бактерии может быть только одна F-плазмида.

Плазмиды сопротивления

Резистентные или R-плазмиды содержат гены, которые помогают бактериальной клетке защищаться от факторов окружающей среды, таких как яды или антибиотики. Некоторые резистентные плазмиды могут переносить себя посредством конъюгации. Когда это происходит, штамм бактерий может стать устойчивым к антибиотикам. В последнее время тип бактерии, вызывающей гонорею, передаваемую половым путем, стал настолько устойчивым к классу антибиотиков, называемых хинолонами, что Всемирная организация здравоохранения начала рекомендовать новый класс антибиотиков, называемый цефалоспоринами. Бактерии могут даже стать устойчивыми к этим антибиотикам в течение пяти лет. Согласно NPR, чрезмерное использование антибиотиков для лечения других инфекций, таких как инфекции мочевыводящих путей, может привести к распространению устойчивых к лекарствам штаммов.

Плазмиды вирулентности

Когда плазмида вирулентности находится внутри бактерии, она превращает эту бактерию в патоген, который является возбудителем болезни. Бактерии, вызывающие заболевание, могут легко распространяться и размножаться среди пораженных людей. Бактерия Escherichia coli (E.coli) имеет несколько плазмид вирулентности. Кишечная палочка естественным образом обнаруживается в кишечнике человека и у других животных, но некоторые штаммы кишечной палочки могут вызывать сильную диарею и рвоту. Salmonella enterica – еще одна бактерия, которая содержит плазмиды вирулентности.

Разлагающие плазмиды

Разлагающие плазмиды помогают бактерии-хозяину переваривать соединения, которые обычно не встречаются в природе, такие как камфора, ксилол, толуол и салициловая кислота. Эти плазмиды содержат гены для специальных ферментов, которые расщепляют определенные соединения. Деградирующие плазмиды являются конъюгативными.

Col плазмиды

Col-плазмиды содержат гены, которые вырабатывают бактериоцины (также известные как колицины), которые являются белками, которые убивают другие бактерии и таким образом защищают бактерию-хозяина. Бактериоцины обнаружены во многих типах бактерий, включая кишечную палочку, которая получает их из плазмиды ColE1.

Применение плазмид

Люди разработали множество способов использования плазмид и создали программное обеспечение для записи последовательностей ДНК плазмид для использования во многих различных методах. Плазмиды используются в генная инженерия усиливать или производить много копий определенных генов. В молекулярном клонировании плазмида является типом вектора. Вектор представляет собой последовательность ДНК, которая может транспортировать чужеродный генетический материал из одной клетки в другую, где гены могут быть дополнительно экспрессированы и реплицированы. Плазмиды полезны при клонировании коротких сегментов ДНК. Также плазмиды можно использовать для репликации белков, таких как белок, который кодирует инсулин, в больших количествах. Кроме того, плазмиды исследуются как способ переноса генов в клетки человека в рамках генной терапии. В клетках может отсутствовать специфический белок, если у пациента есть наследственное заболевание с участием гена мутация, Вставка плазмиды в ДНК позволит клеткам экспрессировать белок, которого им не хватает.

  • бактерии – одноклеточные микробы, которые были одним из первых типов жизненных форм, которые эволюционировали на Земле; они могут существовать независимо или внутри других организмов.
  • эписома – У бактерий плазмида, которая может быть вставлена ​​в хромосома, У эукариот плазмида относится к нехромосомной ДНК, которая может реплицироваться в ядре, например вирус,
  • сопряженный – категория плазмид, запускающих процесс полового конъюгации у бактерий.
  • бактериоциновые – белок, продуцируемый плазмидой в бактерии, которая убивает другие бактерии близкородственного штамма.

викторина

1. Какой НЕ является одним из пяти основных типов плазмид?A. Плодородие F-плазмидыB. ДНК плазмидыC. Col плазмидыD. Плазмиды вирулентности

Ответ на вопрос № 1

В верно. К пяти основным типам плазмид относятся F-плазмиды фертильности, плазмиды Col, плазмиды вирулентности, деградирующие плазмиды и плазмиды устойчивости. Все плазмиды состоят из ДНК.

2. Что такое неконъюгативная плазмида?A. Плазмида, которая не может быть воспроизведенаB. Плазмида, которая не может вызвать процесс полового конъюгацииC. Плазмида, которая кодирует токсины, которые убивают конъюгативные плазмидыD. Плазмида, которая предотвращает процесс полового конъюгации

Ответ на вопрос № 2

В верно. Неконъюгирующая плазмида не может сама начать половое сопряжение; он должен полагаться на конъюгативные плазмиды, которые могут запустить этот процесс, для репликации.

3. Что делают деградирующие плазмиды?A. Запустите процесс репликации с их генами передачиB. Убить бактерии близкородственного штаммаC. Превратите бактерии-хозяева в патогенD. Расщепление необычных соединений в окружающей среде клетки

Ответ на вопрос № 3

D верно. Деградирующие плазмиды кодируют ферменты, которые помогают переваривать необычные соединения, такие как салициловая кислота. Выбор A является функцией F-плазмид фертильности, B является функцией плазмид Col, а C является функцией плазмид вирулентности.


Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Содержание

Передача по наследству

Плазмиды способны удваиваться (реплицироваться) автономно, но при этом они эксплуатируют репликационную систему клетки хозяина. Большинство плазмид кодирует специальные белки — инициаторы репликации. Эти белки начинают процесс репликации, который затем подхватывается и продолжается репликационной системой клетки.

Для кольцевых плазмид известны несколько механизмов (способов) репликации:

Классификация

Существует несколько систем классификации плазмид базирующихся на:

  • топологии (линейные или кольцевые),
  • механизмах репликации (см. выше),
  • маркерных генов, содержащихся на плазмидах (например: устойчивость к антибиотикам, гены биодеградации ксенобиотиков, системы рестрикции — модификации, гены синтеза бактериоцинов и т. д. — или полному отсутствию оных — криптические плазмиды),
  • круге хозяев,
  • копийности,
  • совместимости,
  • конъюгативные (способные к переносу в другие клетки)/неконъюгативные.

Вне зависимости от типа, все плазмиды содержат точку инициации репликации (ori V).

Использование

Плазмиды широко используются в генной инженерии для переноса генетической информации и генетических манипуляций. Для этого создаются искусственные плазмиды — вектора, состоящие из частей, взятых из разных генетических источников, а также из искусственно созданных фрагментов ДНК.

Функции в клетках

Присутствие плазмид в клетках может быть объяснено преимуществами, которые дают плазмидные гены клетке-хозяину (возможность расти в присутствии антибиотика, использование более широкого круга субстратов, защита от бактериофагов, устранение конкурентов путем синтеза бактериоцинов) или же теорией эгоистичной ДНК, как в случае криптических плазмид (т. е. плазмида поддерживается благодаря своей приспособленности к условиям внутри клетки).

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Плазмида" в других словарях:

плазмида — эписома Словарь русских синонимов. плазмида сущ., кол во синонимов: 1 • эписома (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Плазмида — * плазміда * plasmid экстрахромосомный (внехромосомный) генетический элемент, закрытая, кольцевая, автономно реплицирующаяся дуплексная () молекула ДНК, имеющая размеры от 1 до 200 и более кб и от одной до нескольких сот копий на бактериальную… … Генетика. Энциклопедический словарь

ПЛАЗМИДА — ПЛАЗМИДА, цепь или петля НУКЛЕИНОВОЙ кислоты, несущая генетическую информацию. Плазмиды могут вводиться в КЛЕТКУ, где могут размножаться, будучи независимыми от ХРОМОСОМ этой клетки. Плазмиды используются в ИССЛЕДОВАНИИ РЕКОМБИНАЦИЙ ДНК. см.… … Научно-технический энциклопедический словарь

плазмида — Термин плазмида Термин на английском plasmid Синонимы внехромосомный генетический элемент Аббревиатуры Связанные термины доставка генов, биологические нанообъекты, генная инженерия, геном, ДНК, клетка, РНК, нанолекарство, нанообъект,… … Энциклопедический словарь нанотехнологий

плазмида — plasmid плазмида. Внехромосомный генетический элемент, способный к длительному автономному существованию и редупликации в цитоплазме; представляет собой двухцепочечную молекулу ДНК длиной в 1 200 тыс. пар нуклеотидов, обычно кольцевую, хотя у… … Молекулярная биология и генетика. Толковый словарь.

плазмида — plazmidė statusas T sritis ekologija ir aplinkotyra apibrėžtis Organizmo paveldimumo veiksniai, esantys ląstelės citoplazmoje ir peduodantys genetinę informaciją ne per chromosomas. Turi žiedo pavidalo dvispiralę deoksiribonukleino rūgšties… … Ekologijos terminų aiškinamasis žodynas

плазмида — plazmidė statusas T sritis augalininkystė apibrėžtis Žiedinė nechromosominė DNR, galinti autonomiškai dvigubėti. atitikmenys: angl. plasmid rus. плазмида … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

плазмида — общее название внехромосомных носителей наследственности у бактерий … Большой медицинский словарь

Молекулы дезоксирибонуклеиновой кислоты (или ДНК) обычно представляют собой макромолекулы, и они обязательно присутствуют в клетках как многоклеточных, так и одноклеточных организмов. Прежде всего, они содержатся в хромосомах, которые находятся в клеточном ядре. Но ДНК не всегда присутствует исключительно в виде хромосом внутри клеточного ядра. ДНК может быть представлена и в форме плазмид. Размеры этих молекул значительно меньше в сравнении с макромолекулами ДНК, но особенность этих молекул не только в этом.

Плазмиды существуют в отдельности от хромосом, и они способны осуществлять самостоятельную репликацию (или воспроизводить дочерние молекулы, проще говоря, размножаться). Плазмиды, тем не менее, не встречаются у животных, но они есть в бактериях, отдельных археях и в эукариотических клетках, коими обладают высшие растения и грибы.

Плазмиды обычно представлены в виде двухцепочечных (как ДНК) кольцевых молекул, а размеры варьируются от нескольких сотен спаренных азотистых оснований (п.о.) до 400 тысяч пар оснований, а то и 600 тысяч п.о. В клетках могут быть как одна-две копии, так и десятки копий плазмид. В одной клетке возможно сосуществование плазмид разных классов. Учёными выяснено, что плазмиды способны осуществлять репликацию, но они не являются живыми организмами.

Функции плазмид

Главной функциональной особенностью плазмид является то, что в них содержатся особые гены, отвечающие за улучшение показателей приспособленности бактерий к внешним воздействиям и раздражителям. А ещё плазмиды могут передаваться от одних бактерий к другим (при условии, что эти самые другие “бактерии-реципиенты” были того же вида, того же рода и того же семейства, что и “бактерии-доноры”), и более того, могут передаваться из клеток бактерий в клетки растений, и наоборот.

Содержащиеся в хромосомах макромолекулы ДНК на такое не способны. Таким образом подтверждается механизм горизонтального переноса генов. Если проще, то посредством молекул плазмид может передаваться генетическая информация организму, не являющемуся потомком “материнского”. Наследственная передача генетической информации, соответственно, является вертикальным переносом генов. И такой механизм передачи генов используется учёными-генетиками и применяется, к примеру, в генной инженерии, но об этом будет упомянуто ниже.


Плазмиды могут попасть в другую клетку двумя способами. Первый способ заключается в том, что “материнская” клетка напрямую вступает в контакт с другой клеткой, после чего происходит однонаправленный перенос плазмид, содержащих в себе генетический материал; этот процесс называется конъюгацией. Второй способ заключается в захвате и поглощении экзогенных (то есть, существующих во внешней среде) молекул ДНК, и это называется трансформацией.

Если подытожить, то можно заключить, что плазмиды в ходе попадания из одной клетки в другую в результате конъюгации осуществляют одну из главных своих функций: горизонтально переносят генетическую информацию из клетки в клетку. Но это не единственная функция плазмид. Эти молекулы осуществляют синтез одних элементов и веществ и расщепление других.

Так, плазмиды синтезируют патогенные для отдельных бактерий и клеток вещества, такие как гемолизины (или гемотоксины), которые повреждают оболочку эритроцитов и приводят тем самым к их гемолизу (то есть, разрушению). Ещё плазмиды осуществляют синтез энтеротоксинов, вызывающих, к примеру, пищевое отравление у животных.

Результатом деятельности плазмид становится появление смертельных для других бактерий белков, они также создают антигены, заставляющие бактерии скапливаться в результате адгезии на поверхности клеток в организмах животных (включая человека). Что же касается расщепления, то плазмиды способны разрушать некоторые другие соединения, такие как камфоры, салициловая кислота, ксилолы.

Ещё одной особенностью плазмид является стойкость к воздействию ультрафиолетового излучения, а также тяжёлых металлов и антибиотиков. Поэтому нередко бактерии с плазмидами оказываются патогенными для организма человека.

Строение плазмид

Обыкновенная плазмида, способная к размножению, включает в себя ряд элементов. К таковым относят: точку начала репликации (указывается как ori), структурные гены репликации (rep), локус (точку расположения конкретного гена) генов, что ответственны за копийность (cop), гены, отвечающие за то, как будут распределены плазмиды в ходе деления “материнской” клетки в клетках-потомках (par), а также детерминанты, контролирующих поддержание определённого числа копий (ccd).

Есть также определённое трёхчастное строение плазмид. Каждая молекулы плазмид состоит из модулей. Первый – обязательный модуль, который при репликации копируется в дочернюю молекулу. Второй модуль называется модулем распределения, и он может включать систему распределения, а то и несколько таких систем. Третий модуль называется модулем переноса, и он присутствует у конъюгативных плазмид, соответственно, он играет определённую роль в процессе конъюгации.

Виды плазмид

Учёные выявили множество видов и типов плазмид. Многие из них получили своё название благодаря функциям, которыми отличаются те или иные плазмиды. Есть так назывемые F-плазмиды, или фертильные, занимающиеся контролем плазмид к репликации. R-плазмидами называют резистентные, то есть те, что придают бактериям устойчивость к воздействию антибиотиков.

Некоторые из плазмид называются (благодаря своим специфическим функциям) плазмидами патогенности. Бактериоциногенные, или B-плазмиды ответственны за синтез летальных для других бактерий белков и других веществ; при этом, отдельно за создание бактериоцина под названием колицин отвечают Col-плазмиды. Создание гемолизинов, которые также играют определённую роль в размножении плазмид, доверено Hly-плазмидам, а энтеротоксины синтезируются Ent-плазмидами.

Результатом деятельности Ti-плазмид становится возникновение опухолей в растительных организмах, Tol-плазмидами расщепляется толуол и ксилол. Отдельные плазмиды, отвечающие за распад камфоры (Cam-плазмиды), октана (Oct-плазмиды) и салицина (Sal-плазмиды), называются плазмидами деградации.

Роль плазмид

Как уже было указано ранее, плазмиды позволяют передавать генетическую информацию не только по наследству, но и просто похожим клеткам (растительным, архейным, бактериальным, грибным). Это активно используется современными учёными-генетиками в рамках генной инженерии.

И при помощи определённых специфических свойств (о которых также упоминалось выше), за которые могут отвечать отдельные типы и виды плазмид, плазмиды придают бактериям свойства устойчивости к воздействию лекарственных средств, дают им характер патогенов для тех или иных клеток или других бактерий. Иными словами, плазмиды могут влиять на вредоносность бактерий для организма.

Конъюгированные и неконъюгированные плазмиды

Способность плазмид передаваться из одной клетки в другую во время конъюгации иначе может называться трансмиссивностью. Этот фактор влияет на то, какими могут быть плазмиды. Они могут быть как конъюгированными (конъюгативными), так и неконъюгированными (неконъюгативными), или же трансмиссивными и нетрансмиссивными. Последние не могут самостоятельно запускать конъюгацию, и передача их осуществляется пассивно как половым методом, так и в ходе конъгации, которую могут запускать только конъюгативные плазмиды.

У конъюгированных плазмид есть особые гены, называемые tra-генами. Эти гены объединены в особые же группы, называемые tra-оперонами, а они, в свою очередь, осуществляют процесс переноса плазмидной ДНК из клетки в клетку. Tra-опероны синтезируют особые полые структуры на поверхности клеток, называемые половыми пилями. Клетка-реципиент (или бактерия-реципиент) цепляется за эти пили, после чего притягивается, а после этого участок, коснувшийся участка клетки-донора (или бактерии-донора) разрывается с помощью особого белка.


Передаваемая плазмида кодирует особый фермент, хеликазу, который расплетает ту часть ДНК, что будет перенесена в другую клетку (бактерию), и одним из концов эта самая ДНК переносится в реципиента. Другой конец передаваемой части плазмиды удлиняется, и постепенно восстанавливает ту часть ДНК, что переносится в реципиента.

Этот процесс происходит в обеих клетках (или в бактериях), и в доноре, и реципиенте: и там, и там плазмида вновь становится двухцепочечной. После завершения переноса ДНК разрыв в поверхности клетки-реципиента (бактерии-реципиента) восстанавливается, и реципиент может сам становиться донором, в том числе обретает способность с помощью перенесённой плазмиды отращивать половые пили.

Кстати, tra-опероны в процессе конъюгации также защищают клетку-реципиента от сцепления с половыми пилями других клеток и бактерий.

F-плазмиды фертильности

F-плазмиды, или плазмиды фертильности являются, пожалуй, главными среди разновидностей плазмид, и причина этого очевидна: они отвечают за репликацию. F-плазмиды осуществляют удвоение ДНК в плазмидах, осуществляют контроль за синтезом половых пилей. При конюгации клетка-реципиент получает F-плазмиды фертильности даже в случае, если ранее таковыми она не располагала, при этом F-плазмида может захватывать с собой и часть других генов. В некоторых случаях F-плазмиды могут быть и в составе хромосом.

Интересно, что попавшие в клетку-реципиента (или в бактерию-реципиента) F-плазмиды становятся HFR-плазмидами.

Плазмиды устойчивости

За устойчивость бактерий к антибиотикам отвечают R-плазмиды. R в их названии означает “резистентность”, но также это происходит от особых компонентов, что содержатся в них: фактора переноса устойчивости, или RTF-фактора, а ещё r-детерминантов (или детерминантов устойчивости).

Они отвечают за создание таких ферментов и веществ, что способны разрушать антибиотики при вступлении с ними в прямой контакт. Бактерии благодаря R-плазмидам могут провоцировать возникновение заболеваний, что попросту не поддаются лечению лекарствами и даже группами лекарств (сразу до десяти), а потому такие заболевания становятся более опасными для организма. На их опасность также влияет и тот факт, что R-плазмиды тоже относятся к конъгированным.

Плазмиды вирулентности

Другое название плазмид вирулентности, или Vir-плазмид – плазмиды патогенности. Как понятно из названия, этот тип плазмид тоже придаёт бактериям повышенную опасность для организма, они делают их, соответственно, вирулентными. К ним относятся такие плазмиды, как Ent-плазмиды, Hly-плазмиды, Tox-плазмиды (ответственны за формирование токсинов).

Деградирующие плазмиды

Ещё одна группа плазмид – это деградирующие, или плазмиды биодеградации. Как упоминалось ранее, к этой группе относятся те плазмиды, что осуществляют расщепление и разложение отдельных соединений и веществ (некоторые из этих веществ можно отнести ко ксенобиотикам), и отдельные плазмиды ответственны за разрушение одних веществ, другие плазмиды, соответственно, разрушают другие вещества.

Причём они расщепляют вещества не только природного происхождения, но и антропогенного. Так, некоторые бактерии способны расщеплять нефтепродукты, и это осуществляется тоже за счёт деградирующих плазмид. Кстати, что касается подобного рода бактерий, то в актуальное время учёные проводят исследования в области генной инженерии, и одна из целей этих исследований – попытка улучшить экологическую обстановку в водоёмах и в Мировом океане.

Также плазмиды деградации играют бактериям-носителям на пользу в плане селективного преимущества в той среде, в которой находится бактерия, будь то природная среда или другой организм.

Плазмиды Col

Col-плазмиды, как уже было упомянуто выше, попадают в группу бактериоциногенных плазмид, и данный вид плазмид производит особый бактериоцин под названием колицин. Особый он потому, что присутствует у конкретной патогенной бактерии, именуемой кишечной палочкой (научное название – Escherichia coli, или E. coli).

Вообще, бактериоцины в принципе оказывают негативное воздействие на показатели жизнедеятельности клеток, особенно на штаммы тех же видов, или на штаммы родственных. Бактериоцины являются белками, которые повреждают клеточные мембраны. Уровень активности определяют рецепторы у бактерий-носителей бактериоцинов. На сегодняшний день учёные определили существование более двухсот видов бактериоцинов.

Что касается колициногенных плазмид, то синтезируемый ими колицин не даёт другим бактериям размножаться и развиваться, но при этом для тех самых бактерий, что выделяют колицин, этот бактериоцин совершенно безвреден. Бактерии E. coli (кишечной палочки) выделяют колицин множества видов, названных по буквам латинского алфавита. Col-плазмиды тоже могут быть переданы другим бактериям при конъюгации, и обычно существуют без сцепления с хромосомой, но некоторые виды Col-плазмид могут быть интегрированы в бактериальные хромосомы.

Использование плазмид

Современная наука достаточно активно занимается исследованием плазмид, В частности, генетикам удалось создать искусственные плазмиды, которые особенно полезны в генной инженерии. Такие плазмиды становятся векторами, снабжёнными целевыми кодирующими областями, и затем их размножают в бактериальных клетках, а результатом становится синтез полезного белка.

Так, к примеру, вырабатывают инсулин, крайне необходимый для страдающих диабетом. Плазмиды полезны и в разработке новых лекарственных веществ и в синтезе новых вакцин, а также при создании биологически активных добавок, а вернее – в повышении производительности тех организмов, что могут эти добавки синтезировать. Так что в медицине плазмидам нашлось место.

Также, как уже упоминалось выше, плазмиды могут быть весьма полезны в биоремедиации. Так называется комплекс действий в вопросах очистки загрязнённой среды (почвы, воды, воздуха) с помощью жизнедеятельности живых организмов. И некоторые бактерии благодаря особым деградирующим плазмидам способны разлагать субстраты, которые в принципе трудно поддаются гниению.

Плазмиды и генная инженерия

Наконец, самая перспективная отрасль генетики – генная инженерия, и она тоже не может обойтись без плазмид. Так, искусственно созданные плазмиды можно сделать векторами в области клонирования генетической информации живых организмов. Способность к репликации даёт плазмидам в этом плане преимущество, поскольку так учёные могут обеспечивать возможность того, что рекомбинантная ДНК в клетке-доноре будет также размножаться.

Генная терапия также может рассчитывать на помощь плазмид, ибо в перспективе плазмиды могут синтезировать недостающие у пациента белки, а ещё плазмиды могут быть использованы как транспорт для генов, что кодируют инструменты для редактирования ДНК, в том числе для компонентов системы CRISPR-Cas. Этот инструмент на сегодняшний день является наиболее перспективным в вопросе борьбы с тяжёлыми заболеваниями, в том числе и наследственного характера, и адресного поступления лекарственных веществ тем или иным пациентом в каждом индивидуальном случае.

Внехромосомные факторы наследственности бактерий представлены плазмидами, вставочными последовательностями и транспозонами. Все они образованы молекулами ДНК, различающимися между собой по молекулярной массе, кодирующей ёмкости, способности к автономному реплицированию и др.

Плазмиды бактерии. Виды плазмид. Функции плазмид бактерий.

Плазмиды — фрагменты ДНК с молекулярной массой порядка 10 6 ~10 8 D, несущие от 40 до 50 генов. Выделяют автономные (не связанные с хромосомой бактерии) и интегрированные (встроенные в хромосому) плазмиды.

• Автономные плазмиды существуют в цитоплазме бактерий и способны самостоятельно репродуцироваться; в клетке может присутствовать несколько их копий.

• Интегрированные плазмиды репродуцируются одновременно с бактериальной хромосомой. Интеграция плазмид происходит при наличии гомологичных последовательностей ДНК, при которых возможна рекомбинация хромосомной и плазмидной ДНК (что сближает их с профагами).

• Плазмиды также подразделяют на трансмиссивные (например, F- или R-плазмиды), способные передаваться посредством конъюгации, и нетрансмиссивные.

Внехромосомные факторы наследственности бактерий. Плазмиды бактерии. Виды плазмид. Функции плазмид бактерий.

Плазмиды выполняют регуляторные или кодирующие функции. Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки посредством встраивания в повреждённый геном и восстановления его функций. Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам).

В соответствии с определёнными признаками, кодируемыми плазмидными генами, выделяют следующие группы плазмид:

R-плазмиды [от англ. resistance, устойчивость] кодируют устойчивость к лекарственным препаратам (например, к антибиотикам и сульфаниламидам, хотя некоторые детерминанты устойчивости правильнее рассматривать как связанные с транспозонами [см. ниже]), а также к тяжёлым металлам. R-плазмиды включают все гены, ответственные за перенос факторов устойчивости из клетки в клетку.

Неконъюгативные плазмиды обычно характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Они обычно имеют небольшие размеры (молекулярная масса примерно 1 — 10*10 6 D). Обнаруживают большое количество мелких плазмид (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве при клеточном делении. Неконъюгативные плазмиды могут быть также перенесены из клетки в клетку при наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид. При конъюгации донор может передать и неконъюгативные плазмиды за счёт связывания генетического материала последних с конъюгативной плазмидой.

Внехромосомные факторы наследственности бактерий. Плазмиды бактерии. Виды плазмид. Функции плазмид бактерий.

Плазмиды бактериоциногении кодируют синтез бактериоцинов — белковых продуктов, вызывающих гибель бактерий того же или близких видов. Многие плазмиды, кодирующие образование бактериоцинов, также содержат набор генов, ответственных за конъюгацию и перенос плазмид. Подобные плазмиды относительно крупные (молекулярная масса 25-150*10 6 D), их довольно часто выявляют у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1~2 копий на клетку. Их репликация тесно связана с репликацией бактериальной хромосомы.

Плазмиды патогенности контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-, R-плазмиды и плазмиды бактериоциногении включают tox+-транспозоны (мигрирующий генетический элемент, см. ниже), кодирующие токсинообразова-ние. Нередко tox+-транспозоны кодируют синтез интактных протоксинов (например, дифтерийного или ботулинического), активируемых клеточными протеазами, образование которых контролируют гены бактериальных хромосом.

Скрытые плазмиды. Криптические (скрытые) плазмиды не содержат генов, которые можно было бы обнаружить по их фенотипическому проявлению.

Плазмиды биодеградации. Обнаружен также ряд плазмид, кодирующих ферменты деградации природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида. Патогенным бактериям подобные плазмиды придают преимущества перед представителями аутомикрофлоры.

- Вернуться в оглавление раздела "Микробиология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: