Логические элементы эвм кратко

Обновлено: 04.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Электронные вычислительные машины

Электронные вычислительные машины (ЭВМ) представляют собой устройство, предназначенное для выполнения вычислительных операции по заданной программе.

Современная электронная вычислительная машина – это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы.

Вычислительные машины в зависимости от способа представления информации подразделяются на две большие группы: вычислительные машины непрерывного действия, или аналоговые вычислительные машины (АВМ), и вычислительные машины дискретного действия, или цифровые вычислительные машины (ЦВМ).

В АВМ входные, выходные и промежуточные величины представляются в виде токов или напряжений, значения которых в определенном масштабе соответствуют числом.

Математические действия над числами заменяются в АВМ различными преобразованиями электрических токов или напряжений.

Современная математизированная формальная логика представляет собой обширную научную область и находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (анализ и синтез автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Формы мышления. Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика- это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.

Понятие- это форма мышления, фиксирующая основные, существенные признаки объекта. Понятие имеет две стороны: содержание и объем. Содержания понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением. Высказывание может быть ложным или истинным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношение реальных вещей. Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.

Высказывание – это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложно, либо истинно.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером могут быть геометрические доказательства.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Алгебра логики (раздел высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

В алгебре логики над высказываниями можно производить различные операции (подобно тому в алгебре чисел определены операции сложения, деления, возведения в степень над действительными числами).

Для структурно-функционального описания логических схем, составляющих основу любого дискретного вычислительного устройства, ЭВМ или ВС в целом, используется аппарат булевой алгебры, созданной в 1854 г. Дж. Булем как попытка изучения логики мышления математическими методами. Впервые практическое применение булевой алгебры было сделано К. Шенноном в 1938 г. для анализа и разработки релейных переключательных сетей, результатом чего явилась разработка метода представления любой сети, состоящей из совокупности переключателей и реле , математическими выражениями и принципов их преобразования на основе правил булевой алгебры. Ввиду наличия аналогий между релейными и современными электронными схемами аппарат булевой алгебры нашел широкое применение для анализа, описания и проектирования последних. Использование булевой алгебры позволяет не только более удобно оперировать с булевыми выражениями (представляющими те или иные электронные узлы), чем над схемами или логическими диаграммами , но и на формальном уровне путем эквивалентных преобразований и базовых теорем упрощать их, давая возможность создавать экономически и технически более совершенные электронные устройства любого назначения. Являясь основным средством анализа, разработки и описания структурно-функциональной архитектуры современной ВТ, булева алгебра является обязательной составной частью курса “компьютерной информатики”, а также целого ряда разделов вычислительных наук.

Логические основы ЭВМ

Рассмотрим, как применяется алгебра высказываний при конструировании устройств.

Чтобы конструировать устройство, мы должны знать:

Каким образом следует реализовать логические значения 0 и 1 в виде электрических сигналов на входе и выходе устройства;

Каким образом описать работу этого устройства:

Существует ли алгоритм, позволяющий по известной таблице истинности построить схему устройства;

Из каких элементов должно состоять устройство.

Цифровой сигнал - это сигнал, который может принимать только одно из двух установленных значений.

Физическая природа сигнала может быть самой различной. Сигналами могут считаться, например, появление на выходе преобразователя напряжения или давления воздуха определенной величины, включение лампы или звонка, нажатие кнопки, срабатывание электромагнитного реле и другие изменения в электрической цепи. При этом обязательно надо, чтобы имелось два существенно различных состояния некоторой физической величины, моделирующие истинность и ложность логических высказываний.

Логическим элементом называется преобразователь, который, получая сигналы об истинности отдельных высказываний, обрабатывает их и в результате выдает значение логического отрицания, логической суммы или логического произведения этих высказываний.

Логические функции и логические элементы

ЦВМ состоит из отдельных элементов, выполняющих элементарные операции, Элемент-это обычно электронная схема. Все элементы ЦВМ разделить на группы в зависимости от значения этих элементов: логические, запоминающие, усилительные и специальные.

Конъюнкцию двух высказываний можно записать по правилам логического умножения (логическое умножение):

Логический элемент И выполняет действие умножение.

Дизъюнкцией назовем сложное высказывание, которое истинно при истинности хотя бы одного из составляющих его высказываний, и ложно, если оба высказывания, которые образуют сложное.

Логическое сложение:

Логический элемент ИЛИ выполняет действие сложение.

Логический элемент, реализующий логическую функцию НЕ, называется инвертором.

Простейшим логическим элементом является инвертор, выполняющий функцию отрицания. Если на вход поступает сигнал, соответствующий 1, то на выходе будет 0. И наоборот.

У этого элемента один вход и один выход. На функциональных схемах он обозначается:

Он имеет один выход и не менее двух входов. На функциональных схемах он обозначается:

Логические основы работы компьютера

Сигнал на выходе конъюнктора появляется тогда и только тогда, когда поданы сигналы на все входы. На элементарном уровне конъюнкцию можно представить себе в виде последовательно соединенных выключателей. Известным примером последовательного соединения проводников является елочная гирлянда: она горит, когда все лампочки исправны. Если же хотя бы одна из лампочек перегорела, то гирлянда не работает.

Логические основы работы компьютера

Сигнал на выходе дизъюнктора не появляется тогда и только тогда, когда на все входы не поданы сигналы.

На элементарном уровне дизъюнкцию можно представить себе в виде параллельно соединенных выключателей.

Примером параллельного соединения проводников является многорожковая люстра: она не работает только в том случае, если перегорели все лампочки сразу.

Пример 1.
Составьте логическую схему для логического выражения: F=A \/ B /\ A.

1. Две переменные – А и В.

2. Две логические операции: 1-/\, 2-\/.

Логические основы работы компьютера

Пример 2.
Постройте логическую схему, соответствующую логическому выражению F=А/\В\/ ¬(В\/А). Вычислить значения выражения для А=1,В=0.

1. Переменных две: А и В; 1 4 3 2

2. Логических операций три: /\ и две \/; А/\В\/ ¬ (В\/ А).

3. Схему строим слева направо в соответствии с порядком логических операций:

Любая цифровая вычислительная машина состоит из логических схем - таких схем, которые могут находиться только в одном из двух возможных состояний - либо "логический ноль", либо "логическая единица". За логический 0 и логическую 1 можно принять любое выражение , в том числе и словесное, которое можно характеризовать как " истина " и " ложь ". В вычислительной технике логические 0 и 1 - это состояние электрических схем с определенными параметрами. Так, для логических элементов и схем, выполненных по технологии транзисторно-транзисторной логики (ТТЛ-схемы), логический 0 - это напряжение в диапазоне 0 … + 0,4 В, а логическая 1 - это напряжение в диапазоне + 2,4 … + 5 В [1]. Работа логических схем описывается посредством специального математического аппарата, который называется логической (булевой) алгеброй или алгеброй логики. Булева алгебра была разработана Джорджем Булем (1815 - 1864 гг.), она является основой всех методов упрощения булевых выражений.

Логические переменные и логические функции - это такие переменные и функции, которые могут принимать только два значения - либо логический 0, либо логическая 1.

Основные логические функции и элементы

Логический элемент - графическое представление элементарной логической функции.

Логическое умножение (конъюнкция) - функция И

Рассмотрим ключевую схему представленную на рис. 1.1,а. Примем за логический 0 [2]:

Таблица истинности - это таблица, содержащая все возможные комбинации входных логических переменных и соответствующие им значения логической функции.

Таблица истинности для логической схемы, представленной на рис. 1.1,б, состоит из 8 строк, поскольку данная схема имеет три входа - , и . Каждая из этих логических переменных может находиться либо в состоянии логического 0, либо логической 1. Соответственно количество сочетаний этих переменных равно =8" />
. Очевидно, что через сопротивление R ток протекает только тогда, когда замкнуты все три ключа - и , и , и . Отсюда еще одно название логического умножения - логический элемент И. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.1,в.

Правило логического умножения :если на вход логического элемента И подается хотя бы один логический 0, то на его выходе будет логический 0.

Уровень логического 0 является решающим для логического умножения .

В логических выражениях применяется несколько вариантов обозначения логического умножения. Так, для приведенного на рис. 1.1,в трёх-входового элемента И, логическое выражение можно представить в виде:

Логическое сложение (дизъюнкция) - функция ИЛИ

Рассмотрим ключевую схему, представленную на рис. 1.2,а. Таблица истинности для данной логической схемы (рис. 1.2,б) состоит из 4 строк, поскольку данная схема имеет два входа - и . Количество сочетаний этих переменных равно =4" />
. Очевидно, что через сопротивление R ток протекает тогда, когда замкнуты или , или . Отсюда еще одно название логического сложения - логическое ИЛИ. В логических схемах соответствующий логический элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.2,в.

1

Правило логического сложения: если на вход логического элемента ИЛИ подается хотя бы одна логическая , то на его выходе будет логическая 1.

Для логического сложения решающим является уровень логической 1.

В логических выражениях применяется два варианта обозначения логического сложения. Так, для приведенного двух-входового элемента ИЛИ, логическое выражение можно представить в виде:

Логическое отрицание (инверсия) - функция НЕ

Рассмотрим ключевую схему, представленную на рис. 1.3,а. Таблица истинности для данной схемы (рис. 1.3,б) самая простая и состоит всего из 2 строк, поскольку она (единственная из всех логических элементов) имеет только один вход - . Количество вариантов для единственной логической переменной равно =2" />
. Очевидно, что через сопротивление R ток протекает ( ) тогда, когда не замкнут, т.е. . Еще одно название этой логической функции - отрицание, а соответствующий логический элемент называется инвертором. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.3,в. Поскольку он имеет только один вход, в его обозначении допустимым является и знак логического сложения, и знак логического умножения.

Правило инверсии: проходя через инвертор, сигнал меняет свое значение на противоположное.

В логических выражениях применяется единственный вариант обозначения инверсии:

F =\overline

К основным логическим элементам относятся еще два элемента, которые являются комбинацией элементов И, ИЛИ и НЕ: элемент И-НЕ и ИЛИ-НЕ.

Логическая функция и элемент И-НЕ

Данная функция производит логическое умножение значений входных сигналов, а затем инвертирует результат этого умножения. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.4,а. Таблица истинности приведена на рис. 1.4,б.

Если на вход логического элемента И-НЕ подается хотя бы один логический 0, то на его выходе будет логическая 1.

В логических выражениях применяются обозначения:

Логическая функция и элемент ИЛИ-НЕ

В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.5,а. Таблица истинности приведена на рис. 1.5,б.

Если на вход логического элемента ИЛИ-НЕ подается хотя бы одна логическая 1, то на его выходе будет логический 0.В логических выражениях применяются обозначения:

Основные логические элементы реализуют 3 основные логические операции:

  • логическое умножение;
  • логическое сложение;
  • инверсию (отрицание).

Устройства компьютера, которые выполняют обработку и хранение информации, могут быть собраны из базовых логических элементов, у которых $2$ входа и $1$ выход. К логическим устройствам компьютера относятся группы переключателей, триггеры, сумматоры.

Связь между алгеброй логики и компьютерной техникой также лежит в двоичной системе счисления, которая используется в ЭВМ. Поэтому в устройствах ПК можно хранить и обрабатывать как числа, так и значения логических переменных.

Логический элемент компьютера – это часть электронной схемы, которая выполняет элементарную логическую функцию.

Переключательные схемы

В ЭВМ используются электрические схемы, которые состоят из большого количества переключателей. Переключатель, находясь в замкнутом состоянии ток пропускает, в разомкнутом – не пропускает. Работа таких схем удобно описывается при помощи алгебры логики. В зависимости от состояния переключателя можно регулировать получение или неполучение сигналов на выходах.

Вентили

Среди логических элементов компьютеров выделяют электронные схемы И, ИЛИ, НЕ, И–НЕ, ИЛИ–НЕ и другие (их называют вентили).

Эти схемы позволяют реализовать любую логическую функцию, которая описывает работу устройств ПК. Обычно вентили имеют $2–8$ входов и $1$ или $2$ выхода.

У каждого логического элемента есть условное обозначение, выражающее его логическую функцию, но не указывающее на электронную схему, которая в нем реализована. Такой подход реализован для упрощения записи и понимания сложных логических схем.

Готовые работы на аналогичную тему

Работа логических элементов описывается таблицами истинности.


Триггер

Триггеры и сумматоры состоят из вентилей.

Триггер – важнейшая структурная единица оперативной памяти ПК и внутренних регистров процессора.

Триггер – логическая схема, которая способна хранить $1$ бит информации ($1$ или $0$). Строится на $2$-х элементах ИЛИ–НЕ или на $2$-х элементах И–НЕ.


Самый распространённый тип триггера – $RS$-триггер (Reset/Set), который имеет $2$ входа $S$ и $R$ и два выхода $Q$ и $\bar$. На каждый из входов $S$ и $R$ могут подаваться входные сигналы в виде кратковременных импульсов (рис.3): есть импульс – $1$, нет импульса – $0$.

Кратковременный импульс

Рисунок 3. Кратковременный импульс

Сумматор

Сумматоры широко применяются в арифметико-логических устройствах процессора и отвечают за суммирование двоичных разрядов.

Сумматор – логическая схема, которая способна суммировать 2 одноразрядных двоичных числа с переносом из предыдущего разряда.


Сумматор может находить применение и в других устройствах машины.

Для суммирования двоичных слов длиной от двух бит можно использовать последовательное соединение многоразрядных сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Пример реализации логической схемы


Алгоритм реализации:

    Определим количество переменных данного выражения, значит столько входов будет иметь схема. В данном случае это входы $A, B, C$.

С помощью базовых логических элементов реализуются основные операции в порядке их следования:

На выходе каждого элемента прописывается логическое выражение, которое реализуется данным элементом, что позволяет осуществить обратную задачу, т.е. по готовой схеме составить логическое выражение, которое реализует данная схема.

Читайте также: