Периодичность и регулярность действия факторов кратко

Обновлено: 05.07.2024

Закон оптимума имеет большое практическое значение. Нет всецело положительных или отрицательных факторов, всё зависит от их дозировки. Формы влияния среды на организмы имеют сугубо количественное выражение. Чтобы управлять жизнедеятельностью вида, следует прежде всего не допускать выхода различных экологических факторов за их критические значения и стараться выдерживать зону оптимума. Это очень важно для растениеводства, животноводства, лесного хозяйства и вообще всех областей взаимоотношений человека с живой природой. Это же правило относится и к самому человеку, особенно в области медицины.

Использование закона оптимума осложняется тем, что для каждого вида оптимальные дозировки факторов различны. То, что хорошо для одного вида, может быть пессимумом или выходить за критические пределы для другого. Например, при температуре 20 0 С тропическая обезьяна дрожит от холода, а северный обитатель – песец – изнывает от жары. Бабочки зимней пяденицы ещё порхают в ноябре (при температуре 6 0 С) когда большинство других насекомых впадают в оцепенение. Рис выращивают на полях, залитых водой, а пшеница в таких условиях вымокает и погибает.

Это свидетельствует о том, что в природе нет двух видов с полным совпадением оптимума, минимума и критических точек по отношению к набору факторов среды. В природе есть виды с узким диапазоном активности жизнедеятельности по отношению к экологическому фактору, например к яркости света. Одни виды характеризуются как светолюбивые, другие, наоборот, – тенелюбивые, но есть и теневыносливые. Они могут жить и в условиях яркого света, и при большом затенении.

Если виды совпадают по устойчивости к одному фактору, то обязательно разойдутся по устойчивости к другому.

Закон ограничивающего фактора тесно связан с законом оптимума и вытекает из него. В окружающей среде нет всецело отрицательных или положительных факторов: всё зависит от силы их действия. На живые существа одновременно действует множество факторов, и к тому же большинство из них переменчиво. Но в каждый конкретный период времени можно выделить самый главный фактор, от которого в наибольшей мере зависит жизнь. Им оказывается тот фактор среды, который сильнее всего отклоняется от оптимума, т. е. ограничивает жизнедеятельность организмов в данный период.

Любой фактор, влияющий на организмы, может стать либо оптимальным, либо ограничивающим в зависимости от силы своего воздействия.

Результат влияния любого экологического фактора на жизнедеятельность организмов во многом зависит от того, в какой комбинации и с какой силой действуют в данный момент другие факторы.

Так, каждый знает, что переносить мороз в безветренную погоду значительно легче, чем при сильном ветре. Влияние 30-градусной жары значительно сильнее при высокой влажности воздуха, чем в сухую погоду, и т. д. Поэтому, если нет возможности изменить ограничивающий фактор, часто можно добиться смягчения его действия, изменяя другие. В сельском хозяйстве эти приёмы входят в нормы агротехники. Например, добавочное рыхление почвы снижает испарение почвенной влаги, так как нарушает сеть мелких пор, из которых испаряется вода.




Полностью заменить один фактор другим нельзя. Но нередко при комплексном воздействии факторов можно видеть эффект замещения. Например, свет не может быть заменён избытком тепла или углекислого газа, но, действуя изменениями температуры, можно усилить фотосинтез у растений. Однако это не замещение одного фактора другим, а проявление сходного биологического эффекта, вызванного изменениями количественных показателей совместного действия факторов. Это явление широко используется в сельском хозяйстве. Например, в теплицах для получения продукции создают повышенное содержание углекислого газа и влаги в воздухе, подогрев и тем отчасти компенсируют нехватку света в осеннее и зимнее время.

Периодичность в жизни организмов. В действии экологических факторов на планете наблюдается периодичность, связанная со временем суток, сезонами года, морскими приливами и фазами Луны. Эта периодичность обусловлена космическими причинами – движением Земли вокруг своей оси, вокруг Солнца и взаимодействием с Луной. Жизнь на Земле приспособлена к этой постоянно существующей ритмике, что проявляется в изменениях состояния и поведения организмов.

Вегетация растений, листопад, зимний покой, размножение животных, их миграции, спячки, нагуливание жира – примеры явлений, обусловленных сезоном года. Сменой дня и ночи вызываются изменения активности у животных, скорость фотосинтеза у растений и т. п.

Приспособленность к периодическим изменениям внешней среды выражается не только в непосредственной реакции на изменение ряда факторов, но и в наследственно закреплённых внутренних суточных и сезонных ритмах.

Внутренние сезонные ритмы перестраиваются с большим трудом и зачастую лишь через несколько поколений. Например, животные Южного полушария, перевезённые в наши зоопарки, размножаются обычно осенью, под зиму, когда на их родине весна.

Длина светового дня является единственным точным сигналом приближения зимы или весны, т. е. изменения всего комплекса факторов внешней среды. Погодные же условия обманчивы. Поэтому растения, например, реагируя на длину дня, не распускают листву в зимние оттепели и не переходят к листопаду при краткосрочных летних заморозках. Зацветают растения тоже при определённой длине дня. Цветение растений является одним из проявлений фотопериодизма. С этим часто сталкиваются растениеводы. У растений важно различать короткодневные и длиннодневные виды или сорта. длиннодневные растения распространены в основном в умеренных и приполярных широтах, а короткодневные – в областях ближе к экватору.

Способность воспринимать длину дня и реагировать на неё особенно широко проявляется в животном мире. У животных фотопериодизм контролирует плодовитость, сроки брачного периода, миграции, переход к зимней спячке.

В явлениях фотопериодизма выражается не непосредственное действие фактора освещённости на организмы, а его сигнальное значение. Соотношение светлого и тёмного периодов суток в разные сезоны года как сигнальный фактор предупреждает о предстоящих изменениях в природе, подготовка к которым требует времени. Поэтому необходимые физиологические перестройки у животных и растений успевают совершиться заранее.

1. Что такое сигнальный фактор? Чем он отличается от других абиотических факторов среды?

2. Относится ли закон оптимума к ядам и лекарствам, действующим на организм человека?

3. Замените выделенные слова утверждений термином.

Способность воспринимать длину дня и реагировать на неё – явление, широко распространённое в растительном и животном мире.

Определённые границы действия каждого фактора – это пределы, в которых жизнеспособность организма реализуется лучше.

4. Укажите, какой вид вашей деятельности в природе мог бы служить примером антропогенного фактора.

• какие основные среды жизни существуют на Земле;

• что понимают под экологическими факторами среды.

Закон оптимума имеет большое практическое значение. Нет всецело положительных или отрицательных факторов, всё зависит от их дозировки. Формы влияния среды на организмы имеют сугубо количественное выражение. Чтобы управлять жизнедеятельностью вида, следует прежде всего не допускать выхода различных экологических факторов за их критические значения и стараться выдерживать зону оптимума. Это очень важно для растениеводства, животноводства, лесного хозяйства и вообще всех областей взаимоотношений человека с живой природой. Это же правило относится и к самому человеку, особенно в области медицины.

Использование закона оптимума осложняется тем, что для каждого вида оптимальные дозировки факторов различны. То, что хорошо для одного вида, может быть пессимумом или выходить за критические пределы для другого. Например, при температуре 20 0 С тропическая обезьяна дрожит от холода, а северный обитатель – песец – изнывает от жары. Бабочки зимней пяденицы ещё порхают в ноябре (при температуре 6 0 С) когда большинство других насекомых впадают в оцепенение. Рис выращивают на полях, залитых водой, а пшеница в таких условиях вымокает и погибает.

Это свидетельствует о том, что в природе нет двух видов с полным совпадением оптимума, минимума и критических точек по отношению к набору факторов среды. В природе есть виды с узким диапазоном активности жизнедеятельности по отношению к экологическому фактору, например к яркости света. Одни виды характеризуются как светолюбивые, другие, наоборот, – тенелюбивые, но есть и теневыносливые. Они могут жить и в условиях яркого света, и при большом затенении.

Если виды совпадают по устойчивости к одному фактору, то обязательно разойдутся по устойчивости к другому.

Закон ограничивающего фактора тесно связан с законом оптимума и вытекает из него. В окружающей среде нет всецело отрицательных или положительных факторов: всё зависит от силы их действия. На живые существа одновременно действует множество факторов, и к тому же большинство из них переменчиво. Но в каждый конкретный период времени можно выделить самый главный фактор, от которого в наибольшей мере зависит жизнь. Им оказывается тот фактор среды, который сильнее всего отклоняется от оптимума, т. е. ограничивает жизнедеятельность организмов в данный период.

Любой фактор, влияющий на организмы, может стать либо оптимальным, либо ограничивающим в зависимости от силы своего воздействия.

Результат влияния любого экологического фактора на жизнедеятельность организмов во многом зависит от того, в какой комбинации и с какой силой действуют в данный момент другие факторы.

Так, каждый знает, что переносить мороз в безветренную погоду значительно легче, чем при сильном ветре. Влияние 30-градусной жары значительно сильнее при высокой влажности воздуха, чем в сухую погоду, и т. д. Поэтому, если нет возможности изменить ограничивающий фактор, часто можно добиться смягчения его действия, изменяя другие. В сельском хозяйстве эти приёмы входят в нормы агротехники. Например, добавочное рыхление почвы снижает испарение почвенной влаги, так как нарушает сеть мелких пор, из которых испаряется вода.

Полностью заменить один фактор другим нельзя. Но нередко при комплексном воздействии факторов можно видеть эффект замещения. Например, свет не может быть заменён избытком тепла или углекислого газа, но, действуя изменениями температуры, можно усилить фотосинтез у растений. Однако это не замещение одного фактора другим, а проявление сходного биологического эффекта, вызванного изменениями количественных показателей совместного действия факторов. Это явление широко используется в сельском хозяйстве. Например, в теплицах для получения продукции создают повышенное содержание углекислого газа и влаги в воздухе, подогрев и тем отчасти компенсируют нехватку света в осеннее и зимнее время.

Периодичность в жизни организмов. В действии экологических факторов на планете наблюдается периодичность, связанная со временем суток, сезонами года, морскими приливами и фазами Луны. Эта периодичность обусловлена космическими причинами – движением Земли вокруг своей оси, вокруг Солнца и взаимодействием с Луной. Жизнь на Земле приспособлена к этой постоянно существующей ритмике, что проявляется в изменениях состояния и поведения организмов.

Вегетация растений, листопад, зимний покой, размножение животных, их миграции, спячки, нагуливание жира – примеры явлений, обусловленных сезоном года. Сменой дня и ночи вызываются изменения активности у животных, скорость фотосинтеза у растений и т. п.

Приспособленность к периодическим изменениям внешней среды выражается не только в непосредственной реакции на изменение ряда факторов, но и в наследственно закреплённых внутренних суточных и сезонных ритмах.

Внутренние сезонные ритмы перестраиваются с большим трудом и зачастую лишь через несколько поколений. Например, животные Южного полушария, перевезённые в наши зоопарки, размножаются обычно осенью, под зиму, когда на их родине весна.

Длина светового дня является единственным точным сигналом приближения зимы или весны, т. е. изменения всего комплекса факторов внешней среды. Погодные же условия обманчивы. Поэтому растения, например, реагируя на длину дня, не распускают листву в зимние оттепели и не переходят к листопаду при краткосрочных летних заморозках. Зацветают растения тоже при определённой длине дня. Цветение растений является одним из проявлений фотопериодизма. С этим часто сталкиваются растениеводы. У растений важно различать короткодневные и длиннодневные виды или сорта. длиннодневные растения распространены в основном в умеренных и приполярных широтах, а короткодневные – в областях ближе к экватору.

Способность воспринимать длину дня и реагировать на неё особенно широко проявляется в животном мире. У животных фотопериодизм контролирует плодовитость, сроки брачного периода, миграции, переход к зимней спячке.

В явлениях фотопериодизма выражается не непосредственное действие фактора освещённости на организмы, а его сигнальное значение. Соотношение светлого и тёмного периодов суток в разные сезоны года как сигнальный фактор предупреждает о предстоящих изменениях в природе, подготовка к которым требует времени. Поэтому необходимые физиологические перестройки у животных и растений успевают совершиться заранее.

1. Что такое сигнальный фактор? Чем он отличается от других абиотических факторов среды?

2. Относится ли закон оптимума к ядам и лекарствам, действующим на организм человека?

3. Замените выделенные слова утверждений термином.

Способность воспринимать длину дня и реагировать на неё – явление, широко распространённое в растительном и животном мире.

Определённые границы действия каждого фактора – это пределы, в которых жизнеспособность организма реализуется лучше.

4. Укажите, какой вид вашей деятельности в природе мог бы служить примером антропогенного фактора.

2.3. Общие законы действия факторов среды на организмы

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


Рис. 1. Схема действия факторов среды на живые организмы

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до + 29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).


Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 — стенотермные виды, криофилы;

3–7– эвритермные виды;

8, 9 — стенотермные виды, термофилы

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.


Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): tмин, tопт, tмакс– температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.


Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1– клевер луговой; 2– тысячелистник обыкновенный; 3– келерия Делявина; 4– мятлик луговой; 5– типчак; 6– подмаренник настоящий; 7– осока ранняя; 8– таволга обыкновенная; 9– герань холмовая; 10 – короставник полевой; 11– козлобородник коротконосиковый

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.


Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Факторы климатические: 1) первичные периодические факторы (свет, температура); 2) вторичные периодические факторы (влажность); 3) непериодические факторы (шквальный ветер, значительная ионизация атмосферы, пожары).[ . ]

Регулярно-периодические факторы — это факторы, меняющие свою силу в зависимости от времени суток, сезона года, ритма приливов и отливов (освещенность, температура, длина светового дня и т.д.).[ . ]

Первичные периодические факторы играют преобладающую роль во многих местообитаниях. Исключение составляют некоторые специфические зоны обитания, такие как абиссаль или подземные участки, где изменения первичных факторов равны нулю или очень незначительны.[ . ]

Первичные периодические факторы всегда следует иметь в виду, особенно при экспериментальных экологических исследованиях. Результаты, полученные в опытах с животными, которые помещены в условия с постоянной температурой или освещенностью, могут значительно отличаться от результатов для животных, находящихся в природе, где произошло изменение этих факторов. Существованием резко выраженной адаптации организмов к первичным периодическим факторам можно объяснить неблагоприятность постоянной температуры. В частности, Шелфорд показал, что для роста и развития сопротивляемости животных совершенно необходимо колебание температуры.[ . ]

Вторичные периодические факторы являются следствием изменения первичных: влажность воздуха, зависящая от температуры; растительная пища, зависящая от цикличности в развитии растений; ряд биотических факторов внутривидового влияния и др. Они возникли позднее первичных, и адаптация к ним не всегда четко выражена.[ . ]

Вторичные периодические факторы являются производными первичных. Например, уровень влажности зависит от температуры; там, где ниже температура, там атмосфера содержит меньше паров воды.[ . ]

К первичным периодическим факторам относят явления, связанные в основном с вращением Земли: суточная смена освещенности, смена времен года. Эти факторы, которым свойственна правильная периодичность, действовали задолго до появления жизни на Земле, и возникающие живые организмы должны были адаптироваться к ним.[ . ]

К первичным периодическим факторам относятся температура, освещенность, уровень воды в приливной зоне моря. Первичные периодические факторы определяют площади ареала видов. Изменение вторичных факторов обусловлено действием первичных факторов. Например, влажность, растительность относятся ко второй группе факторов. Вторичные периодические факторы оказывают влияние на численность видов в пределах их ареалов. Действие непериодических фактов оказывает влияние на численность особей на данной территории.[ . ]

Непериодические факторы обычно воздействуют катастрофически: могут вызвать болезни или даже смерть живого организма. Человек использовал это в своих интересах, искусственно вводя периодические факторы, — введением химической отравы уничтожает вредные для него организмы: паразитов, вредителей сельхозкультур, болезнетворных бактерий, вирусы и т. п. Но оказалось, что длительное воздействие этого фактора также может вызвать к нему адаптацию: насекомые адаптировались к ДЦТ, бактерии и вирусы — к антибиотикам и т. д.[ . ]

Непериодические факторы в местообитаниях организма в нормальных условиях не существуют. Они проявляются внезапно, поэтому организмы обычно не успевают к ним приспособиться. В эту группу входят некоторые климатические факторы, например шквальные ветры, грозы, а также пожары. Сюда же следует отнести все формы человеческой деятельности и действия хищных, паразитических и патогенных видов животных, т. е., согласно общепринятой терминологии, биотические факторы, за исключением взаимодействия между особями одного вида. Влияние хозяина на паразита следует отнести к вторичным периодическим факторам, так как среда, в которой оказывается паразит (хозяин), представляет собой нормальное его местообитание. Зато для хозяина паразит (или патогенный агент) не является необходимостью; это непериодический фактор, который не вызывает, как правило, никакой адаптации, кроме некоторых, сравнительно редких случаев (например, приобретенный иммунитет), когда число паразитов или патогенных организмов велико настолько, что они представляют собой постоянный элемент данного биоценоза.[ . ]

Чем теснее связь вторичного периодическсгч) фактора с первичным период.фактором, тем с больше? регулярностью проявляется периодичность вторичного ректора. Такувлажность воздуха является вторичным фактором, находящимся в тесной зависимости от температуры.Примером другого вторичного фактора месг служить растительна?. пит,о, периодичность которой связана с , егетационным циклам.[ . ]

Изменения вторичных периодических факторов есть следствие изменений первичных периодических факторов. Чем теснее связь вторичного периодического фактора с первичным, тем с большей регулярностью проявляется периодичность первого. Так, влажность воздуха - это вторичный фактор, который находится в прямой зависимости от температуры. В тропиках или областях с муссонным климатом выпадение осадков подчиняется суточной или сезонной периодичности.[ . ]

Примером вторичного периодического фактора может быть также растительность, служащая пищей, периодичность произрастания которой связана с вегетационным циклом. Сезонные изменения, касающиеся жертв и хозяев, биология или физиология последних являются для хищников и паразитов факторами, к которым они приспосабливаются. Для водной среды содержание кислорода, количество растворенных солей, мутность, наличие горизонтальной и вертикальной циркуляции вод, колебание уровня воды, скорость течения чаще всего являются вторичными периодическими факторами. Однако периодичность этих факторов не строгая ввиду того, что они зависят от первичных периодических факторов довольно слабо. Наконец, биотические внутривидовые влияния также относятся к вторичным периодическим факторам, ибо все взаимодействия между особями осуществляются на фоне годичных циклов.[ . ]

Как правило, вторичные периодические факторы сказываются на численности видов в пределах их ареалов, но мало влияют на протяженность самих ареалов.[ . ]

Основные адаптации организмов к факторам внешней среды наследственно обусловлены. Они формировались на историко-эволюционном пути биоты и изменялись вместе с изменчивостью экологических факторов. Организмы адаптированы к постоянно действующим периодическим факторам, но среди них важно различать первичные и вторичные.[ . ]

Живые организмы хорошо адаптированы к периодическим факторам. Непериодические факторы могут вызывать болезни и даже смерть живого организма. Человек использует это, применяя пестициды, антибиотики и другие непериодические факторы. Однако длительное их воздействие также может вызвать к ним адаптацию.[ . ]

В качестве таких датчиков времени могут выступать многие периодически меняющиеся факторы среды. Но в эволюции большинства групп живых организмов основное синхронизирующее значение закрепилось за закономерными изменениями светового режима — фо-топериодическая регуляция. Свет представляет собой первично-периодический фактор: закономерная смена дня и ночи, как и сезонные изменения длины светлой части суток, происходят с жесткой ритмичностью, которая определяется астрономическими процессами и на проявления которой не могут повлиять условия и процессы, осуществляющиеся на Земле. Поэтому фотопериод наиболее устойчив в своей динамике, автономен и не подвержен другим влияниям. Только на экваторе, где продолжительность дня и ночи не изменяется по сезонам, и в некоторых особых условиях (глубины моря, пещеры, непрерывный полярный день) ведущее значение в регуляции биологических ритмов приобретают другие факторы.[ . ]

В нормальных условиях в местообитании должны действовать только периодические факторы, непериодические — отсутствовать.[ . ]

Кроме приведенной, существуют и другие классификаций экологических факторов. Так, все факторы делятся на периодические и апериодические. Первичные периодические факторы обусловлены вращением Земли вокруг своей оси и вокруг Солнца. Это смена времени года и суточная смена освещенности. Многие физические и химические факторы — влажность, температура, осадки, динамика численности организмов являются вторичными периодическими, обусловленными наличием первичных. К апериодическим факторам относятся различные стихийные явления, почвенные, грунтовые, антропогенные факторы.[ . ]

Отсутствие в большинстве случаев адаптивных реакций на непериодические факторы дает теоретическое обоснование для разработки методов борьбы с вредными животными с помощью химических и биологических средств. Только многократная обработка инсектицидами многих поколений насекомых приводит к возникновению устойчивых рас, поскольку при многолетнем использовании инсектициды приобретают значение вторичного периодического фактора. Около века тому назад швейцарский ученый Мюллер получил за изобретение ДДТ Нобелевскую премию. В то время препарат обладал высокой токсичностью по отношению к вредным насекомым. Однако многократное применение ДДТ привело к появлению устойчивых рас. Положительный эффект ДЦТ стал снижаться, а вредное действие, напротив, стало проявляться все заметнее. И сейчас использование ДДТ запрещено законом в большинстве стран.[ . ]

Разумеется, "непериодично" лишь само тело почвы, подстилающие ее грунты, а динамика температуры, влажности и многих других свойств почвы также связана с первичными периодическими факторами.[ . ]

Динамика экосистемы — изменение экосистемы (биогеоценоза) под воздействием сил извне и внутренних процессов ее развития. Выделяют вековую динамику экосистемы — относительно обратимые или необратимые смены сообществ, вызванные различными (периодическими) факторами, протекающие в течение весьма длительного (многих веков) интервала времени. Сезонная динамика экосистем, как правило, связана со сменой сезонов года и представляет одну из форм циклических (периодических) изменений в сообществе (суточных, сезонных, погодно-температурных и др.). Также выделяют антропогенную динамику экосистемы, т. е. смену сообществ под влиянием деятельности человека (сукцессия).[ . ]


Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы.

Абиотические факторы – компоненты неживой природы, прямо или косвенно воздействующие на организм. Их делят на следующие группы:

– климатические факторы (свет, температура, влажность, ветер, атмосферное давление и др.);

– геологические факторы (землетрясения, извержения вулканов, движение ледников, радиоактивное излучение и др.);

– орографические факторы, или факторы рельефа (высота местности над уровнем моря, крутизна местности – угол наклона местности к горизонту, экспозиция местности – положение местности по отношению к сторонам света и др.);

– эдафические, или почвенно-грунтовые, факторы (гранулометрический состав, химический состав, плотность, структура, pH и др.);

– гидрологические факторы (течение, соленость, давление и др.).

Иначе абиотические факторы делят на: физические и химические.

Биотические факторы – воздействие на организм других живых организмов.

В зависимости от вида воздействующего организма их разделяют на две группы:

– внутривидовые, или гомотипические, факторы – это влияние на организм особей этого же вида (зайца на зайца, сосны на сосну и т.д.).

– межвидовые, или гетеротипические, факторы – это влияние на организм особей других видов (волка на зайца, сосны на березу и т.д.).

В зависимости от принадлежности к определенному царству биотические факторы подразделяют на четыре основные группы:

– фитогенные факторы – это влияние на организм;

– зоогенные факторы – влияние животных;

– микогенные факторы – влияние грибов;

– микробогенные факторы – влияние микроорганизмов (вирусов, бактерий, простейших).

По типу взаимодействия различают протокооперацию, мутуализм, комменсализм, внутривидовую и межвидовую конкуренции, паразитизм, хищничество, аменсализм, нейтрализм.

Антропогенные факторы – деятельность человека, приводящая либо к прямому воздействию на живые организмы, либо к изменению среды их обитания (охота, промысел, сведение лесов, загрязнение, эрозия почв и др.).

При этом различают воздействие человека как биологического организма (потребление пищи, дыхание, выделение и т.д.) и его хозяйственную деятельность (сельское хозяйство, промышленность, энергетика, транспорт, бытовая деятельность и т.д.). Факторы, связанные с хозяйственной деятельностью человека, называются техногенными.

По характеру изменения во времени экологические факторы подразделяют на три группы.

Регулярно-периодические факторы – это факторы, меняющие свою силу в зависимости от времени суток, сезона года, ритма приливов и отливов (освещенность, температура, длина светового дня и т.д.).

Нерегулярные (непериодические) факторы – это факторы, не имеющие четко выраженной периодичности (наводнение, ураган, землетрясение, извержение вулкана, нападение хищника и т.д.).

Направленные факторы – это факторы, действующие на протяжении длительного промежутка времени в одном направлении (похолодание или потепление климата, зарастание водоема, эрозия почвы и т.д.).

По характеру ответной реакции организма на воздействие экологического фактора различают следующие группы экологических факторов.

Раздражители – факторы, вызывающие биохимические и физиологические изменения (адаптации).

Модификаторы – факторы, вызывающие морфологические и анатомические изменения (адаптации).

Ограничители – факторы, обусловливающие невозможность существования организма в данных условиях и ограничивающие ареал его распространения.

Сигнализаторы – факторы, информирующие об изменении других факторов.

По принципу возможности потребления при взаимодействии с организмом экологические факторы подразделяют на: ресурсы и условия.

Ресурсы – это экологические факторы среды обитания, которые организм потребляет, то есть их количество в результате взаимодействия с организмом может уменьшаться (пища, вода, солнечная энергия, кислород, углекислый газ и т.д.).

Условия – это экологические факторы среды обитания, которые организм не потребляет, то есть их количество не уменьшается, но они могут оказывать влияние на организм (температура, влажность, атмосферное давление, гравитационное поле и т.д.).

Читайте также: