Параллактическое смещение это кратко

Обновлено: 27.04.2024

Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.

А.Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 06. Законы движения небесных тел. Определение расстояний и размеров тел в Солнечной системе.

Наименование разделов и тем

Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся

Объем часов

Уровень освоения

Законы движения небесных тел.

Определение расстояний и размеров тел в Солнечной системе.

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс.

Формулирование законов Кеплера. Воспроизведение формул для определения расстояний и размеров тел в Солнечной системе. Воспроизведение определений терминов и понятий (паралактическое смещение, горизонтальный параллакс). Применение полученных знаний для решения задач на законы Кеплера, на определение расстояний и линейных размеров тел.

Тема 3.2. Законы движения небесных тел. Определение расстояний и размеров тел в Солнечной системе.

3.2.1. Законы движения небесных тел.

Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге . Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке 3.5.

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты — его прямое восхождение α 1 , которое выражается углом Т1М1 где Т1 — положение Земли на орбите в этот момент, а М1 — положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты. Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка 3.5, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол T 2 M 1 есть не что иное, как прямое восхождение Марса — α2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты.

Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера.

Этот закон, который часто называют законом площадей, иллюстрируется рисунком 3.6. Радиус-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1 ВВ1 и СС1 — дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой.

Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость — увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная.

Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8′; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера.

Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон Кеплера

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть ве личина постоянная. На рисунке 3.6 обозначены: О - центр эллипса; F и F 1 — фокусы эллипса; АВ — его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка Вафелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку — эллипс превращается в окружность.

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит.

Формула, выражающая третий закон Кеплера, такова:

где Т1 и Т2 — периоды обращения двух планет; а1 и а2 — большие полуоси их орбит.

Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты — астрономическая единица (а. е.) — стала основой для вычисления всех остальных расстояний в Солнечной системе.

Пример решения задач

Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

3.2.2. Определение расстояний и размеров тел в Солнечной системе.

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провел греческий ученый Эратосфен (276— 194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1°, а затем длину окружности и величину ее радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: φ B – φ A .

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в них в один и тот же день. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените h A .

Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной (А) и Александрией (В) около 5000 греческих стадий — l .

Стадией в Древней Греции считалось расстояние, которое проходит легко вооруженный греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, ее введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счета времени.

Обозначив длину окружности земного шара через L , получим такое выражение:

откуда следует, что длина окружности земного шара равняется 250 000 стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Это означает, что результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 000 км.

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — ВС) и двух углов В и С в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Для определения длины дуги используется система треугольников — способ триангуляции, который впервые был применен еще в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30 — 40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса АС (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента (теодолита) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги АВ.

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1:50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием. По современным данным оно составляет 1/298 или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего 1/30 000 (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передает фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

  • экваториальный радиус - 6378,160 км;
  • полярный радиус - 6356,777 км;
  • сжатие эллипсоида - 1 : 298,25;
  • средний радиус - 6371,032 км;
  • длина окружности экватора - 40075,696 км.

13.2 Определение расстояний в Солнечной системе.

Горизонтальный параллакс

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определен горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является ее радиус.

Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .

Из треугольника OAS можно выразить величину — расстояние OS = D :

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57'. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца 8,8Ѕ. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p, если угол р выражен в радианах. В одном радиане содержится 206 265Ѕ. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

или (с достаточной точностью)

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчетов траекторий полета космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Пример решения задач.

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9"?

13.4. Определение размеров светил

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12).

Формула, связывающая эти величины, аналогична формуле для определения параллакса:

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30', а все планеты видны невооруженному глазу как точки, можно воспользоваться соотношением: sin ρ ≈ ρ. Тогда:

Если расстояние D известно, то

где величина ρ выражена в радианах.

Пример решения задач

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30'?

Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки.

Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте! Вы вносите неоценимый вклад в обучение, воспитание и развитие подрастающего поколения.

§ 22. Р асстояния до звёзд. Х арактеристики излучения звёзд

Н аше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звёзд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звёздах даёт такое определение:

звезда — это пространственно обособленный, гравитационно связанный, непрозрачный для излучения космический объект, в котором в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах всё ещё происходят термоядерные реакции, в результате которых из четырёх протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звёзды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерода-12 и другие реакции, продуктами которых являются кислород и тяжёлые элементы (натрий, сера, магний и т. д.). Таким образом, в недрах звёзд образуются ядра многих химических элементов, вплоть до железа.

У наиболее массивных звёзд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.

Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звёздах, поэтому звёзды не только самые распространённые во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.

Именно термоядерные реакции являются характерной отличительной особенностью звёзд от планет. Поэтому современное определение планеты формулируется так:

планета — небесное тело, обращающееся вокруг звезды или остатка звезды, достаточно массивное, чтобы приобрести сферическую форму под действием собственной гравитации, и своим воздействием удалившее малые тела с орбиты, близкой к собственной, но при этом в её недрах не происходят и никогда не происходили реакции термоядерного синтеза.

1. Годичный параллакс и расстояния до звёзд

М ысли о том, что звёзды — это далёкие солнца, высказывались ещё в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Ещё Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до неё: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звёзд.


Рис. 5.12. Параллактическое смещение звезды


Рис. 5.13. Годичный параллакс звезды

Годичным параллаксом звезды p называется угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду (рис. 5.13) .

Расстояние до звезды


D = ,

где a — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв a = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:


D = .

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провёл эти измерения для ярчайшей звезды Северного полушария Веги ( α Лиры). Почти одновременно в других странах определили параллаксы ещё двух звёзд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у неё годичный параллакс составил всего 0,75 ʺ . Под таким углом невооружённому глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.


Расстояние до ближайшей звезды, параллакс которой p = 0,75 ʺ , составляет D = = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.

Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 тыс. км/с, проходит за год. От ближайшей звезды свет идёт до Земли свыше четырёх лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.

1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 3 • 10 13 км.

Таким образом, теперь измерением годичного параллакса можно надёжно определить расстояния до звёзд, удалённых от нас на 1000 пк, или 3000 св. лет. Расстояния до более далёких звёзд определяются другими методами.

2. Видимая и абсолютная звёздные величины. Светимость звёзд

П осле того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость . Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D 0 = 10 пк, получила название абсолютной звёздной величины M .

Рассмотрим, как можно определить абсолютную звёздную величину M , зная расстояние до звезды D (или параллакс — p ) и её видимую звёздную величину m . Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m 1 и m 2 соответственно, отношение их блесков I 1 и I 2 выражается соотношением:


I 1 : I 2 = .

Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:

I : I 0 = 2,512 M – m ,

где I 0 — блеск этой звезды, если бы она находилась на расстоянии D 0 = 10 пк.

В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому


I : I 0 = : D 2 .


2,512 M – m = : D 2 .

Логарифмируя это выражение, находим

0,4( M – m ) = lg 10 2 – lg D 2 ,

M = m + 5 – 5 lg D ,

Абсолютная звёздная величина Солнца M ☉ = 5 m . Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.

Зная абсолютную звёздную величину звезды M , легко вычислить её светимость L . Считая светимость Солнца L ☉ = 1, получаем:

По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9 m , а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17 m .

3. Спектры, цвет и температура звёзд

В сю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.

Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:


λ max = ,

где λ max — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах


Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.

У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.

Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v , то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера , согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой:

= ,

где λ 0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.


П РимеР РешениЯ задаЧи

Какова светимость звезды ξ Скорпиона, если её звёздная величина 3 m , а расстояние до неё 7500 св. лет?

M = m + 5 – 5 lg D , где D = 7500 : 3,26 = 2300 пк.

Тогда M = 3 + 5 – 5 lg 2300 = –8,8.

lg L = 0,4 • [5 – (–8,8)] = 5,52.

Отсюда L = 330 000.

Ответ : L = 330 000.


В опросы 1. Как определяют расстояния до звёзд? 2. От чего зависит цвет звезды? 3. В чём главная причина различия спектров звёзд? 4. От чего зависит светимость звезды?


У пражнение 18 1. Во сколько раз Сириус ярче, чем Альдебаран; Солнце ярче, чем Сириус? 2. Одна звезда ярче другой в 16 раз. Чему равна разность их звёздных величин? 3. Параллакс Веги 0,11 ʺ . Сколько времени идёт свет от неё до Земли? 4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе? 5. Во сколько раз звезда 3,4 звёздной величины слабее, чем Сириус, имеющий звёздную величину –1,6? Чему равны абсолютные величины этих звёзд, если расстояние до каждой составляет 3 пк?

Параллакс

Планета Земля не является стационарным объектом в космическом пространстве, а совершает один оборот вокруг своей оси каждые 24 часа (земные сутки), а так же обращается вокруг Солнца за 365 земных суток (один земной год).

Краткие сведения

Радиус земной орбиты составляет одну астрономическую единицу или около 150 миллионов километров. В связи с этим все внеземные объекты на земном небе так же выписывают годичные “петли” (параллактическое движение). Чем дальше небесный объект находится от Земли, тем его параллактическое движение на земном небе является менее заметным (в переводе с греческого слово “параллакс” означает “смещение”).

Измерения углового диаметра параллактического движения небесных тел на земном небе позволяет проводить наиболее точные измерения расстояния до них (тригонометрическое расстояние). Кроме того, важным в истории астрономии оказался суточный (геоцентрический) и вековой параллакс. Первый из них обозначает половину от максимального различия в угловых координатах небесного тела на земном небе при различных географических положениях на поверхности Земли (относительно центра Земли), второй обозначает собственные движения звезд на небе нашей планеты по причине движения Солнечной Системы вокруг центра галактики.

История

Суточным (геоцентрическим) параллаксом называется угол, под которым виден земной радиус с определенного небесного тела. Кроме того, выделяют понятие горизонтального параллакса. Горизонтальным параллаксом называется угол, под которым виден экваториальный радиус Земли из центра определенного небесного тела при нахождении последнего на истинном горизонте (истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения). Различия понятий суточного и горизонтального параллакса связаны с несферичностью Земли (так полярный радиус Земли короче экваториального радиуса на 21 км).

Суточный параллакс сыграл очень важную роль в истории астрономии, как наиболее простой и достоверный способ определения расстояния до объектов Солнечной Системы. Фактически этот метод являлся единственным геометрическим методом измерения расстояний в Солнечной Системе вплоть до радиолокации, лазерной локации и методов радиоинтерференции сигналов межпланетных станций. Базой суточного параллакса является земной радиус. Самым большим суточный параллакс является у Луны (57 угловых минут) и у Солнца (9 угловых минут). У всех планет Солнечной Системы суточный параллакс подвержен регулярным изменениям и значительно меньше угловой минуты (у Венеры 0.1-0.6 угловых минут, у Марса 0.1-0.4 угловых минут, у Юпитера и Сатурна меньше 0.1 угловой минуты, а у Урана и Нептуна меньше одной угловой секунды).

Первыми параллакс Луны и Солнца определили древнегреческие астрономы на основе наблюдений лунных затмений, которые позволяли определять параллакс Луны из одного и того же места. Так древнегреческий астроном Гиппарх Никейский (180-125 годы до нашей эры) в 129 году до нашей эры оценил параллакс Солнца в 7 угловых минут (максимальная величина угла, который неразличим невооруженным глазом). Похожие расчеты выполнил до него другой древнегреческий астроном Аристарх Самосский (310-230 годы до нашей эры).

С другой стороны, александрийский астроном Клавдий Птолемей (100-170 годы нашей эры) полагал, что расстояние до Луны зависит от её фаз. Это говорит о больших разногласиях среди астрономов Древнего мира по поводу оценок параллаксов Луны и Солнца. Позже ошибка Птолемея о зависимости размера параллакса Луны от её фаз стала одним из основных объектом критики птолемевской системы мира. Так юный Николай Коперник (1473-1543 годы нашей эры) во время учебы в Италии проводил измерения параллакса Луны вместе со своим учителем Новарой. Наблюдения положения Луны во время затмения яркой звезды Альдебаран из Болоньи 9 марта 1497 года показали, что параллакс Луны не зависит от её фазы. В последующие века началось широкое использование одновременных наблюдений из северного и южного полушария для точного измерения параллаксов Луны, Солнца и Марса. К примеру, в 18 веке такие наблюдения осуществлялись в обсерватории мыса Доброй Надежды в южной части Африки и Берлинской обсерватории.

Сравнение гелиоцентрической и геоцентрической системы мира

Сравнение гелиоцентрической и геоцентрической системы мира

Сравнение гелиоцентрической и геоцентрической системы мира

Впервые факт отсутствия неизменности положения звезд на земном небе был обнаружен ещё Гиппархом на основе сверки положения ярких звезд его каталога, состоящего из примерно тысячи звезд с более древними каталогами вавилонян и александрийских астрономов. Гиппарх обнаружил систематическое изменение долготы положения звезд примерно на один градус (в то время как широта звезд относительно эклиптики оставалась неизвестной). Ныне это явление называется прецессией земной оси с периодом в 26 тысяч лет. Истинное движение звезд было впервые обнаружено в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). В процессе уточнения прецессии Э. Галилей сравнил положения звезд из каталога Гиппарха с современными звездными каталогами. Сравнение показало, что на фоне большинства звезд, у которых положение на земном небе менялось согласно прецессии, встречался ряд аномалий (для Сириуса, Арктура и Альдебарана). У этих звезд отклонения в положении в несколько раз превысили погрешность измерений.

Василий Струве и Пулковская обсерватория в которой он работал

Василий Струве

Орбитальное движение звезд системы 61 Лебедя (черным отметками отмечены измерения астрономов)

Орбитальное движение звезд системы 61 Лебедя (черным отметками отмечены измерения астрономов)

Кроме того французский астроном Доминик Араго (1786-1853) ещё за несколько лет до Ф. Бесселя опубликовал значение параллакса 61 Лебедя с большой погрешностью. Результат Ф. Бесселя был воспринят мировым сообществом как наиболее достоверный в связи с большим количеством астрометрических измерений (более 400).

Для сравнения у Ф. Струве для Веги было сделано только 17 астрометрических измерений. Кроме того работу Бесселя облегчил факт того, что двойная система 61 Лебедя обладает заметным орбитальным движением. Так можно было сравнить параллакс для обеих звезд системы.

Визуальные измерения параллаксов и собственных движений являлись крайне трудоемкими. К концу 19 века удалось измерить тригонометрические расстояния лишь до сотни звезд. Всё резко изменилось с использованием фотографии. Точность измерений выросла до 10 угловых микросекунд, а число измеряемых звезд достигло нескольких тысяч. Замена фотопластинок приборами с зарядовой связью (ПЗС-матрицами), широкое использование компьютеров для обработки данных, а также вынос телескопов за пределы атмосферы Земли позволил улучшить точность измерения положения звезд до миллионных долей угловой секунды, а размер астрометрических каталогов вырос до девятизначных цифр.

Прогресс в точности измерения положения звезд за последние 2.5 тысячи лет

Прогресс в точности измерения положения звезд за последние 2.5 тысячи лет

Основы геометрии и тригонометрии

При вычислении лунного параллакса активно используются основы геометрии для прямоугольного треугольника. Прямоугольным треугольником называется такой треугольник, у которого один из углов равен 90 градусов.

В прямоугольном треугольнике стороны, которые образуют угол в 90 градусов, называются катетами, а сторона, лежащая напротив угла в 90 градусов гипотенузой. Сумма углов в прямоугольном треугольнике равна 180 градусов. Отсюда несложно определить, что при известном катете (радиусе Земли) и угле между гипотенузой и катетом (суточным параллаксом) гипотенуза (расстояние до небесного тела) будет равна отношению известного катета к синусу суточного параллакса.

Только в этом случае радиус Земли заменяется радиусом земной орбиты вокруг Солнца, а суточный параллакс заменяется годичным параллаксом

Только в этом случае радиус Земли заменяется радиусом земной орбиты вокруг Солнца, а суточный параллакс заменяется годичным параллаксом

Синусом в прямоугольном треугольнике называют отношение катета противолежащего угла к гипотенузе.

Аналогичный принцип вычислений существует для расчетов тригонометрических расстояний до звезд.

По причине огромных расстояний до звезд (ближайшая звезда находится в 270 тысячах астрономических единиц от Солнца), для вычисления тригонометрических расстояний чаще всего используют отношение 206265 угловых секунд и измеренного годичного параллакса, который так же представлен в угловых секундах. Число 206265 означает число угловых секунд в одном радиане. Радиан – это угол, соответствующий дуге окружности, длина которой равна радиусу этой окружности.

Частные случаи использования суточного и годичного параллакса

Многие тысячи лет число известных объектов в Солнечной Системе было постоянным и было равно девяти (Земля, Луна, Солнце, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн). Это постоянство нарушали лишь кометы, которые периодически появлялись во внутренних областях Солнечной Системы. В 18 веке в Солнечной Системе начались открытия новых планет и астероидов (к примеру, Урана и Цереры). Шквал новых открытий вынудил астрономов разрабатывать методики по вычислению орбит небесных тел Солнечной Системы по минимальному числу измерений. В 1801 году 24-летний немецкий математик Фридрих Гаусс (1777-1855 годы) с целью обнаружения потерянной Цереры разработал математический метод, по которому было возможно определить орбиту небесного тела на основе всего трех его наблюдений.

В то же время примерное расстояние до небесного тела в Солнечной Системе, возможно, определить лишь по двум наблюдениям. Особенно, это актуально в случае открываемых объектов за орбитой Нептуна (ТНО). У таких объектов скорость движения является минимальной по сравнению с орбитальной скоростью Земли (несколько сотен метров в секунду против 30 км в секунду). В результате этого наблюдаемое расстояние от Солнца (гелиоцентрическое расстояние) до ТНО в астрономических единицах можно определить простым соотношением 150/q, где q – это угловая скорость объекта в угловых секундах за один час.

С другой стороны в последние годы астрометрические наблюдения мигрируют из оптического диапазона в более длинноволновые диапазоны электромагнитного спектра: инфракрасные лучи и радиоволны. Первый диапазон является очень перспективным для астрометрии красных и коричневых карликов во Вселенной (наиболее распространенной популяции массивных объектов в галактике, чей максимум теплового излучения приходится на инфракрасный диапазон). Второй диапазон является уникальным во всем электромагнитном спектре по проникающей способности.

Так недавно радиоастрономы с помощью радиоинтерферометра VLBA смогли установить рекорд самого далекого измеренного параллакса: расстояние до межзвездного облака G007.47+00.05 (внешний рукав Щита – Центавра) составило 20 тысяч парсек или 67 тысяч световых лет

Так недавно радиоастрономы с помощью радиоинтерферометра VLBA смогли установить рекорд самого далекого измеренного параллакса: расстояние до межзвездного облака G007.47+00.05 (внешний рукав Щита – Центавра) составило 20 тысяч парсек или 67 тысяч световых лет

Вековой и внегалактический параллакс

Солнечная Система, как сотни миллиардов планетных систем нашей галактики обращается вокруг центра галактики в созвездии Стрельца. Один оборот Солнечной Системы вокруг центра галактики (галактический год) равен 225-250 миллионов лет (средняя скорость движения Солнечной Системы в межзвездном пространстве около 220 км в секунду). По причине различий в галактических орбитах другие звезды на земном небе движутся по различным траекториям, с различной угловой и пространственной скоростью.

Как говорилось выше, собственные движения звезд были впервые обнаружены в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). Так как это открытие случилось за столетие до первых измерений параллаксов, звезды с высоким собственным движением стали потенциально интересными для измерения параллаксов. Из трех первых опубликованных параллаксов в 1837-1838 годах, два приходятся на звезды с высоким собственным движением (61 Лебедя и Альфа Центавра). Собственное движение этих систем составляет около 4 угловых секунд в год. Для сравнения, у третьей звезды – Веги собственное движение в 20 раз меньше (Ф. Бессель выбрал эту звезду для измерения параллакса по причине её околорекордной видимой яркости на северном небе). В дальнейшем поиск неизвестных близких звезд в большинстве случаев проходил через первоначальное обнаружение звезд с высоким собственным движением (к примеру, так были обнаружены в 20 веке звезды Проксима Центавра и Летящая Барнарда). В результате этого в последние годы астрономы открывают близкие звездные системы только с минимальным собственным движением (0.15 угловых секунд в год и меньше). Исключением из этого правила могут стать лишь плотные звездные поля или области вблизи очень ярких звезд.

Естественно и наша галактика в космическом пространстве Вселенной не является неподвижным объектом. Сегодня астрономы полагают, что наша галактика с соседними галактиками (Местная группа галактик) входят в состав сверхскопления галактик созвездия Девы. Исследования реликтового излучения в конце 20 века показали, что Солнечная Система движется относительно реликтового излучения со скоростью 368 ± 2 км/с (или 78 астрономических единиц в год). В результате этого движения, объект, который находится в миллионе парсек от нас, и расположен перпендикулярно внегалактическому апексу будет обладать на земном небе собственным движением в 78 угловых микросекунд в год (миллионных долей угловой секунды). Подобная точность измерений является вполне достижимой в последние десятилетия. В ходе измерения собственных движений близких галактик широко используются снимки крупнейших наземных телескопов и космических телескопов Хаббл и Гаяй, а так же данные радиоинтерферометров. К примеру, измерение собственного движения галактики М31 привело к прогнозу её столкновения с нашей галактикой через несколько миллиардов лет.

Схема движения галактик в Местной группе относительно нашей галактики взята из работы A. Brunthaler et al. 2007 года

Схема движения галактик в Местной группе относительно нашей галактики взята из работы A. Brunthaler et al. 2007 года

Измеренное собственное движение галактики Андромеды с расстоянием в 0.8 миллионов парсек составило около 50 угловых микросекунд в год. Для сравнения современные радиоинтерферометры способны регистрировать собственные движения галактик на основе наблюдения мазеров до удаления в 20 миллионов парсек за 10-летние наблюдения. Сложности измерения собственных движений галактик заключаются в необходимости разграничения общего движения всей галактики от орбитального движения отдельных звездных скоплений или межзвездных туманностей в ней. Решением этой проблемы является измерение собственного движения ядер галактик. В связи с этим удобным источником для измерения внегалактических собственных движений являются галактики с активными ядрами (квазары) – одни из ярчайших радиоисточников на земном небе. В работе 2005 года с названием “Quasar Apparent Proper Motion Observed by Geodetic VLBI Networks” сообщается, что геодезическим радиоинтерферометрам в период с 1980 по 2002 годы удалось измерить или ограничить собственное движение 580 квазаров.

У многих из них собственное движение составляет несколько сотен угловых микросекунд

У многих из них собственное движение составляет несколько сотен угловых микросекунд

Большинство этих источников находились на огромных расстояниях в многие миллиарды световых лет

Большинство этих источников находились на огромных расстояниях в многие миллиарды световых лет

В работе 2017 года был опубликован каталог собственных движений 713 внегалактических радиоисточников, которые наблюдались в среднем около 22 лет. Средняя погрешность этих измерений составила 24 угловых микросекунд в год. Эти наблюдения позволили зарегистрировать ускорение движения Солнечной Системы по галактической орбите (статистический уровень значимости 6.3 сигм). Это явление приводит к систематическому изменению угловой скорости внегалактических объектов на несколько микросекунд в год.

Карта собственных движений из нового каталога

Карта собственных движений из нового каталога

Самое большое наблюдаемое собственное движение в вышеназванном каталоге (около 1.5 угловых миллисекунд в год) наблюдается у радиогалактики SDSS J213836.38+001241.8, у которой наблюдаемый блеск в оптическом диапазоне составляет примерно 23 звездных величины (её красное смещение равно 0.6). Для сравнения у одной ближайшей галактики (Большое Магелланово облако) собственное движение равно 2 угловым миллисекундам.

Публикация первых (предварительных) релизов космического телескопа GAIA, который работает в оптическом диапазоне, так же смогла зарегистрировать собственные движения некоторых галактик и квазаров

Публикация первых (предварительных) релизов космического телескопа GAIA, который работает в оптическом диапазоне, так же смогла зарегистрировать собственные движения некоторых галактик и квазаров

Актуальность регистрации собственных движений внегалактических объектов в последние годы возрастает в связи с поисками темной (скрытной материи). Как известно темная материя была заподозрена на основе аномально высоких лучевых скоростей движения внешних областей многих галактик. В этих случаях лучевые скорости были измерены через анализ спектров. Измерение собственного движения этих аномальных областей позволило бы лучше прояснить этот вопрос.

Файл:Parallax scheme.webm

'> Воспроизвести медиафайл

Зная расстояние между точками наблюдения L (базис) и угол смещения α, можно определить расстояние до объекта:

Для малых углов (α — в радианах)

Параллакс используется в геодезии и астрономии для измерения расстояния до удалённых объектов (в частности в специальных единицах — парсеках). На явлении параллакса основано бинокулярное зрение.

Читайте также: